国防科技大学学报

JOURNAL OF NATIONAL UNIVERSITY OF DEFENSE TECHNOLOGY

一九八六年第二期	总第五十四期	No. 2 1986	Sum. 54

微带线有效介电常数测量方法

郑伯群 刘克成

尹家贤 宋学诚 刘 坚

摘 要 本文介绍了微带线有效介电常数 ee 的测量方法, 诊出 了 当切割 量不等于 lm/2 的整数 倍时 的精确修正方法。详细讨论了一种新的微带线 e, 的 测量方法—— 网络扰动法。

一、引 言

设计微带天线或微带电路时,都需要知道正确的微带介质的介电常数 e, 或微带线的有效介电常数 e, 或微带介质的生产工艺、原料配方及原料性能等因素的影响,微带基片 e, 离散性较大。即使同一块材料,中间部分和边缘部分的 e, 也不尽一致,而微带线的e,还与带线的宽度w、介质厚度 h、工作频率 f 有关。因此精确测量微带线的有效介电常数是设计微带天线和微带电路的重要环节。

由于微带线的色散特性,对于不同的工作频率,微带线的有效介电常数ee也是不同 的。参考文献[1]给出了ee的色散公式

$$\varepsilon_{e}(f) = \varepsilon_{r} - \frac{\varepsilon_{r} - \varepsilon_{e}}{1 + F_{1}(f/f_{p})^{2}}$$
(1)

式中

$$F_1 \approx 0.6 \pm 0.009 Z_m$$

 $f_p = \frac{0.4Z_n}{h}$

 $Z_{m} = \frac{377}{2\sqrt{\varepsilon_{r}}} \left[\frac{w}{h} + 0.041 + 0.082 \left(\frac{\varepsilon_{r} - 1}{\varepsilon_{r}} \right) + \frac{\varepsilon_{r} + 1}{2\varepsilon_{r}} \left[1.45 + \ln\left(\frac{w}{2h} + 0.94\right) \right] \right]^{-1}$ $(w/h \ge 1)$

$$\epsilon_e = \frac{1}{2} \left[\epsilon_r + (\epsilon_r - 1) \left(1 + \frac{10h}{w} \right) \right]^{-\frac{1}{2}}$$

(f=0时微带线的有效介电常数)

上述分析表明微带线的有效介电常数必需在指定的工作频率下测量。这一点对于设 计微带天线尤为重要,因为微带天线的电尺寸主要由 e。决定,而且容许的公 差 很小, 1%的误差,就可能使天线性能变劣,所以切不可仅仅按照厂家标明的材料 参 数设计天 线,而要自己进行实际工作状态的参数测量。

微带参数测量和通常的介质参数测量不同,它是以包括敷铜板在内的基板为样件, 而不是以介质材料为样件进行参数测量的。这样更能保证测量的可靠性。它的参数是由 间接测量得到的。众所周知,微带线内的介质波长 λ_m与自由空间波长 λ 之间有如下关 系:

$$\lambda = \sqrt{\varepsilon_e} \lambda_m \tag{2}$$

因此, ε. 的测量实际上就是微带线内介质波长 λm 测量。

常用的λ_m的测量方法有两种,即微带环形谐振腔法和切割微带线法。通过我们的实 践,发现了一种新的方法——网络扰动法。比前两种方法能得到更为滿意的测量结果, 并且在某些情况下用这种新方法更有利。

国外已采用微带测量线测量微带线的介质波长、负载驻波比及负载阻抗等参数。微 带测量线比一般测量线的传动机构更为精密,而且还要有避免微带线辐射及微带线周围 环境反射对微带线影响等抗干扰措施,结构比较复杂,在此不作详细介绍。

下面我们分别阐述环形腔法、微带线切割法及网络扰动法的测量原理和测量结果, 并提出我们的看法。

二、微带环形腔法

环形腔法是测量微带线 ε。的常用方法,尤其适合于对同一批材料的 抽 样测量,还可**粗测微**带线损耗。

图 1 为测量用的环形腔,由圆环形微带线和 50Ω 耦合微带线组成。设计环形腔时,

图 1 环形腔

为了减少圆弧的影响,必需使 w/R₀<0.1^[2]。w根据实际要求确定、R₀则根据工作频 率 f 决定。R₀较大时可扩展低频端的测量范围(一般可选环周长L=2πR₀为对应于 工作频率 f 时介质波长 λ_m的 8~10倍)。50 Ω 微带线与环形腔的耦合縫要选择 适当, 使指示器能获得足够的能量保证鉴别力,又不致引入负载的显著影响,降低测量精度。 加工环形腔时要保证对中轴的对称性,以避免反对称模的扰动。

