国防科技大学学报

架空电线在悬链状态下的 非线性振动响应分析

张仁述

(应用力学系)

摘 要 本文推导了考虑初始弛度的输电线的非线性振动偏微分方程,和 采用迦辽金过程而得常微分方程。应用多尺度法和 L—P(Lindstedt-poincare) 法求得了受谐扰力和脉冲激励的输电线非线性振动响应的近似解。分析了初始 弛度对响应的影响,得到了一些有益的结果。

一、引 言

输电线的振动,常是引起输电线路发生故障的一隐患,因此分析输电线的振动,是 一个很重要的工程实际问题。在文献[2]一[5]中,曾对架空电缆的非线性自由振动作过 一定研究,尤其是文献[5],对有初始弛度悬挂电缆自由振动的非线性特性进行了很好 的分析。本文来研究考虑初始弛度的架空输电线的非线性强迫振动。首先,本文应用大 位移理论,推导了考虑初始弛度影响的输电线的强迫振动微分方程。然后,讨论了其响 应的近似解,分析了初始弛度对响应的影响,得到了一些结果,对架设电线或维护输电 线路安全,将是有益的参考。

二、基本方程

如图1(a)示两端悬挂的电线跨度 l,横截面积 A,材料弹性模量 B。在静平衡时, 电线中心于 x 处的初始下垂 y(x),初始张力 T₀(设电线自然长度与 l 的差别 不计)。 考虑对应dx的电线之中心线线段 d^{*}₀[图1(b)示],其始、末端对其 平衡位置沿 x, y 轴 向的位移分别为 u(x,t), v(x,t)和 $u+u_x dx$, $v+v_x dx$ (符号 () x表示 () 对 x 的偏导 数)。于是dro=dxi+dyj, $\Delta r_1 = ui + vj, \Delta r_2$ $= (u + u_x dx)\vec{i} + (v + v_x dx)\vec{j}, d\vec{r} = d\vec{r}_0 + \Delta \vec{r}_2 \Delta r_1$ 。对应的 $\hat{PP}_1 = ds_0$, $\hat{P'P}_1 = ds_0$, 则 u(x` $ds_0 = \left[1 + \frac{1}{2} \left(\frac{dy}{dx}\right)^2\right] dx,$ p (a) $ds = \left[1 + u + \frac{1}{2}u_x^2 + \frac{1}{2}\left(\frac{dy}{dx} + v_x\right)^2\right] dx_0$ ⊿₹ A₽. 电线应变为 13

 $s_s = (ds - ds_0)/ds_0$ 。假设 $\left(\frac{dy}{dx}\right)^2$ 与1相比可略

去, u²_x与v²_x相比可略去时, 便得

$$e_s = u_x + \frac{dy}{dx}v_x + \frac{1}{2}v_x^2 \tag{1}$$

\$

(b)

围1

电线在P'时的张力为

 $T = T_0 + EAe_s$ (2)

于是电线的势能、动能和外力的功分别为

$$V = \int_0^t \left(T_0 e_s + \frac{1}{2} E A e_s^2 \right) dx \tag{3}$$

$$T = \int_{0}^{l} \rho A(\dot{u}^{2} + v^{2}) dx$$
 (4)

$$W = \int_{0}^{1} \left[\rho A g + f(x,t) \right] v dx \tag{5}$$

式中 p 为电线密度, "•"号表示对时间 t 的导数, f(x,t)表示单位长度电线上沿 y 轴向 的外力。

根据哈密顿原理
$$\int_{i_1}^{i_2} (\delta T - \delta V + \delta W) dt = 0, \quad 则有$$
$$\int_{i_1}^{i_2} \int_0^1 \rho A(u\delta u + v\delta v) dx dt + \int_{i_1}^{i_2} \int_0^1 [\rho Ag + f(x,t)] \delta v dx dt$$
$$- \int_{i_1}^{i_2} \int_0^1 \left[T_0 + EA \left(u_x + \frac{dy}{dx} v_x + \frac{1}{2} v_x^2 \right) \right] \left[\delta u_x + \left(\frac{dy}{dx} + v_x \right) \delta v_x \right] dx dt = 0$$
(6)

由(6)式分部积分便得

$$\frac{\partial}{\partial x} \left[E A \left(u_x + \frac{dy}{dx} v_x + \frac{1}{2} v_x^2 \right) \right] = \rho A u$$
(7)

$$\frac{\partial}{\partial x} \left[T_0 v_x + E A \left(\frac{dy}{dx} + v_x \right) \left(u_x + \frac{dy}{dx} v_x + \frac{1}{2} v_x^2 \right) \right] + f(x, t) = \rho A v \tag{8}$$

方程(7)和(8)为考虑初始弛度影响的电线在 oxy 平面内的运动微分方程。其中纵向 惯性力 "ρAu" 一般较横向惯性力 "ρAv"小。假设略去纵向惯性力,和BA 为常数时。

