FFT 实现LFM 脉冲压缩

雷达的参数选择

谷学敏 王家培

提 要 本文主要介绍用准分组浮点与定点归一算法的FFT实现线性调频 (LFM) 脉冲压缩雷达的总体方案、FFT 运算中的 量化形式、A/D 变换 器字 长、旋转因子字长及 FFT 蝶件字长等参数的选择。通过电子计算机的 模拟计 算,给出一些实验数据与曲线,可供设计及研究者参考。

一、概 述

现代中、远程雷达中常用时间压缩信号经过处理以解决距离与距离分辨率的矛盾。 实现时间压缩信号的处理方法分 为模拟式与数 字式两种。模 拟式处理难 于获得大压缩 比、波形捷变及压缩比捷变,在单脉冲雷达中接收机的多路一致性也难于保持,从而会 影响测角精度。雷达信号的数字式处理则易于实现大压缩比、波形捷变、压缩比捷变, 及保证接收机实现时间压缩部分的多路一致性,因而是一种有前途的雷达技术。

1. 雷达信号

常用的雷达信号都是窄带信号,可表示为: $\psi(t) = \mu(t)e^{j2\pi f_0 t}$ (1)

式中 f_0 为信号载频, $\mu(t)$ 为信号复包络,可表示为:

$$\mu(t) = |\mu(t)| e^{i\varphi(t)}$$
(2)

式中 $|\mu(t)|$ 是复包络的模函数, $\varphi(t)$ 是相位调制函数。 $\psi(t)$ 及 $\mu(t)$ 的频谱分别以 $\Psi(f)$ 及 M(f) 记之。

线性调频(LFM)脉冲压缩雷达的发射信号可表为:

$$b(t) = A \exp\left[j\left(2\pi f_0 t + \frac{\pi W}{T}t^2\right)\right]$$
(3)

式中W为扫掠带宽, fo为载波频率, T为脉冲宽度。

而接收信号为

$$\psi_R(t) = A_R \exp\left\{ j \left[2\pi f_d(t-\tau) + \frac{\pi W}{T} (t-\tau)^2 \right] \right\}$$
(4)

式中 τ 为接收信号对发射信号的时延, f_d 为目标多普勒频率。

LFM 波形采样从数字信号处理的角度看是时间上的非周期序列。

本文1982年5月2日收到

2. 数字模糊函数

匹配滤波器对输入信号的响应用模糊函数描述,模糊函数全面地反映出雷达信号处 理的性能。研究各种处理方法及所选择参数对模糊函数的影响,可判断处理方法的优劣 及所选参数是否恰当。

模糊函数即实现如下的卷积:

$$A_a(\tau, f_d) = \int_{-\infty}^{+\infty} \mu(t) \,\mu^*(t-\tau) e^{j2\pi f_d t} dt \tag{5}$$

式中符号*表示复共轭,其数字形式即数字模糊函数为:

$$A_d(\tau, f_d) = \sum_{n=-\infty}^{\infty} \mu(nT_s) \mu^*(nT_s - \tau) e^{j2\pi f_d nT_s}$$
(6)

式中T。为信号采样周期。

 $A_a(r, f_d)$ 和 $A_d(r, f_d)$ 间存在如下关系

$$A_d(\tau, f_d) = \frac{1}{T_s} \sum_{n=+\infty}^{\infty} A_d\left(\tau, f_d + \frac{n}{T_s}\right)$$
(7)

由(6)式可知,数字模糊函数在频率上是一个周期函数,在时间上则不是。

LFM 波形的数字模糊函数图如图1所示,其中左图的相对采样率为 Nyquist 率,

即 $P = \frac{f_s}{W} = 1;$ 而右图的 $P = \frac{1}{2}$ 。

对 LFM 波形的模拟计算结果表明(略),当P略大于1时,即可使数字模糊函数 中虛假旁瓣的影响对实际应用不产生大的危害。

3. 雷达数字信号时间压缩的数学模型

对具有时间压缩特性的雷达信号进行时间压缩,即要求实现(6)式所表示的卷积。 而对时间上的周期序列信号则是实现如下的循环卷积;

$$y_n = \sum_{k=0}^{N-1} x_k h_{\langle n-k \rangle_N} = \sum_{k=0}^{N-1} x_{\langle n-k \rangle_N} h_k \quad (n=0,1,\cdots,N-1)$$
(8)

此循环卷积可用矩阵表示如下:

$$\begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_{n-1} \end{pmatrix} = \begin{pmatrix} h_0 & h_{N-1} & h_{N-2} & \cdots & h_1 \\ h_1 & h_0 & h_{N-1} & \cdots & h_2 \\ h_2 & h_1 & h_0 & \cdots & h_3 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ h_{n-1} & h_{N-2} & h_{N-3} & \cdots & h_0 \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_{N-1} \end{pmatrix}$$
(9)

雷达信号数字处理器实现上述卷积可直接用卷积定义计算,但要 N² 次乘法;也可 通过同态映射将求循环卷积的运算化为在变换域上的乘法运算。凡具有循环卷积特性的 变换均满足上述要求。

4. 具有循环卷积特性的变换

设

$$\left. \begin{array}{l}
H_{k} = T_{\mathcal{A}} \cdot h = \sum_{q=0}^{N-1} a_{k,q} h_{q} \\
X_{k} = T_{\mathcal{B}} \cdot x = \sum_{p=0}^{N-1} b_{k,p} x_{p} \\
Y_{i} = T_{c} \cdot y = \sum_{k=0}^{M-1} c_{i,k} y_{k} = H_{k} \cdot X_{k} \end{array} \right\}$$
(10)

若y为h与x的循环卷积, 即

$$y_n = \sum_{k=0}^{N-1} x_{\langle n-k \rangle} h_k = h * x$$
(11)

则称变换

$$y = T_c \{ (T_A \cdot h) \otimes (T_B \cdot x) \}$$
(12)

为具有循环卷积特性的变换,而具有循环卷积特性的变换必为正交变换。式中 T_A 与 T_B 为 $M \times N$ 矩阵, T_c 为 $N \times M$ 矩阵, $M \ge N$.

