国防科技大学学报

JOURNAL OF NATIONAL UNIVERSITY OF DEFENSE TECHNOLOGY

湍流射流的数值计算

贾少波

(应用力学系)

摘 要 本文用改进的K-E模型对轴对称湍流射流进行了研究。流场的平均量和脉动量均与实验数据进行了对比。计算结果表明该模型可用于一般工程 计算。

一、引 言

自由射流作为自由剪切流动的形式之一,受到广泛深入的研究。这不仅仅是因为它 能使流动方程大大简化,成为认识复杂流动的起点,而且这种流动本身亦有实际工程意 义。许多发生在工程设备中的流动,如喷气发动机,火箭发动机,工业炉,烟囱以及海 底排污等都可以抽象成为自由射流问题来研究。本文用 PHOENICS^[1]程 序对流入静止 环境的柱形湍流射流进行了计算,并与实验数据进行了对比。结果表明,本文介绍的湍 流模型能够真实地预测轴对称射流问题,在一般工程计算中可取得满意的结果。

二、控制方程

流入静止环境的圆柱形射流可以看作二维轴对称不可压的稳定流动。根据边界层假设,忽略主流方向上的粘性扩散作用,且流场参数沿流动方向的变化与垂直该方向上的变 化相比为小量。在高雷诺数*情况下,分子粘性项可以忽略。控制方程的最终形式如下:

・连续方程

$$\frac{\partial U}{\partial x} + \frac{\partial V}{\partial r} + \frac{V}{r} = 0 \tag{1}$$

・动量方程

本文1986年2月20日收到

^{*} 本文中雷诺数Re=105.

$$U\frac{\partial U}{\partial x} + V\frac{\partial U}{\partial r} = -\frac{1}{r} \frac{\partial}{\partial r}(r\overline{u'v'})$$
(2)

其中 x 为主流方向; r 为垂直与主流的方向; $U \\ \subset V$ 分别是这两个方向上的平均速度; $u' \\ \subset v'$ 分别是 $U \\ \subset V$ 的脉动分量。

三、湍流模型

为了使上述控制方程组封闭,需要建立含有雷诺应力($-\overline{\rho u'v'}$)的补充关系式。 Spalding和 Launder^[2]提出的 $K-\varepsilon$ 两方程模型如下:

雷诺切应力

1

7

$$-\overline{u'v'} = v_{\iota}\frac{\partial U}{\partial r}$$
(3)

湍流粘性系数

$$\nu_{\iota} = \frac{\mu_{\iota}}{\rho} = C_{\mu} \frac{K^2}{\varepsilon} \tag{4}$$

湍流动能

$$\left| U \frac{\partial K}{\partial x} + V \frac{\partial K}{\partial r} = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\nu_{\iota}}{\sigma_{K}} \frac{\partial K}{\partial r} \right) + \nu_{\iota} \left(\frac{\partial U}{\partial r} \right)^{2} - \varepsilon$$
(5)

湍流动能耗散率

$$U\frac{\partial \varepsilon}{\partial x} + V\frac{\partial \varepsilon}{\partial r} = \frac{1}{r} \frac{\partial}{\partial x} \left(r \frac{\nu_i}{\sigma_{\varepsilon}} \frac{\partial \varepsilon}{\partial r} \right) + C_1 \nu_i \frac{\varepsilon}{K} \left(\frac{\partial U}{\partial r} \right)^2 - C_2 \frac{\varepsilon^2}{K}$$
(6)

方程(4)-(6)中出现的实验系数取值如表1。

G µ	σk	σε	C ₁	C 2
0.09	1,0	1.314	1.44	1.92

表 1 K-e模型中的常数

以上模型与方程(1)、(2)构成封闭方程组已成功地应用于多种边界层流动。但是用 表 1 给出的一组常数却不能正确计算轴对称射 流 问 题。在 Rodi[3] 的 研 究 基 础 上, Launder 和Spalding 提出了如下改进方案:

$$C_{\mu} = 0.09 - 0.04f \tag{7}$$

$$C_2 = 1.92 - 0.0667f \tag{8}$$

其中

$$f = \left| \frac{r_{\infty}}{2U_{\sigma}} \left(\frac{\partial U_{\sigma}}{\partial x} - \left| \frac{\partial U_{\sigma}}{\partial x} \right| \right) \right|^{0.2}$$
(9)

