截顶圆锥薄壳振动特性的计算

周科健

提 要 用有限单元法计算,单元为轴对称截锥壳。法向位移函数u和周向位移函数u采用三次多项式,纵向位移函数u为线性多项式。其节圆自由度选取节圆上三个位移,一个转角和一个剪应变。计算结果与文献[1]、[2]和[3] 作了比较。这方法和程序可以应用于计算截顶圆锥壳的振动特性。

一、单元刚度矩阵和单元质量矩阵

用有限单元法^[4]计算结构 上轴对称的截顶圆锥壳的振动特性——固有频率和振型。首先是把它离散成有限个截锥壳单元(图1),写出单元的应变能和动能表达式。 然后直接组集起来,成为总体结构的应变能和动能。再应用 Lagrange 方程,得到固有

振动的矩阵方程。考虑边界条件后,就可以 求解。因此大量的推导工作是从单元的应变 能和动能表达式中求出单元刚度和质量矩 阵。

截锥壳单元的应变能和动能表达式

$$U = \frac{1}{2} \int_0^{2\pi} \int_0^t [\varepsilon]^T [E] [\varepsilon] r ds d\theta \qquad (1)$$

$$T = \frac{1}{2}\rho h \int_{0}^{2\pi} \int_{0}^{t} (\dot{u}^{2} + \dot{v}^{2} + \dot{w}^{2}) r ds d\theta \quad (2)$$

上两式中 ρ 为壳体的质量密度, h为壳体 图 的厚度, θ 为周向坐标, "•"表示对时间的一阶导数, 弹性矩阵

$$[E] = \frac{Eh}{1 - \nu^{2}} \begin{pmatrix} 1 & \nu & & & \\ \nu & 1 & & & \\ & \frac{1 - \nu}{2} & & \\ & & \frac{h^{2}}{12} & \frac{\nu h^{2}}{12} \\ & & & \frac{\nu h^{2}}{12} & \frac{h^{2}}{12} \\ & & & \frac{(1 - \nu)h^{2}}{12} \end{pmatrix}$$
(3)

本文 1981 年 10 月 21 日收到

其中 E 为杨氏模量, ν为泊松 系数, 空白的元 素表示零, 下同。[e] 为几何 矩阵, 由 Новожалов 的应变和位移关系式^[5]导出, 即

$$\varepsilon_{s} = \frac{\partial u}{\partial s}$$

$$\varepsilon_{\theta} = \frac{u}{r} \sin\varphi + \frac{1}{r} \frac{\partial v}{\partial \theta} + \frac{w}{r} \cos\varphi$$

$$\varepsilon_{s\theta} = \frac{1}{r} \frac{\partial u}{\partial \theta} + \frac{\partial v}{\partial s} - \frac{v}{r} \sin\varphi$$

$$\chi_{s} = -\frac{\partial^{2} w}{\partial s^{2}}$$

$$\chi_{\theta} = \frac{1}{r^{2}} \frac{\partial v}{\partial \theta} \cos\varphi - \frac{1}{r^{2}} \frac{\partial^{2} w}{\partial \theta^{2}} - \frac{1}{r} \frac{\partial w}{\partial s} \sin\varphi$$

$$\chi_{s\theta} = -\frac{1}{\partial s} \left(\frac{1}{r} \frac{\partial w}{\partial \theta} - \frac{v}{r} \cos\varphi\right)$$
(4)

由此可以看出,选取合理和简便的位移函数是关键的一步。

对圆柱壳(φ=0)的 振动特性研究表明^[6],它的较低阶振动中的 同一阶振型间的关 系为

$$w \simeq jv, v > u$$
 (5)

其中 j 为周向全波数。由此,本文选取单元的位移函数为

$$u = (a_1 + a_2 s) \cos j\theta$$

$$v = (a_3 + a_4 s + a_5 s^2 + a_6 s^3) \sin j\theta$$

$$w = (a_7 + a_8 s + a_9 s^2 + a_{10} s^3) \cos j\theta$$
(6)

式中 a;(i=1,2,…, 10) 为广义坐标。

从能量法的观点来看,选取的位移函数只要求滿足几何边界条件。但是,如果能够 同时滿足一部份(最好是全部的)力的边界条件,那么,所得的结果 会具有 较好的精 度。因此,选取合适的 节点(节圆)自由 度是另一个重要 的步骤。本文不 引入內自由 度^[7],而选取节圆上的位移,转角和剪应变为节圆自由度,即

$$\{ \hat{u} \} = \begin{bmatrix} u_0 & v_0 & (\varepsilon_{s\theta})_0 & w_0 & \beta_0 = \left(\frac{\partial w}{\partial s} \right)_0 & u_1 & v_1 & (\varepsilon_{s\theta})_1 & w_1 & \beta_1 \end{bmatrix}^T$$