二、FFT 处理雷达信号的方法

1. 信号为时间上的周期序列

当变换长度 N=2"(r 为正整数)时, FFT 处理这种信号非常 方便。因为 FFT 是 具有循环卷积特性的变换,可直接处理,无须对数据补零。用矩阵表示如下:

$$\begin{pmatrix} y_{0} \\ y_{1} \\ y_{2} \\ \vdots \\ y_{N-1} \end{pmatrix} = \begin{pmatrix} x_{0} & x_{N-1} & \cdots & x_{1} \\ x_{1} & x_{0} & \cdots & x_{2} \\ x_{2} & x_{1} & \cdots & x_{3} \\ \vdots & \vdots & & \vdots \\ x_{N-1} & x_{N-2} & \cdots & x_{0} \end{pmatrix} \begin{pmatrix} h_{0} \\ h_{1} \\ h_{2} \\ \vdots \\ h_{N-1} \end{pmatrix}$$
(13)

2. 信号为时间上的非周期序列

如 LFM 波形的采样就属这种情况。这时要求处理器实现如下卷积:

$$y_n = \sum_{k=0}^{N-1} x_k h_{n-k} = \sum_{k=0}^{N-1} x_{n-k} h_k$$
(14)

而 FFT 计算的是

$$\hat{y}_{n} = \sum_{k=0}^{N-1} x_{k} h_{\langle n-k \rangle_{N}} = \sum_{k=0}^{N-1} x_{\langle n-k \rangle_{N}} h_{k}$$
(15)

因而要研究通过循环卷积求卷积的问题。

两个长为N的序列 x_n 及 h_n , 其卷积(14)式可通过如下两个长为2N的序列 $x_n(n=0,$ 1,…, 2N - 1)和 $\hat{h}_n(n = 0, 1, ..., 2N - 1$)的循环卷积来计算。

$$\hat{y}_{n} = \sum_{k=0}^{2N+1} \hat{x}_{k} \cdot \hat{h}_{\langle n-k \rangle_{N}}$$

$$y_{n} = \hat{y}_{n} \qquad (\leq n = 0, 1, \cdots, N-1)$$

$$\hat{g}_{n} = \hat{y}_{n} \qquad (\leq n = N, N+1, \cdots, 2N-1)$$
(16)

用矩阵表示为:

ĉ

$$\begin{pmatrix} \hat{y}_{0} \\ \hat{y}_{1} \\ \hat{y}_{2} \\ \vdots \\ \hat{y}_{N-1} \\ \hat{y}_{N-1} \\ \hat{y}_{N} \\ \hat{y}_{N+1} \\ \vdots \\ \hat{y}_{2N} \end{pmatrix} = \begin{pmatrix} h_{0} & 0 & h_{N-1} & h_{N-2} & \cdots & h_{1} \\ h_{1} & h_{0} & & & h_{N-1} & \cdots & h_{2} \\ h_{2} & h_{1} & h_{0} & & & & h_{N-1} \\ h_{2} & h_{1} & h_{0} & & & & h_{N-1} \\ h_{2} & h_{1} & h_{0} & & & & & h_{N-1} \\ h_{N-1} & h_{N-2} & h_{N-3} & \cdots & h_{0} & & & 0 \\ & & & & & & & & & h_{N-1} \\ h_{N-1} & h_{N-2} & \cdots & h_{1} & h_{0} & & & & \\ 0 & & & & & & & h_{N-1} & h_{N-2} & h_{N-3} \\ & & & & & & & & h_{N-1} & h_{0} \\ & & & & & & & h_{N-1} & h_{0} \\ & & & & & & & h_{N-1} & h_{0} \\ & & & & & & & h_{N-1} & h_{0} \\ & & & & & & & h_{N-1} & h_{N-2} & h_{N-3} & \cdots & h_{0} \\ \end{pmatrix} \begin{pmatrix} x_{0} \\ x_{1} \\ x_{2} \\ \vdots \\ x_{N-1} \\ x_{N-2} \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 (17)

含弃的 n 个点有时被称为消除混迭效应或终端效应,此即分段处理的理论基础。 3. 非周期时间序列信号的分段处理

LFM 波形的采样信号如图2所示。

若 $r=100\mu$ s, $T=2\times10^4\mu$ s, 如不分段处理, 计算机 容量应增加 T/r=200 倍, 同 时还要延长计算时间。

分段处理的方法如下:

图 3 分段处理示意图

第一批取 0 到 $\frac{N}{2}$ - 1 个采样周期內信号的 采样点,尾部充 $\frac{N}{2}$ - 1 到 N - 1个零,计算 循环卷积后舍去 $\frac{N}{2}$ 到 N - 1 个点。

第二批取 $\frac{N}{2}$ 到 N - 1 个采样周期內信号的采样点,尾部充 $\frac{N}{2}$ 个零,计算循环卷积后 舍去 N - 1 到 $N + \frac{N}{2} - 1$ 个采样周期的点,保留 $\frac{N}{2}$ 到 N - 1 个采样周期的点。