*r*_∞ 是射流宽度, *U*_o是位于射流中心的速度。在计算中发现把(7)式中的 系 数 0.04 改为 0.0355可以得出更接近于实验数据的结果。

四、关于数值计算

以上给出的湍流模型用PHOENICS程序在Perkin-Elmer3220小型计算机上进行了数 值求解。数值求解的步骤如下:

(1) 控制方程的标准化

将微分方程整理成标准形式,常可使问题变得简洁方便。设 ¢ 为待求的因变量,则 对于本文所讨论的流动可写出如下形式的控制方程:

$$\frac{\partial}{\partial x}(U\phi) + \frac{1}{r} \frac{\partial}{\partial r}(Vr\phi) - \frac{1}{r} \frac{\partial}{\partial r} \left(\Gamma_{\phi}r\frac{\partial}{\partial r}\phi\right) = S_{\phi}$$
(10)

方程左边表示 ϕ 的对流和扩散, $\Gamma_{\phi} \neq \phi$ 的扩散系数 S_{ϕ} 表示除对流和扩散以外的其它 各项,是方程的源。于是当 ϕ , Γ_{ϕ} 和 S_{ϕ} 取不同组合时,就可得到上节给出的封闭方程 组(见表 2)。

<u>大</u>	毘		变量	φ	Γφ	S ø
	進	续 方	程	1	0	0
	动	量方	稚	U	vi	0
	K	方	程	K	v_t/σ_K	$\nu_t \left(\frac{\partial U}{\partial r}\right)^2 - \varepsilon$
	ε	方	程	ε	vt/Je	$C_{1}\frac{\varepsilon}{K}\nu_{t}\left(\frac{\partial U}{\partial r}\right)^{2}-C_{2}\frac{\varepsilon^{2}}{K}$

表 2 控制方程中的变量,扩散系数和源

(2) 微分方程的离散

图 1 计算域

进行积分,就得到包含结点 P 及其所有相邻点处 φ 值的代数方程。这就是PHOENICS 程 序中建立和求解的离散方程,它的最终形式为

$$a_P \phi_P = a_B \phi_B + a_W \phi_W + a_N \phi_N + a_S \phi_S + b \tag{11}$$

其中各相邻点值的系数 a_B、a_W、a_N、a_S,反映各邻点φ值通过控制面,对P点φ值的对流 和扩散影响,同时也与离散格式有关。a_P和 b 则分别由下式给出:

$$a_P = a_B + a_W + a_N + a_S - S_P \Delta u$$

 $b = S_c \Delta \tau$

其中Ar 为体积元的体积, Sc和Sr则是由于对源项Ss作如下线性化处理得到的:

$$S_{\phi} = S_{c} + S_{P}\phi_{P}$$

显然,离散方程(11)只是一个形状上的线性方程,它在本质上是非线性的。

(3) 离散方程的求解

对计算域内所有结点建立离散方程,就得到一组包含所有结点参数在内的代数方程 组。直接求解这样一组非线性方程,显然是复杂和不经济的。因此采用了逐线推进迭代 的求解方案。由于流动的抛物型特点,当前步上的流动只受上游参数的影响。只要从射 流出口处开始,逐步向下游推进,则在每一步上各结点参数可由三对角矩阵法(TDMA) 求出。当迭代计算沿流动方向扫过整个计算域时,就得到了全场各参数的分布。

(4) 计算域和边界条件

x =

本计算域采用了变宽度域和变步长网格布置。计算步长由下式给出:

$$\Delta x = 0.025 r_{\omega} \tag{12}$$

其中r。为当前步对应的计算域宽度。该值由下式计算:

$$r_{\infty} = r_{\infty,0} + 0.25x$$
 (13)

其中r_a,₀为入口处计算域宽度。边界条件如下:

x₀ 姓
$$U = U_0$$

 $V = 0$
 $K = K_0 = 1.5 \times 10^{-6} \times U_0^2$
 $\varepsilon = \varepsilon_0 = \frac{0.09^{3/4} K_0^{3/2}}{0.07 D}$

 $r = r_{\infty}$ 处 $U_{\infty} = V_{\infty} = K_{\infty} = \varepsilon_{\infty} = 0$