当环形腔耦合端输入频率为f的微波信号,改变信号源的频率,则在f 满足环形腔 周长等于介质波长整数倍(L=nlm)时,环形腔谐振,耦合输出最强。接上适当的指示 器就可观察到随着信号频率的改变而出现的一系列谐振峰。对应于每个谐振频率都满足 下式

$$\varepsilon_e(f) = \left(\frac{nc}{Lf}\right)^2 \tag{3}$$

式中 L、c、f都已知, n可由下式确定

$$n = \frac{f_1}{f_1 - f_2}$$
(4)

 f_1 和 f_2 为一组谐振频率中相邻的两个谐振频率, $f_1 > f_2$ 。实际测量了聚四氟乙烯玻璃纤 維板微带线 e_a 色散特性,与理论计算结果比较接近如图 2 所示。

图 2 环形腔法测量聚四氟乙烯玻璃纤维板微带线的 ε_r 色散特性与理论值比较 ·理论计算值 + 测量值 $\varepsilon_r = 2.92$ w = 3.5 mm h = 1.45 mm

三、切割微带线法[3]

切割微带线法就是利用测量线测量切割微带线前后测量线中 波节 点位 置的 变化来 确定 λm 的方法,测量装置如图 3 所示。测量的基本原理 是 当 开路 微 带 线未 端 割去 $\Delta L = n \frac{\lambda_m}{2}$ 时,其输入阻抗不变,因此串接于信号源与微带线之间的测量线 中 波节点位 置也保持不变.于是根据微带线切割量 ΔL 即可确定 λ_m 。但是完全准确地切割整数倍介 质半波长是极其困难的。在实际测量时,先割去一段开路微带线 ΔL (接近于 λ_m /2的整 数倍),根据切割前后测量线中波节点的变化,通过修正方法计算 λ_m 。

根据微波网络原理,图3中端面A、B间可等效为一个二端口网络,利用散射矩阵 $[S] = \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix}$ 分析,以端面B右侧距离L处的开口端为准,则端面B的反射系数为 $\Gamma_{H} = o^{j2k_{m}L}$,而端面A的反射系数为

$$\Gamma_{in} = S_{11} + \frac{S_{12}}{1 - S_{22}} \Gamma_{H}$$
(5)

对式(5)微分并由互易性 $S_{12}Z_B = S_{21}Z_A$ 得

$$\frac{d\Gamma_{in}}{d\Gamma_{H}} = \frac{S_{12}S_{22}}{(1 - S_{22}\Gamma_{H})^2} = \frac{Z_{B}}{Z_{A}} \cdot \frac{S_{12}^2}{(1 - S_{22}\Gamma_{H})^2}$$
(6)

设 $S_{12} = |S_{12}| e^{i\psi_{12}}$ $S_{22} = |S_{22}| e^{i\psi_{22}}$ 并只取式(6)的相角

$$\arg \frac{d\Gamma_{in}}{d\Gamma_{H}} = 2\psi_{12} - 2ig^{-1} \frac{-|S_{22}|}{1 - |S_{22}|} \frac{\sin(2k_m L + \psi_{22})}{\cos(2k_m L + \psi_{22})}$$
(7)

当 |S₂2| ≪1时

$$\arg \frac{d\Gamma_{in}}{d\Gamma_{H}} \approx 2\psi_{12} + \frac{2|S_{22}|\sin(2k_{m}L + \psi_{22})}{1 - |S_{22}|(2k_{m}L + \psi_{22})}$$
(8)

可见 Γ_{in} 和 Γ_{H} 的相位关系不是线性的,它随L作周期性的变化,变化周期为 $\lambda_m/2$ 。适当选 择AA参考端面,可使 $\psi_{12}=0$ 。根据式(8)可画出一系列曲线,图4 画出了二种不同 S_{22} 的典型曲线(坐标轴以弧度表示)。

图 4 Γ_{in} 与 Γ_{H} 的相角关系

由上述分析可见,只要找出 Γ_{in} 随 Γ_{H} 的相位变化斜率就能对非整数倍 $\lambda_m/2$ 切割进 行修正。例如,进行两次切割(稍长于 $\lambda_m/2$ 和稍短于 $\lambda_m/2$),由测量线中波节点位置 的变化量即可求得 λ_m 。由于修正的斜率是与切割点位置有关的,如果恰好碰上斜率大的 位置,就对精度有影响。