如此继续下去即可得到全部时间内的卷积,此即重疊-保留法。

4. 滤波函数的建立

根据数字匹配滤波器的定义,其频率响应为

$$H(f) = X^*(f) \tag{18}$$

则匹配滤波器的时域数字波形函数为 H(f) 的傅里叶反变换, 即

$$h(n) = \sum_{f=0}^{N-1} H(f) e^{j \frac{2\pi n f}{N}}$$

= $\sum_{f=0}^{N-1} X^*(f) e^{j \frac{2\pi n f}{N}}$
= $x^*(-n)$ (19)

故变换域滤波函数既可由时域时间倒置再取共轭后变换建立,亦可由信号变换后再 将变换序列取共轭建立。

5. 加权

(1) 频域加权

a. 加权公式

——海明 (Hamming) 加权

 $W(n) = 0.08 + 0.92 [\cos(\pi n P/N - 1)]^2, (n = 0, 1, ..., N - 1)$ (20)

----布莱克曼(Blackman)加权

5

$$W(n) = 0.42 - 0.50 \cos\left(\frac{2\pi nP}{N-1}\right) + 0.08 \cos\left(\frac{4\pi nP}{N-1}\right), (n = 0, 1, \dots, N-1)$$
(21)

b. 变换孔径

由于 DFT 的周期性,有

X(-k) = X(N-k)

故如图 4 所示的正频部分在变换孔径前半部反映,而负频部分则在后半部反映。据 此计算时,数字加权函数取如下具体形式:

$$\begin{pmatrix}
W(n) = 0.08 + 0.92 \cos^2\left(\frac{\pi nP}{N-1}\right), & 0 \leq n \leq \frac{N}{2P} \\
W(n) = 0, & \frac{N}{2P} < n < N - \frac{N}{2P} \\
W(n) = 0.08 + 0.92 \cos^2\left[\frac{\pi P}{N-1}(N-n)\right], & N - \frac{N}{2P} \leq n \leq N - 1
\end{cases}$$
(23)

图 4 FFT 频域加权的变换孔径

(2) 时域窗孔

a. 窗孔公式

——海明窗孔

$$W(n) = 0.54 - 0.46 \cos\left(\frac{4\pi n}{N-1}\right), \ 0 \le n \le \frac{N}{2} - 1$$
(24)

——布莱克曼窗孔

$$W(n) = 0.42 - 0.50 \cos\left(\frac{4\pi n}{N-1}\right) + 0.08 \cos\left(\frac{8\pi n}{N-1}\right), \ 0 \le n \le \frac{N}{2} - 1$$
(25)

b. 窗孔口径匹配

由于 FFT 为具有循环卷积特性的变换, LFM 波形采样为非周期序列, 用 FFT 计

Ĝ

. .

算卷积时,下半部数据应充零,窗孔口径应与信号时间波形的长度一致。而信号只能占 $0 \le n \le \frac{N}{2} - 1$,故窗孔口径也应取 $0 \le n \le \frac{N}{2} - 1$,如图5所示。

三、FFT 实现 LFM 时间压缩的运算方法

FFT 实现 LFM 时间压缩可用浮点^[3]、半浮点^[4]、分组 浮点^[5]、准分组浮点及定 点归一等方法。浮点运算精度高,但速度慢,设备昂贵。用半浮点运算时,FFT每级流 水线的每一个数据的实部与虚部蝶式运 算器共用一个阶码,而尾数部 分则用定点进行 运算;只有当定点溢出时才对溢出的数据进行阶码及尾数的修正。这种方法具有浮点运 算的精度,设备比浮点简单些,当进行 FFT 的过程中溢出次 数不多时速度较浮点运算 快。但用这种方法计算 LFM 时几乎每级流水线均 有溢出产生,即每级 FFT 均需重新 计算 2~3 次,这样就影响了速度;同时还需另加溢出检测、尾数修 正与阶码 修正等附 加设备。

分组浮点法原理同半浮点,但不是每级 FFT 的每一个数据的实部与 盧部共用一个 阶码,而是每级 FFT 流水线的所有数据共用一个阶码。这种算法 设备可较半浮点节省 一些,但精度则稍差。由于这种算法尾数采用统一左规的定点运算,故仍存在定点流出 问題,影响计算速度,且每级 FFT 流水线中均要有溢出检测、尾数修正 与阶码 修正等 附加设备。

我们采用一种准分组浮点算法,其原理与分组浮点基本相同,但在作 FFT 尾数的 定点运算前,不是采用完全的统一左规,而是只左规到最大值为0.5,即最高位空出一 位。这样做,精度虽然稍差一点,但却节省了溢出检测,尾数修正与阶码修正等附加没 备。关于这一点下面进一步加以证明。

在一般情况下,原位基-2准分组浮点 FFT 流水线的后一级实部为:

 $R\{x_{m+1}(i)\} = R\{x_m(i)\} + R\{x_m(j)\}R\{W^a\} - l\{x_{m+1}(i)\}I\{W^a\},$ (26)

式中R与I分別表示数据的实部与虚部;

i、j表示数据的地址;

W°为旋转因子。

若取
$$R\{x_m(i)\}_{max} = R\{x_m(j)\}_{max} = I\{x_m(i)\}_{max} = I\{x_m(j)\}_{max} = 0.5,$$

则

$$R\{x_{m+1}(i)\}_{\max} = [0.5 + 0.5R\{W^a\} - 0.5I\{W^a\}]_{\max}$$

= 0.5[1 + cos y - sin y]_{max}
= 0.5[1 + $\sqrt{2}$]
= 1.207

这就可能产生定点溢出。

但具体对 LFM 而言,由于 LFM 脉冲压缩具有均匀压缩 特性,且在用 FFT 实现 LFM 时需将一般卷积化为循环卷积,即 x 与 h 的 DFT 变换需将数 据后半 部充零,又 因相对采样率 P>1,故压缩比D<N/2.