其中 0、 l 表示单元的两端,使自由边界(飞行器中是大量的)能滿足顺剪力为零的条件。 节圆自由度列阵 $\{ u \}$ 与广义坐标列阵 $\{ a \}$ 的关系式为

$${\hat{u}} = [L] \{a\} \tag{7}$$

其中[L]=

 $\begin{pmatrix} 1 & & & \\ -\frac{j}{r_0} & -\frac{\sin\varphi}{r_0} & 1 & & \\ & & & & 1 \\ 1 & l & & & 1 \\ -\frac{j}{r_l} -\frac{j}{r_l} l & -\frac{\sin\varphi}{r_l} (1-b) (2-b) l (3-b) l^2 & \\ & & 1 l l^2 \\ & & 1 2l \vdots \end{pmatrix}$ (8)

其中 $b = \frac{l}{r_{l}} \sin \varphi$

将式(7)先代入式(6),后代入式(4),与式(3)一起再代入式(1),就可得到单元刚度 矩阵

$$[k] = n\pi [L]^{-T} \left(\int_{0}^{t} [B]^{T} [E] [B] r ds \right) [L]^{-1}$$
(9)

式中

$$[B] = \begin{pmatrix} 1 \\ \frac{1}{r}\sin\varphi \ \frac{s}{r}\sin\varphi \ j\frac{1}{r} & j\frac{s}{r} & j\frac{s}{r} \\ -j\frac{1}{r}-j\frac{s}{r} & -\frac{1}{r}\sin\varphi & (1-c) & (2-c)s \\ i\frac{1}{r^2}\cos\varphi & j\frac{s}{r^2}\cos\varphi & j\frac{s^2}{r^2}\cos\varphi \\ \frac{1}{r}\left(-\frac{1}{r}\sin\varphi\right)\cos\varphi \ \frac{1}{r}(1-c)\cos\varphi & \frac{s}{r}(2-c)\cos\varphi \\ i\frac{s^3}{r} & \frac{1}{r}\cos\varphi & \frac{s}{r}\cos\varphi & \frac{s^2}{r}\cos\varphi & \frac{s^3}{r}\cos\varphi \\ (3-c)s^2 & & \\ \frac{1}{r^2}j^2 & \frac{s}{r^2}j^2 - \frac{1}{r}\sin\varphi & \frac{s^2}{r^2}j^2 - 2c & \frac{s^3}{r^2}j^2 - 3cs \\ \frac{s^2}{r}(3-c)\cos\varphi & -j\frac{1}{r^2}\sin\varphi & j\frac{1}{r}(1-c) & j\frac{1}{r}(2-c)s & j\frac{1}{r}(3-c)s^2 \end{pmatrix}$$

其中 $c = \frac{s}{r} \sin \varphi$. 当 j = 0 时, n = 2; 当 $j \ge 1$ 时, n = 1. 将式(7)代入式(6), 再代入式 (2), 就可得到单元质量矩阵

$$[m] = n\pi\rho h[L]^{-T} \left(\int_0^t [S]^T [S] r ds \right) [L]^{-1}$$
(10)

式中

对圆柱——圆锥组合壳或用截锥壳单元逼近任意母线的迥转壳,在单元刚度和质量 矩阵组集到总体结构刚度和质量矩阵以前,需要将单元坐标系转换到总体结构坐标系。 其变换矩阵

$$[T] = \begin{pmatrix} \cos\varphi & \sin\varphi \\ 1 & & \\ & 1 & \\ -\sin\varphi & \cos\varphi & \\ & & & 1 \end{pmatrix}$$

二、计算结果比较

我们曾对不同尺寸以及各种边界条件下的迴转壳在 441-B(Ⅱ)和 SIEMENS 7·738 型机上进行过大量计算,表明编制的源程序是可靠的,计算方法是可应用的。

单元刚度及质量矩阵组集后,用一維数组变带宽存貯。用子空间迭代法^[8]解广义特征值问题。求迭代矢量时,对总体结构矩阵进行三重因子分解,可节省机时。投影矩阵的特征值用广义Jacobi法或二次Jacobi法求解。下面举三个例子。

(1) 圆柱壳

如图 2 所示悬臂圆柱壳。 $E = 2.11 \times 10^{6}$ kg/cm², $\nu = 0.3$, $\rho = 8.02 \times 10^{-6}$ kg·s²/cm⁴, 壳体尺寸单位为 cm(下同), 取 10 个单元。其固有频率见表 1 。