其中D是射流的初始直径。所有计算结果均整理成无量 纲 的形式,因而U₀和D的取值 大小并不十分重要。

五、结果与讨论

自相似性是射流的重要特征之一。它是指用一个速度尺度和一个长度尺度就足以表 征流场的性质。一般地,把射流中心速度Uo和射流半宽度roos选为特征尺度。文献[4]表 明,自由射流的平均量从距射流出口20D的下游起就已达到了自相似,而其湍流脉动参 数则从大约70D的下游处起达到完全的自相似。据此,本文的计算结果均在 x>70D的 下游选取,以便与已知实验数据进行比较。 文献[4], [5]报告的实验数据,包括射流扩张率,中心速度沿 x 方向的变化,截面 上的速度分部,湍流动能分布及剪应力分布,均与本文的计算结果进行了比较。

图 2 给出了无量纲化的湍流动能沿中心线的变化。可以看出在 *x*/*D*>70处,流动达 到了自相似。

图 3 对射流扩张率的计算值与实验值进行了比较。由图可见, r_{0.5}/x=0.086的实验 结果在计算中得到了正确的预测。

图 4 对比了中心 速 度 U c沿 x 方向的变化。文献 [5] 的实验结果与文献 [4] 的实验结 果相比,在x/D=60 处出现了一个突跃。在进行新的测量之前,还无法判断哪个实验数 据更准确。从以上图中还可以看出,反映自相似规律的线性分布已正确地由计算结果给 出。

图 5 给出射流截面上的平均速度分布,与实验数据吻合极好。

图 6 给出截面上湍动能的分布。据报告分析,文献[4]所用X型热线测量仪在测量脉动量时可引起25%的误差。而文献[5]采用了新的信号分析方法,所以数据更为可靠。 本文的计算结果与[5]数据较接近,其吻合程度在工程上也是可取的。与平面射流不同的是,圆柱射流的湍动能在中心处没有显著减小的趋势。这说明平均速度场在中心区对湍动能有较大的影响。圆柱形流场表面积与容积之比通常较平面射流为大,因而其中心速度下降也较快。

图 7 给出截面上的湍流切应力分布。在 $r/r_{0.5} \approx 0.7$ 处平均速度具有较大的梯度,使切应力达到最大。计算结果正确地反映了这一特性。从图中还可以看出,在离中心区较远处,计算结果比实验数据偏低大约11%。这可能是由于在动量方程中略去湍流正应力项 - u'u', - v'v'而造成的。

最后,用表1给出的系数及以上模型在同一问题上也进行了计算,并将计算结果列 于表2。显然,在对C_µ,C₂不加改进的情况下,数值计算可能引起高达35%的误差。

物理量	<i>K-ε</i> 模型 Cμ,C₂=常 数	<i>K-ε</i> 模型 Cμ,C₂改进	实验数据
dro.5/dx	0.117	0.086	0.086
K_C/U_C^2	0.102	0.083	0.092
$\overline{(u'v')} m_{ax}/U_C^2$	0.023	0.017	0.019
$\mu_t, c/U_Cr_{0.5}$	0.0356	0.0257	0.0256

表 2 C_{μ}, C_2 对计算果结的影响

六、结 语

对K-ε模型中的常系数进行适当改进,可以将原模型的应用范围扩大到圆柱形射流 的情况。本文介绍的改进模型在一般工程问题中可得到满意的结果。

对于非边界层型及低雷诺数的流动情况尚需进一步的研究与探讨。

参考文献

- [1] D.B.Spalding & H.I Kosten & D.G.Tatchell, PHOENICS An Instruction Manual, CHAM TR/75 January 1982.
- [2] B.E.Launder & D.B.Spalding (1974), The Numerical Computation of Turbulent Flows, Comp. Methods in Appl. Mech. & Eng. 3(1974)
- [3] W Rodi (1972), The Prediction of Free Turbulent Boundary Layers by Use of a Two-Equation Model of Turbulence, London University, PhD Thesis.

- [4] I.Wygnanski & H.Fiedler (1969): Some Measurements in the Self-Preserving Jet, J.Fluid, 1969, v38, Part 3, pp577-612.
- [5] W Rodi (1975); A New Method of Analysing Hotwire Signale in Highly Turbulent Flow, And Its Evaluation in a Round Jet, DISA Information No.17, Feburuary 1975.

Numerical Calculation of a Turbulent Axisymmetric Jet

Jia Shaobo

Abstract

A cylindrical turbulent axisymmetric jet is studied using a modified K-e model. Both mean and turbulent quantities are presented in comparison with the experimental data. The theoretical values obtained show that such a model may be used for the common engineering calculation.