(27)

(28)

(29)

由于均匀压缩, 故每级流水线数据增大 K1 倍。

$$K_1 = (N/2)^{\frac{1}{2\log_2 N}}$$

作 FFT 及 FFT⁻¹时,每级流水线使数据增大 K₂ 倍。

$$K_2 = N_{i^{2\log_2 N}} = \sqrt{2},$$

故总的一级流水线使信号振幅增大K倍,

$$K = K_1 \cdot K_2 = (N/2)^{\frac{1}{2\log_2 N}} \cdot \sqrt{2} < 2$$

例如, N=512, 則K=18 $\sqrt{28} \cdot \sqrt{2} < 2$,

若即

 $R\{x_{m}(i, j)\}_{max} = I\{x_{m}(i, j)\}_{max} \leqslant 0.5, \\ |x_{m}(i, j)|\cos x \leqslant 0.5 \\ |x_{m}(i, j)|\sin x \leqslant 0.5 \\ |x_{m}(i, j)| \leqslant 0.5 \end{cases}$

 $|x_{m+1}(i, j)| < 2|x_m(i, j)|$

(29)式代入(28)式,得

则

故

$$|x_{m+1}(i, j)| < 1$$

$$R\{x_{m+1}(i, j)\} = |x_{m+1}(i, j)| \cos x < 1$$

$$I\{x_{m+1}(i, j)\} = |x_{m+1}(i, j)| \sin x < 1$$

$$\{30\}$$

由上可知, 准分组浮点 FFT 实现 LFM 脉冲压缩将不产生 定点溢 出问题。在我们 用电子计算机模拟这种运算的过程中,也从未发生过定点溢出。因此,准分组浮点 FFT 流水线中并不需要溢出检测、尾数修正及阶码修正等附加设备,与分组浮点算法相比, 可以节省设备;同时由于不产生定点溢出,无需作第二次或第三次计算,于是运算速度 可提高近一倍。

因此,从工程上讲,我们认为用准分组浮点法实现 LFM 时间压缩,是较好的方法中的一种。

为了作一比较及考虑到某些場合可能要求有更简易的信号处理设备,我们也研究了 定点归一的 FFT 算法,即作 FFT 与 FFT⁻¹ 前对数据进行归一,在作每级 FFT 流水 线前对数据预置 0.5 的比例因子以避免定点溢出。

在不加输入噪声时,为简化计算,沒有作分批处理;在有加性噪声时,采用重疊-保 留的分批处理方法。

由于 FORTRAN 及 ALGOL 等语言的逻辑功能限制,难于在计算 机上模 拟变字 长运算,故采用设计计算机使用的逻辑功能很强的简单符号语言(SAL),在 441B-Ⅱ型 机上进行了模拟计算。

四、FFT 实现 LFM 脉冲压缩的总体方案设想

1. 原理框图

作为总体方案的一种设想,是图 6 中的所有方框均采用短字长的专用机。

图 6 全部采用短字长的专用机

2. 程序流图

根据原理框图及前面讨论过的问题,可排出不加噪声与加噪声两种情况下 FFT 实现 LFM 脉冲压缩的程序流图,分别示于图7与图8。

3. 模拟计算结果

(1) 频域海明加权定点归一截位运算

取 N = 512, P = 1.5(以下同此), 计算结果示于图 9. FFT 蝶件字长 $\lambda = 17$ bit (不 带符号位,以下同此)时,主副瓣比 $S_0/S_1 = 40$ db,属于正常情况。 $\lambda = 16 \sim 15$ bit 时, $S_0/S_1 = 43$ db,即开始对小信号产生抑制,这就是所谓非线性。 $\lambda = 14 \sim 8$ bit 时,副瓣完 全消失, S_0/S_1 增大到 50db。 $\lambda = 7$ bit 时,主瓣变窄到只剩下三根线宽。 $\lambda = 6$ bit 时,副 瓣又突然出现,但 S_0/S_1 只有 18db。 $\lambda = 5$ bit 时, $S_0/S_1 = 0$ db,即信号完全为分层噪声 所淹沒。 $\lambda = 16 \sim 7$ bit 时产生非线性的主要原因是由于取模运算 $\sqrt{R^2 + I^2}$ 的有限字长引 起的。因为作 FFT 运算时,最小的数 a 不一定与最小的数 a 相乘,而取模时系取 a 的 平方,若 $a = 2^{-9}$,则 $a^2 = 2^{-18}$,截位时因 $\lambda = 17$ bit, a^2 即被 弃去,因而对 小信号产生 抑制作用。 $\lambda < 6$ bit 时,FFT 蝶件的有限字长量化噪声的影响越来越大,此时与信号相 比不能再看作小信号,故副瓣又突然出现,且 S_0/S_1 迅速下降。

图 7 不加噪声时 FFT 实现 LFM 胍冲压缩的程序流图

图 8 加噪声时 FFT 实现 LEM 脈冲压缩的程序流图

(2) 频域海明加权准分组浮点截位运算

计算结果示于图 10。 λ =16bit 时,结果正常, S_0/S_1 =40db. λ <16bit 以后,随着 λ 的减小,取模运算($\sqrt{R^2 + I^2}$)对小信号的抑制作用增强,但直到 λ =2bit 时副瓣仍未出现,这是由于准分组浮点运算 FFT 蝶件的有限字长噪声,在相同字长条件下较定点归一为小的缘故。