另一种修正方法虽然比较繁琐,但修正结果比较精确。在一个介质波长范围内每切 割1mm微带线,测出测量线中波节的位移量 JS,列出 JS 与 JL 及相应波节点的位置 S的表格。选取 JS 随 JL 变化比较平坦的区域,再适当切割 JL 使测量线中新的波节 点正好出现在平坦区域内。根据总的切割量加上修正量即可得到 Jm。

我们用这种新的修正方法测量了三种聚四氟烯玻璃新維介 质板 微带线的 λ_m 都得到 了比较理想的结果。现以 w = 3.6mm 为例说明修正方法。测量数据 如 表 1 所示,上列

⊿L(mm)					1			10	<u> </u>	<u> </u>	5.4
L(mm)	0	•••	4	5	6	7	•••	13	14	15 ••• 17	22.4
S(mm)	82.15 67.95	•••	73.30	72.35	71.53	70.43	•••	58.45	57.68	56.85	57.85 72,10
⊿S/⊿L			0,93	0,95	0.82	1,10		1.03	0.78	1.13	

表 1 切割微带线法测量 w = 3.6(mm) 微带线介质波长数据表

数据测量条件为:w=3.6mm、h=1.45mm 带线上覆盖 1mm 厚的聚四氟乙烯玻璃 新維介质板;信号波长 $\lambda=28.40$ mm;共切割17次。

由表可见 L = 14mm(S = 57.68mm) ゴ S 随 ゴ L 変化比较平坦。同时由 S = 57.68mm 向前移λ/2, 即 S' = 71.88mm 此时 L 在 5 - 6 之间, ゴ S 変化也是比较平坦的区域,所 以λm ~ 8.4mm。如果再切割 ゴ L' = 14 + 8.4 - 17 (即 ゴ L' = 5.4mm),测得新的波节点 为 57.85mm和 72.10mm。根据新的波节点即可求得精确的 λm。

用S=57.85进行修正计算得

$$\lambda_m = 2\left(22.4 - 14 + \frac{57.85 - 57.68}{0.75}\right) = 17.25 \text{ mm}$$

而用S=72.10计算时得

$$\lambda_m = \left(22.4 - 5 - \frac{72.35 - 72.10}{0.95}\right) = 17.14$$
 mm

然后取平均后按式(2)算出ε。

 $\varepsilon_e = 2.730$

四、网络扰动法

由于切割微带线法的修正过于繁琐,我们探索到一种新的测量方法——网络扰动法。网络扰动法是利用介质块(可等效为一个持性不变的网络)在微带线上均匀地移动, 形成对微带线的扰动(如图5所示),在均匀使输线中,接入一段长度为1的特性阻 抗跳变段,这个跳变段可以看成是一个两端口网络。设端口T2 到负载的 距 离为x,在

 T_2 处的导纳为 Y_2 ,在 T_1 处的导纳为 Y_1 , 则当跳变段向左移 动 $\lambda_m/2$ 时(λ_m 为均 匀传输线内波长),根根均匀传输线理 论 T_1 和 T_2 处的输入导纳均不变,因而 均匀传输线的输入端的 Y_{in} 相同。但跳 变段移动非整数倍 $\lambda_m/2$ 时, Y_{in} 就不同 了。网络扰动法就是利用这个原理测量 微带介质波长的。

为了明确起见,假设均匀传输线末 端是匹配的,即令 $V_{B}=Y_{01}$ 时当 T_2 距 离末端为 x 处,跳变传输线在该处的法化导纳₂₂

图 5 纲络扰动法原理图

$$y_2 = Y_{01} / Y_{02} = C \tag{8}$$

由传输线公式,在T₁处归于原均匀传输线的输入导纳为

$$y_{1} = \frac{V_{02}}{V_{01}} \left(\frac{y_{2} + j \operatorname{tg} k_{2} l}{1 + j y_{2} \operatorname{tan} k_{2} l} \right)$$
$$= \frac{1}{C} \left(\frac{c + j \operatorname{tg} k_{2} l}{1 + j c \operatorname{tan} k_{2} l} \right)$$
(9)

式中 k_2 为跳变段相位常教。考虑一种特殊情况: $k_2 l = \frac{\pi}{2}$, 即跳变段是一个 $\lambda_{m_2}/4$ 变换 段, 则 $y_1 = \frac{1}{c^2}$, 因此均匀传输线法化输入导纳为

$$y_{in} = \frac{\frac{1}{c^2} + j \lg k_1 (L - l - x)}{1 + j \frac{1}{c^2} \lg k_1 (L - l - x)}$$
(10)