由方程(7)得

$$u_x + \frac{dy}{dx}v_x + \frac{1}{2}v_x^2 = e(t)$$
 (9)

并由边界条件u(0,t) = u(l,t) = 0,便有

$$e(t) = \frac{1}{l} \int_{0}^{l} \left(\frac{dy}{dx} v_{x} + \frac{1}{2} v_{x}^{2} \right) dx$$
 (10)

将式(9),(10)代入方程(8)得

$$\frac{\partial}{\partial x} \left[T_0 v_x + \frac{EA}{l} \left(\frac{dy}{dx} + v_x \right) \int_0^l \left(\frac{dy}{dx} v_x + \frac{1}{2} v_x^2 \right) dx \right] + f(x,t) = \rho A v \tag{11}$$

方程(11)为电线横向振动的偏微分方程。当 f(x,t) = 0 时,即自由振动微 分方程,这结 果与文献 [5] 一致。

为了方便,将方程(11)写成无量纲形式,引入

$$\frac{EA}{T_0} = \mu, \ \frac{a_0}{l} = b, \ \tilde{x} = \frac{x}{l}, \ \tilde{v} = \frac{v}{a_0}, \ \tilde{y} = \frac{y}{a_0}, \ \tau = \omega t$$
(12)

式中 a_0 为电线跨度中点的初始垂度(驰度), ω 为电线的一阶线性频率。以张 力 T_0 相同的直电线的一阶线性频率为

$$\omega_0 = \frac{\pi}{l} \sqrt{\frac{T_0}{\rho A}} \tag{13}$$

则方程(11)变为

$$\frac{\partial}{\partial x} \left\{ \frac{\partial \tilde{v}}{\partial \tilde{x}} + \lambda^2 \left(\frac{d\tilde{y}}{d\tilde{x}} + \frac{\partial \tilde{v}}{\partial \tilde{x}} \right) \int_0^1 \left[\frac{d\tilde{y}}{d\tilde{x}} \frac{\partial v}{\partial \tilde{x}} + \frac{1}{2} \left(\frac{\partial \tilde{v}}{\partial \tilde{x}} \right)^2 \right] d\tilde{x} \right\} + \frac{l^2}{a_0 T_0} \tilde{f}(l\tilde{x}, \tau) = \pi^2 \left(\frac{\omega}{\omega_0} \right)^2 \tilde{v}_{\tau\tau} \quad (14)$$

式中 $\lambda^2 = \mu b^2 = \frac{EA}{T_0} \left(\frac{a_0}{l} \right)^2$, $\vartheta_{\tau\tau}$ 表示 ϑ 对 τ 的二阶导数。方程(14)为考虑初始弛度影响的 电线横向振动微分方程的无量纲形式。显然,方程(11)或(14)均含横向位移偏导数的二 次方和三次方项,其为平方和立方非线性微分方程。

三、近似解与结果的分析

设电线受均布的横向载荷为

$$f(\boldsymbol{x}, \boldsymbol{t}) = \boldsymbol{P}_0 f(\boldsymbol{t}) \tag{15}$$

式中 P₀以公斤/厘米计(如电线受风雨作用,有时可简化成这种载荷)。若电线悬点等 高,则

$$v(0,t) = v(l,t) = 0 \tag{16}$$

假设电线的初始垂度和位移分别为

$$y(x) = a_0 \sin \frac{\pi x}{l}, \quad v(x,t) = a_0 \sin \frac{\pi x}{l} q(t) \tag{17}$$

于是 $\tilde{f}(l\tilde{x},\tau) = P_0 f\left(\frac{1}{\omega}\tau\right), \quad \tilde{y}(\tilde{x}) = \sin \pi \tilde{x},$

$$\vartheta(\tilde{x},\tau) = \sin\pi \tilde{x} q \left(\frac{1}{\omega} \tau\right) \tag{18}$$

将式(18)代入方程(14),并应用迦辽金过程,得

$$\ddot{q} + q + a_2 q^2 + a_3 q^3 = P \tilde{f} \left(\frac{1}{\omega} \tau\right)$$
(19)

式中 q 表示 q 对 7 的二阶导数,且

$$\alpha_2 = \frac{3}{2} \left(\frac{1}{1 + 2/\pi^2 \lambda^2} \right), \quad \alpha_3 = \frac{\alpha_2}{3}, \quad P = \frac{8l^2 P_0}{\pi^3 a_0 T_0 (2 + \pi^2 \lambda^2)}$$
(20)

(一) 均布谐扰力情况

设 $f(t) = \cos \Omega t$, Ω 为扰力频率。则以 $f\left(\frac{1}{\omega}\tau\right) = \cos \frac{\Omega}{\omega}$ τ代人方程(19)得

$$\dot{q} + q + \alpha_2 q^2 + \alpha_3 q^3 = P \cos \frac{\Omega}{\omega} \tau$$
⁽²¹⁾