(3) 总体方案的设想

如全部采用定点机,则取模部分运算器的字长不得短于17bit.若LFM 脉冲压缩 雷达配有通用机计算其它参数,也可考虑取模部分用通用机计算。以下我们认为取模部 分已经满足字长要求,主要考虑 FFT 运算部分的参数。

图 9 频域海明加权定点归一截位运算(带取模方框)

图 10 频域海明加权准分组浮点截位运算(带取模方框)

五、加权形式与有关参数的选择

1. 加权形式的选择

分别在时域与频域对比了海明与布莱克曼两种加权函数。

(1) 频域加权

模拟计算结果示于图 11, FFT 蝶件字长 λ =23bit, 准分组浮点运算海明加权可获得 S_0/S_1 =40db, 而布莱克曼加权仅可获得 38db, 且主瓣宽度约为海明加权的 1.5 倍。

(2) 时域窗孔

模拟计算结果示于图 12, λ =23bit, 定点归一运算。其中 时域海 明窗孔当 A/D 位数 λ_{AD} >6bit 时, S_0/S_1 =42.14db, 接近于最高理论值 42.8db. 而布莱克曼窗孔当 λ_{AD} >8bit 时, S_0/S_1 =44db, 但主瓣宽度约为海明窗孔的 1.5 倍。

图 11 部分采用专用机海明与布莱克曼加权的比较

. : : : ::::::::::

(3) 加权形式的比较

由上可见, FFT 实现海明权重较布莱克曼权重为好, 虽然布 莱克曼时 域窗孔可得 到 *S*₀/*S*₁=44db, 但主瓣宽度加宽, 影响距离鉴别率。时域海明窗孔 的主副瓣比较频域 加权的约高 2db, 且时域窗孔更易于实现。

2. A/D 变换器字长 λ_{AD} 的选择

模拟计算结果亦示于图 12. 由图可见,对于

时域布莱克曼窗孔 λ_{AD} 要求≥8bit,

时域海明窗孔 λ_{AD} 要求 $\geq 6bit$,

频域海明加权 λ_{4D} 要求 $\geqslant 6 bit$.

考虑到在有 AGC 的情况下,大信号 可能使小 信号被压到 A/D 变换器的 最低 位以 下,从而对小信号产生抑制作用,故λ₄₀ 还应适当取大一些。

3. 旋转因子字长m的选择

模拟计算结果示于图 13, 时域与频域 海明加权 虽然 λ 不同(前者为 17bit, 后者为 23bit), 但都是当 *m*≪12bit 时 *S*₀/*S*₁ 即逐漸下降。

图 12 LFM 脈冲压缩 A/D 变换器截位曲线

4. 运算方法的初步选择

在频域海明加权情况下,对纯定点截位、定点归一截位及准分组浮点截位三种运算 方法进行了模拟计算,得出了不同 FFT 蝶件字长的三组数据如图 14 所示。

(1) 纯定点截位运算: 取 m = 23 bit. 在蝶件字长 $\lambda = 20$ bit 时, 即开 始对小 信号产 生抑制作用; $\lambda < 16$ bit 后, S_0/S_1 迅速下降。

(2) 定点归一截位运算: 取 *m*=15bit. 在 λ=13bit 时才开 始对小信 号产生抑制作
 用, 而 λ<11 bit 后, S₀/S₁ 迅速下降。

(3) 准分组浮点截位运算: 取 m=12 bit. 此条件是三者中最苛刻的, 也是在 $\lambda=13$ bit 时才对小信号产生抑制作用, 但到 $\lambda < 8$ bit 时 S_0/S_1 才迅速下降。

综上所述, 纯定点截位运算所需 λ 太长, 不宜采用。以下重点研究定点归一及准分 组浮点两种运算方法。

图 14 频域海明加权三种截位运算方法的比较

六、参数的综合选择

以下在更接近实际情况的条件下研究加权形式、运算方法、蝶件字长(λ)与输出主 副瓣峰值比(S₀/S₁)及输出主瓣峰值与噪声有效值比(S₀/σ₀)的关系,并将结果进行综合 比较,以便选择出较为合理的加权形式、运算方法及有关参数。

1. 不加噪声情况下的综合模拟计算

(1) 频域海明加权

在频域海明加权情况下,定点归一截位、准分组浮点截位、定点归一化整及准分组 浮点化整四种运算的S₀/S₁与λ的关系曲线示于图15(数据见表1)。由图及表1可见, 在λ较长时S₀/S₁才逐漸趋近于40.2db及40.4db.

图 15 频域海明加权四种运算 S₀/S₁ 与λ的关系

定点归一截位 (m=15bit): 从 $\lambda < 17$ bit 开始逐漸对小信号产生抑制 作用,抑制最大值为 2db.

准分组浮点截位 (m=23bit): 从 λ<15bit 开始逐漸对小信号产生抑制,抑制最大

值为2.3db.