由此可见,当x变化时,输入导纳以λm/2为周期变化,¹/_{c²}相当于末端的负载。因此当均 匀传输线输入端接上测量探头,就可根根指示值的周期性变化测出微带线的介质波长。

以上说明的是特殊情况。实际上扰动段幷非必需做成 $\lambda_{m_2}/4$,但要避免 $\lambda_{m_2}/2$ 的整数 倍。均匀传输线末端也无必要匹配,一般都能取得良好的效果。

图 6 为网络扰动法测量微带线介质波长的装置示意图。测量探头用测量线晶体检波器作指示。微带线装在由旧测量线改装的支架上,介质块移动由支架传动机构带动,从游标尺上读取介质块的相对位置。介质块在移动过程中必需紧贴微带线并相对于微带线 平行移动。

我们用网络扰动法分别测量了三种聚四氟乙烯玻璃新維板微带线向介质波长。

图 6 网络扰动法测量装置示意图

表2列出了w = 3.9mm h = 1.45mm 微带线在f = 10GH₂时测得的介质波长。

		$\lambda_m(mm)$) 			$\overline{\lambda}_m(\text{mm})$	Ec
 19.8	20.0	19.6	19.6	20.1	19.8	19.84	2.28
19.6	20.0	20.2	19.6	19.9			

表 2 w=3.9mm带线介质波长测量数据表

上列数据表说明了网络扰动法测量微带线向介质波长精度是比较高的,尽管个别点 上测得的介质波长有起伏,这是由于介质块与微带线紧贴程度不一样引起的。取平均 后,这一误差就降到了最低限度。

五、结 论

我们用三种方法测量了不同宽度的聚四氟玻璃新維板微带线的 co,由于环形腔的基板与微带线基板不是同一块基板,无法比较。切割微带线法与网络扰动法都是在同一块 微带线上测量的,表3比较了两种测量方法的测量结果,测量结果十分接近,说明两种 测量方法都是可行的。

三种测量方法各有优点,根根实际测量的要求,可灵活选择测量方法。

环形腔的主要优点是;可以多次重复测量,减少测量误差;能测量微带线co的色散 特性;测量环形腔的Q值后能测微带线的损耗。但环形腔有许多无法克服的缺点:负载 对谐振频率有影响;腔的制作精度和轴对称性对测量结果影响明显;环形腔的辐射较 大,特別是当微带线较宽时,它就成为一个微带环形天线;并且它不能测量指定工作频 **季下**的 co(因为设计环形腔时还不知道 co的正确值,因而选定的周长会偏离实际的介质 波长)。所以环形腔法只适合于批量产品的抽样测试。

切割微带线法的主要优点:采用我们的修正方法能获得正确的测量结果;能测量任 意指定工作频率的 ε_e;微带线辐射比环形腔要小,对测量结果的影响也小。但切割微带 线法无法测量ε_e的色散特性;也不能重复多次测量;修正步骤繁琐,并要保证切割的精 度,特別是微带线上覆有盖板时更为麻烦、费时。切割微带线法特别适合于三板微带传 输线 λ_m 的测量。

网络扰动法具备了环形腔法和切割微带线法的主要优点,克服了环形腔法和切割微

带线法的主要缺点,特别对覆有盖板的微带线的测量更显出其优越性。因此, 网络扰动 法是测量微带线介质波长的比较简便又精确的方法。但不能用来测量微带线三板线的介 质波长。

表 3 测量结果比	较
-----------	---

	ϵ_e $\lambda_0 = 28.40(mm)$						
	W = 2(mm) h = 1.45(mm) 无复盖	W = 2(mm) h = 1.45(mm) 有复盖	W = 3.6(mm) h = 1.5(mm)				
切割法	2.475	2.620	2.730				
扰动法	2.414	2,616	2.784				

参考文献

[1] J.R.Jams P.S.Hall C.Wood Microstrip Antenna Theory and Design pp.24.

[2] 顾其铮编,微波集成电路设计,一人民邮电出版社。

[3] 清华大学编,微带电路,人民邮电出版社。

The Methocls for Measuring Effective Permittivity of Microstrip

Zheng Boqun liu Kecheng Yin Jiaxian

Song xuecheng Liu Jian

Abstract

This paper states the methods for measuring effective permittivity of microstrip, gives a progressive formula of the cutting microstrip method, and discusses a new one the disturbing network method.

1