数据驱动的泛化气动分析模型与优化设计方法
DOI:
作者:
作者单位:

西北工业大学

作者简介:

通讯作者:

中图分类号:

V221

基金项目:

空天飞行空气动力科学与技术全国重点实验室开放课题项目资助(SKLA-2024-KFKT-1-006)


Data-Driven Generalizable Aerodynamic Analysis Model for Fast Shape Design Optimization
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献()
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    数据驱动的通用气动分析模型可在任意工况下对任意外形开展实时可信的气动分析,是实现飞行器极速智能优化设计的关键技术。然而受“维数灾难”的影响,构建复杂气动外形强泛化分析模型的训练数据需求量极高,严重限制了其发展应用。本文介绍笔者在数据驱动翼型与机翼极速优化设计方面的两项工作,通过对气动外形设计空间的合理表征,避开了“维数灾难”的不利影响,基于十万量级CFD训练数据构建了具备一定通用性的数据驱动气动分析模型,实现了相关气动外形的极速优化设计。作为笔者前期工作小结,本文旨在激励学界对数据驱动气动优化设计领域进一步开展深入研究,推动飞行器设计领域智能化发展进步。

    Abstract:

    Data-driven generalizable aerodynamic analysis models demonstrate strong capability in performing real-time reliable aerodynamic analysis for any geometry under arbitrary aerodynamic conditions. It represents a key technology for achieving high-speed intelligent optimization design of aircraft. However, the construction of high generalizable analysis models for complex aerodynamic geometry remains severely constrained by the curse of dimensionality, which necessitates large number of training data, thereby impeding practical implementation and broader application. This paper presents two studies in data-driven airfoil and wing optimization design. By establishing a rational parametric characterization of the aerodynamic shape design space, the adverse effects of the curse of dimensionality were effectively circumvented. A data-driven aerodynamic analysis model with demonstrable generalizability was constructed utilizing approximately 100,000-scale CFD training datasets, enabling high-efficiency optimization design of relevant aerodynamic shapes. As a summary of the author"s preliminary work, this paper aims to inspire the academic community to conduct further research in the field of data-driven aerodynamic optimization design and to promote the advancement of intelligence in the field of aircraft design.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-03-14
  • 最后修改日期:2025-07-14
  • 录用日期:2025-07-16
  • 在线发布日期:
  • 出版日期:
文章二维码