定点归一化整 (*m*=15bit): 偏离 40.2db 的最大值为 0.5db 的 最短 字长为 11 位。 准分组浮点化整(*m*=15bit): *S*₀/*S*₁ 为 40.2db 的可用字长为 9bit. 就化整运算与截位运算相比较,前者对小信号的抑制作用几乎看不出来。

 S^{0}/S_{1} (db) 与 λ (bit) 的 关 系 数 据

表 1

FFT 字长 λ(bit)	17	16	15	14	13	12.	11	10	9	8	7	6
 定点归一截位	40.2	40.3	40.5	40.5	41.6	42.2	40.9	35.7	32.7	25.2	14.3	
 准分组浮点截位	40.4	40.4	40.4	41.6	41.0	41.1	42.5	42.7	42.1	39.9	31.6	20.8
 定点归一化整	40.2	40.1	40.1	40.3	40.3	39.7	40.1	36.5	35.0	28.5		
 准分组浮点化整	40.2	40.2	40.1	40.3	40.1	40.1	40.2	39.8	40.2	38.4	36.6	30.0

(2) 时域海明窗孔

四种运算的模拟计算结果示于图 16 (数据见表 2), 在 λ 较长时 均趋近于 42.1db.

定点归一截位(*m*=13):从λ≤15bit 开始即逐漸对小信号产生抑制,最大抑制量约为2.8db.

准分组浮点截位(*m*=11):从λ≤13bit 开始逐渐对小信号产生抑制,最大 抑制量约 为2.8db.

定点归一化 整 (*m*=14): 在 λ≥13bit 时, *S*₀/*S*₁ 不小于 42.1db, 在 12~10bit 略有 下降, 自 9bit 以下则迅速下降。

准分组浮点化整(m=14): 在 $\lambda \ge 11$ bit 时, S_0/S_1 变化不大, 10 bit 时上升 0.5 db, 自 9 bit 以下则迅速下降。

(3) 分析与比较

定点归一截位与准分组浮点截位两种运算方法对小信号产生的抑制作用较大,在同时要求捕获大、小目标的情况下用作雷达信号处理器会丢失小目标,因此这两种运算方法缺点较大。

在频域加权及时域窗孔两种情况下,定点归一化整与准分组浮点化整两种运算方法 对字长的敏感性及字长λ变化时 S₀/S₁ 与(S₀/S₁)_{wax} 值的偏差大致相同,但时域窗孔可 比频域加权得到约高 2db 的主副**瓣**峰值比。

初步可以看出,时域窗孔定点归一 化整算法可用的最 短字长为 10~11bit,而时域 窗孔准分组浮点化整算法可用的最短字长为 9~10bit.

2. 有加性噪声情况下的综合模拟计算

输入噪声为正态白噪声,其振幅分布为正态分布,包络为瑞利分布,相关时间甚小 于采样周期,其振幅概率密度分布曲线示于图 17,

图 16 时域海明窗孔四种运算 So/S1 与 λ 的关系

图	16	的	数	振
	10	~ ~	~	- 1/61

表 2

 FFT 字长 λ(bit)	23	17	16	15	14	13	12	11	10	9	8	7	6
 定点归截位	42.1	42.1		42.3	42.1	42.2	43.1	41.7	37.9	33.0	22.4		
 准分组浮点截位	42.1					42.1	43.2	43.6	44.9	43.6	41.9	37.6	
 定点归一化整	42.1	42.1	42.1	42.1	42.2	42.1	41.6	41.9	40.7	34.7	30.1		
 准分组浮点化整	42.1	42.1	42.1	42.2	42.1	42.1	42.0	42.2	42.6	41.7	38.2	35.6	30.7

(1) 频域海明加权

输入信号幅值与输入噪声方差比 S_i/σ_i=2 (即 6db)。

a. S_0/S_1 与 λ 的关系

在有加性噪声情况下四种算法的模拟 计算结果示 于图 18(数据 见表 3)。由图可见,定点归一化整在 $\lambda < 11b$ it 时 S_0/S_1 迅速下降;而准分组浮点化整在 $\lambda < 8b$ it 时才开

始迅速下降。化整运算对小信号的抑制作用小。 S_0/S_1 在 λ 较长时趋近于 23.5db.

图 18 加噪声时频域海明加权四种运算结果

图 18 的 数 据 $(S_i/\sigma_i=2)$

表 3

FFT 字长λ(bit)	23	17	16	15	14	13	12	11	10	9	8	7	6
定点归一截位	23.5							22.2	21.8	21.2			
准分组浮点截位	23.5							23.7	23.9	24.0	24.3	20.8	10.0
定点归一化整		23.5	23.5	23.5	23.5	23.4	23.7	23.2	22.1	19.0	15.2	9.1	
准分组浮点化整	-	23.5	23.5	23.5	23.4	23.4	23.4	23.4	23.1	22.0	23.1	18.0	12.4

b. 输出主**瓣**峰值同输出噪声有效值比 S_0/σ_0 与 λ 的关系

S₀/σ₀ 与λ的关系示于图 19(数据见表 4)。四种运算在λ较长时均 趋近于 32.54db. 定点归一截位与准分组浮点截位,在λ≤11bit 时, S₀/S₁ 逐漸上升,即对小信号产 生明显的抑制作用。

定点归一化整与准分组浮点化整,在*λ*≪11 bit 时逐漸下降,但定点 归一化 整校准 分组浮点化整下降的更快一些。

c. 比较

由上可知,频域海明加权定点归一化整要求高精度的计算时,最短字长应为 12bit, 准分组浮点化整应为 10bit. 若允许 S_0/S_1 下降 0.25db,则定点归一化整的最短字长可 为 11bit,而准分组浮点化整为 9bit. 若 S_0/S_1 允许下降 0.5db,则定点归一化整为 10 bit,准分组浮点化整为 8bit。