截顶圆锥薄壳振动特性的计算

				固有	下频 4	≗ (Hz)			表 1
i	j	0	1	2	3	4	5	6	7
本 文	1	3506	2034	982.5	562.3	482.2	615.8	858.0	1166
	2	5790	5414	3402	2235	1588	1276	1228	1381
	3	7977	6951	5720	4317	3287	2605	2211	2068
文献[1]	1	3506	2032	980.6	562.5	485.2	619.9	861.7	
	2	5479	5412	3396	2228	1587	1287	12 51	
	3	7954	6943	5720	4312	3280	2606	2229	
文献[2]	1	5486	2033	982.0	564.9	486.9	621.3	863.1	1170
	2	8055	5431	3409	2243	1598	<u>]</u> 1295	1258	1419
	3	8123	6986	5783	4 3 78	3318	2632	2250	2126

图 8

5____

......

表中 *i* 是频率从低到高排列的序号(下同)。文献[1]中指出文献[2]中遗漏了一组反 对称的扭转振动 (*i*=0, *i*=1),本文也得此结果。文献[1]总自由度为 52,半带宽为16. 本文总自由为 50,半带宽为10.从表 1 可见,本文的结果与文献[1]和[2]基本一致,在 低频段本文的结果稍低于文献[1]和[2].固有振型见图 3.

(2) 圆锥壳

如图4所示悬臂圆锥壳。*E*, v和ρ同例(1),取10个单元。其固有频率见表2.文 固有频率(Hz) 表2

ł

献[2]取8个单元,用高次位移函数,每单元自由度大于20,最后减缩为10.固有振型见图5.

(3) 圆柱----圆锥壳

如图 6 所示 悬臂圆柱 —— 圆 维壳。 $E = 4.5712 \times 10^{5} \text{kg/cm}^{2}$, $\nu = 0.35$, $\rho = 1.7328$ ×10⁻⁶kg·s²/cm⁴, 取 20 个单元, 圆柱与圆锥部份各取 10 个单元。其固 有频率见表3.

. . . .

	-	固有频	率 (Hz)	表じ	
	j i	2	3	4	
本	1	943.0	827.9	1092	
	2	3478	4449	4590	
文	3	5072	6550	9457	
文献[3]	1	870.9	871.7		

固有振型见图7.图中*表示柱与锥的分界点。*的下部为锥壳。图中的振型ω是对点 体结构坐标系画出的。文献[3]中 u 与 v 取线性多项式, w 为 三次多 项式, 每单元 8 个 自由度,取 32 个单元。本文结果与文献[3]略有不同,最低频率 相差 4.9%,出 现最低 频率的周向波数亦不同。文献[3]中图 11 上沒有柱壳部份的振型,且看不出柱与锥連接

圆附近的w值,此值似应不等于零的。

从上面三个例子的比较中,可以看出由于选取周向位移函数为三次多项式,又引入 了剪变应节点自由度,使满足顺剪力为零的边界条件,因此得到了比较好的结果。

本文承徐后华同志审阅, 幷得到了于晏悦、张連举等同志不少帮助, 特致以谢意。

参考文献

- [1] 北京大学固体力学教研室,旋转壳的应力分析,水利电力出版社,1979.
- [2] Subir, K. S. and Philip, L. G., Free Vibration of Shells of Revolution Using FEM, ASCE, EM2, 283 (1974).
- [3] Ross, C. T. F., Finite Element for the Vibration of Cones and Cylinders, Int. J. Num. Meth. Engng, 9, 833 (1975).
- [4] Zienkiewicz, O. C., The Finite Element Method, 1977.
- [5] Новожилов, В. В., Теория тонких оболочек, 1962.
- [6] Warburton, G. B., The Dynamical Behaviour of Structures, 1976.
- [7] Brebbia, C. A. et al., Vibration of Engineering Structures, 1976.
- [8] Bathe, K. J. and Wilson, E. L., Numerical Methods in Finite Element Analysis, 1976.

A Computation of the Vibration Characteristics of Conical Frustum Shell

Zhou Ke-jian

Abstract

The finite element method is adopted for computation of axisymmetrical conical frusta. The normal displacement function w and circumferential displacement function v are given by two cubic polynomials, the longitudinal displacement function u is given by linear polynomial. Nodal degrees of freedom can extract three displacements, one rotation and one shear strain on the nodal circle. The computed results had compared with referencies[1], [2] and [3]. This method and computer program are applicable to find vibration characteristics of conical frustum shell.