(2) 大信噪比时的时域海明窗孔

输入信号幅值与输入噪声方差比 $S_i/\sigma_i = 2$, (即 6db)。

a. S_0/S_1 与 λ 的关系

图 19 加噪声时频域海明加权 S₀/σ₀ 与λ的关系。

圂	19	欱	粉	捉	(S.)	$\sigma = 2$
124	T 0	ну	31	7/4	\U 1	$U_i - \Delta I$

表 4

FFT 字长λ(bit)	23	17	16	15	14	13	12	11	10	9	8	7	6
定点归一截位	32.5							32.72	33.24	32.88	6.5	6.5	
准分组浮点截位	32.52							32.79	32.93	32.97	32.79	32.11	24.56
定点归一化整		32.55	32.54	32.54	32.52	32.47	32.48	32.23	31,92	27.56	23.11	20.63	0.4
准分组浮点化整		32.54	32.54	32.53	32,53	32.51	32,48	32.45	32.3	31.98	30.8	28.4	21.1

在此条件下四种运算方法的模拟计算结果示于图 20(数据见表 5)。定点归一截位 在 $\lambda < 12$ bit,定点归一化整在 $\lambda < 10$ bit,准分组浮点截位在 $\lambda < 7$ bit,而准分组浮点化 整在 $\lambda < 8$ bit 时, S_0/S_1 才迅速下降。而准分组浮点化整在 $\lambda \ge 9$ bit 时 S_0/S_1 近似不变。

20

FFT实现LFM脉冲压缩雷达的参数选择

图 20 的 数 据 $(S_i/\sigma_i=2)$

表 5

				~ ·	012 (~	1/~1	/					~ •	
FFT 字长 λ (bit)	23	17	16	15	14	13	12	11	10	9	8	7	6
定点归一截位	23.3						23.4	22.4	22.0	21.4	0		
准分组浮点截位	23.6						23.7	23.4	23.6	23.4	23.3	22.9	21.0
定点归一化整	_	23.3	23.3	23.3	23.3	23.5	523.0	23.7	22.2	19.7	16.7		
准分组浮点化整		23.3	23.3	23.3	23.3	23.3	23.2	23.2	23.2	23.3	22.5	21.5	21.7

b. $S_0/\sigma_0 与 \lambda$ 的关系

四种算法的 S_0/σ_0 与 λ 的关系曲线 示于图 21(数 据见表 6)。可以 看出,定点归 一截位与准分组浮点截位在 $\lambda < 12$ bit 时产生明显的非线性,而定点归一化整与准分组浮 点化整则无此现象。定点归一化整在 $\lambda < 12$ bit,准分组浮点 化整在 $\lambda < 8$ bit 时 S_0/σ_0 迅 速下降。

图 21 加噪声时时域海明窗孔 S_0/σ_0 与 λ 的关系

图 21 的 数 据 $(S_i/\sigma_i = 2)$

表 6

ويتكرني المشروع ومستعود والمترجي ويتبع ومروع والمترك فتترك والترا	1	1	T	1	1		1						
FFT 字长 λ (bit)	23	17	16	15	14	13	12	11	10	9	8	7	6
定点归一截位	32.4						32.9	33.3	33.3	32.5			
准分组浮点截位	32.6						32.8	32.9	33.2	33.4	33,8	34.0	30.2
定点归一化整		32.6	32.6	32.6	32.6	32.6	32.5	32.2	31.7	29.1	23.3	16.1	
准分组浮点化整		32.6	32.6	32.6	32.6	32.6	32.6	32.6	32.6	32.4	32.3	31.1	30.8

(3) 小信噪比时的时域海明窗孔

22

条件: $S_i/\sigma_i = 0.5$ (即 - 6db),此时信号埋在噪声之中。

a. S_0/S_1 与 λ 的关系

模拟计算结果示于图 22。定点归一化整 $\lambda < 7$ bit,准分组浮点 $\lambda < 5$ bit 时, S_0/S_1 迅速下降。准分组浮点化整 $\lambda > 7$ bit 时 S_0/S_1 近似不变。

b. $S_0/\sigma_0 与 \lambda$ 的关系

如图 23 所示。定点归一化整 $\lambda < 8$ bit, 准 分组浮 点化整 $\lambda < 6$ bit 时, S_0/σ_0 迅速下降。

图 22 加噪声时时域海明窗孔 So/S1 与 λ 的关系

图 23 加噪声时时域海明窗孔 So/σo 与λ的关系

(4) 分析与比较

a. 加权的比较

在字长较长时,频域海明加权的 S_0/σ_0 趋近于 32.55db,而时域海明窗孔的 S_0/σ_0 趋近于 32.61db. 但前者对字长更敏感些,即在允许损失相同 S_0/σ_0 的情况下,频域海明加权较时域海明窗孔要求更长的字长。故时域海明窗孔实现 LFM 脉冲压缩较频域海明加权略好一些。

b. 不同信噪比条件下对字长的要求可以归纳成表7:

不同信噪比条件下可用蝶件字长的比较

23

表 7

要求	加权形式	频域海	承明加权	时城海明窗孔				
声大输大小	出	定点归一化整	准分组浮点化整	定点归一化整	准分组浮点化整			
无噪声	S_0/S_1	11~13	9~11	10~11	9~10			
$S_i/\sigma_i=2$	S_0/S_1	11~12	10~11	11~12	9~10			
$S_i/\sigma_i=2$	S_0/σ_0	11~12	10~11	11~12	8~10			
$S_i/\sigma_i=0.5$	S_0/S_1			9~11	6~8			
$S_i/\sigma_i=0.5$	S_0/σ_0			8~10	7~9			

从表 7 可以看出一种趋势,满足大信 噪比的蝶件 字长 λ 也可 以满足小 信噪比的要 求。这是由于噪声相当一个随机的偏置,使有些被蝶件有限字长所舍弃的信号也参加了 运算的缘故。因此,在选择字长时主要应根据无噪声条件下的模拟计算结果,同时参考 大信噪比条件下的情况。例如,时域海明窗孔定点归一化整可选 λ=10~11bit,时域海 明窗孔准分组浮点化整可选 λ=9~10bit.

1. 卷积与循环卷积

雷达数字信号可分为时间上的周期序列与非周期序列。雷达信号数字处理设备对时 间周期序列信号是实现循环卷积,对时间非周期序列信号则是实现卷积。为简化计算, 常通过快速同态映射将卷积或循环卷积的计算化为在变换域中的乘法运算。具有循环卷 积特性的变换可将循环卷积化为在变换域中的乘法运算。用具有循环卷积特性的变换处 理时间上的非周期序列信号时,需先将卷积化为循环卷积。

2. 处理器总方案设想

由于取模运算对小信号会产生严重的抑制作用,取模运算器宜采用长字长专用机, 或此部分计算由通用机完成。

3. **FFT** 运算方法

用 FFT 实现时间压缩,可用浮点、分组浮点、准分组 浮点、半浮点、定点归一及 纯定点等运算方法。从精度、价格、速度及工艺流程的简易性等方面综合考虑,宜选用 准分组浮点或定点归一两种运算方法。前者精度稍高,需用字长位数较少;而后者需用 字长虽多 1~2bit,但速度稍快。

量化方法

数据可用截断及化整两种方法量化。截断量化会引起对小信号的抑制,在要求同时 捕获大、小目标的雷达处理器中不宜采用,宜用化整量化。

5. 加权形式

对 LFM 波形实现时间压缩,以海明权重为好。时域海明窗孔在实现的简易性(不 需作倒序处理)及性能上(S₀/S₁比频域加权多 2db)均较频域海明加权强。

6. 参数选择

综上所述, 准分组浮点与定点归一两种 FFT 化整运算实 现时间压 缩可选用如下参数(表 8):

表 8

精 度 要 求	S ₀ /S ₁ 允许	偏离 0.2db	S ₀ /S ₁ 允许	偏离 0.5db	<i>S</i> ₀ / <i>S</i> ₁ 允许偏离 7 db			
运算方法	准分组浮 点 化 整	定点归一 化 整	准分组浮 点 化 整	定点归一 化 整	准分组浮 点 化 整	定点归一 化 整		
m (bit)	12	12	10	10	6~7	8		
$\lambda_{AD}(\text{bit})$	8	8	6	7~8	4~5	5~6		
λ (bit)	10	13	9	11	7	8		

在实际使用中建议不要采用最后一组数据,因为此时工作在对字长的敏感区。

在本课题的研究过程中, 曾得到周祖同教授与陆仲良副教授的鼓励与帮助。梁甸农 同志作了理论及模拟计算的先行工作, 为研究本课题打下了良好的基础。与郭桂蓉同志 的相互讨论中曾得到不少受益。上机计算时得到本校计算机研究所卢新民同志与曹琳同 志的大力协助。叶梅良同志在联系机时与修改纸带等工作上也出了不少力气。特在此一 **幷致谢**。

参考文献

- [1] 梁甸农,"雷达数字信号处理设备计算机模拟计算第一阶段报告"国防科技大学,1980.
- [2] M. I. Skolnik, Radar Handbook, 1970
- [3] L. W. Martinson and R. J. Smith, "Digital Matched Filtering with Pipelined Floating Point Fast Fourier Transform (FFT's)," IEEE Trans., Vol. ASSP-23. April 1975.
- [4] P. E. Blankenship and E. N. Hofstetter, "Digital Pulse Compression via Fast Convolution," IEEE Trans., Vol. ASSP-23, No. 2, April 1975.
- [5] P. D. Welch, "A Fixed-Point Fast Fourier Transform Error Analysis," IEEE Trans., Audio Electroacoust., Vol. AU-17, pp. 153-157, June 1969.
- [6] A. V. Oppenheim and C. J. Weinstain, "Effects of Finite Register Length in Digital Filtering and the Fast Fourier Transform", Proc. IEEE, Vol. 60, pp. 957-975, Aug. 1972.

- [7] L. B. Jackson, "Roundoff-Noise Analysis for Fixed-Point Filters Realized in Cascade of Parallel Form," IEEE Trans., Audio Electroacoust., Vol. Au-18, pp. 107-122, June 1970.
- [8] C. J. Weinstein and A. V. Oppenheim, "A Comparison of Roundoff Noise in Floating Point and Fixed Point Digital Filter Realizations," Proc. IEEE, Vol. 57, pp. 1181-1183, June 1969.
- [9] C. J. Weinstein, "Roundoff in Floating Point Fast Fourier Transform Computation," IEEE Trans., Audio Electroacoust., Vol. Au-17, Sept. 1969.

The Parameter Selection of LFM Pulse Compression Radar Realized in FFT

Gu Xue-min Wang Jia-pei

Abstract

In this paper are presented the considerations of overall plan of the LFM digital pulse compression radars, and their parameter selection realized in FFT, Which employ the quasi-block-floating point and fixed-point normalized algorithm. These parameters contain the quantized form in FFT computation, word lengths of the A/D converter, the twiddle factor and the butterfly of the FFT, and so on. Some calculated data and curves are presented by simulated computation via computer, these data can be useful to engineers and designers.