下面应用多尺度法来求方程(21)的近似解。仅讨论 $\Omega \approx \omega$ 的主共振情况,故考虑软激励,约定 $P = e^{3k}$, e表示振幅量级的无量纲小参数, e<1, k = 0(1)。引

$$\frac{\Omega}{\omega} = 1 + e^2 \sigma \tag{22}$$

解谐参数 $\sigma = 0(1)$ 。设方程(21)的解为

 $q(\tau, e) = eq_1(T_0, T_1, T_2) + e^2q_2(T_0, T_1, T_2) + e^3q_3(T_0, T_1, T_2) + \cdots$ (23) 式中 $T_n = e^n \tau$, q_i 不存在久期项。将式(22), (23)代人方程(21), 并令两端 e, $e^2 \pi e^3$ 的系数分别相等,得

$$D_0^2 q_1 + q_1 = 0 \tag{24}$$

$$D_0^2 q_2 + q_2 = -2D_0 D_1 q_1 - \alpha_2 q_1^2$$
(25)

$$D_0^2 q_3 + q_3 = -2D_0 D_1 q_2 - 2D_0 D_2 q_1 - D_1^2 q_1 - 2\alpha_2 q_1 q_2 - \alpha_3 q_1^3 + k \cos(T_0 + \sigma T_2)$$
(26)

式中 $D_i = \frac{\partial}{\partial T_i}$, $D_i^2 = \frac{\partial^2}{\partial T_i^2}$ 。解方程(24)至(26),得

$$q(\tau) = ea\cos\left(\frac{\Omega}{\omega}\tau - \gamma\right) + \frac{1}{2}\alpha_2 e^2 a^2 \left[\frac{1}{3}\cos^2\left(\frac{\Omega}{\omega}\tau - \gamma\right) - 1\right] + 0(e^3)$$
(27)

式中 α 和 γ 由下列方程确定。

$$a' = \frac{k}{2} \sin \gamma \tag{28}$$

$$a\gamma' = a\sigma - \frac{1}{24}(9\alpha_3 - 10\alpha_2^2)a^3 + \frac{k}{2}\cos\gamma$$
 (29)

4

式中一撇表示对T₂的导数。

稳态运动:当a'=0, y'=0时,存在稳态运动。得y=0或 π ,和频率响应方程为 $\sigma = \frac{3}{2} \left(\alpha_3 - \frac{10}{2} \alpha_2^2 \right) a^2 \pm \frac{k}{2}$ (30)

$$\sigma = \frac{3}{8} \left(\alpha_3 - \frac{10}{9} \alpha_2^2 \right) a^2 \pm \frac{\kappa}{2a}$$
(30)

或令 ea=A1, 则

$$\frac{\Omega}{\omega} = 1 + \frac{3}{8} \left(\alpha_3 - \frac{10}{9} \alpha_2^2 \right) A_1^2 \pm P/2A_1$$
(31)

于是由(27)式,稳态运动解为

$$q(t) = A_1 \cos Q t - \frac{1}{2} \alpha_2 A_1^2 + \frac{1}{6} \alpha_2 A_1^2 \cos 2Q t + 0(e^3)$$
(32)

而对静平衡位置的位移为

$$v(x,t) = a_0 \sin \frac{\pi x}{l} \left[A_1 \cos \Omega t - \frac{1}{2} \alpha_2 A_1^2 + \frac{1}{6} \alpha_2 A_1^2 \cos 2 \Omega t \right]$$
(33)

稳态响应振幅 A1由式(31)确定。令式(31)中P=0,便得系统自由振动非 线性频率特性 为

$$\frac{\Omega}{\omega} = 1 + \frac{3}{8} \left(a_3 - \frac{10}{9} a_2^2 \right) A_1^2$$
(34)

式(34)中的 Ω 便为电线的非线性自由振动的基频, A_1 为电线自由振动的 振幅。现将式 (20)代入式(34),可得当 $\lambda^2 < \frac{1}{2\pi^2}$ 时, $\frac{\Omega}{\omega}$ 则随 A_1 的增大而增大,系统为非线性硬特性。 当 $\lambda^2 = \frac{1}{2\pi^2}$ 时, $\frac{\Omega}{\omega} = 1$,即为线性特性。当 $\lambda^2 > \frac{1}{2\pi^2}$ 时, $\frac{\Omega}{\omega}$ 则随 A_1 的增大而减小,系统为 非线性软特性。

给与下列数据,由式(31)可回出系统稳态响应的频响曲线草图如图2(a),(b)示。设电 线弹性模量 $B = 10^{8}$ kg/cm²,跨度 $l=5 \times 10^{3}$ cm,直径 d=0.6cm,扰力幅值 $P_{0}=0.002$ kg/cm。在图2(a)中, $a_{0}=10$ cm, $T_{0}=100$ kg, $\lambda^{2}=0.011309$ 7。在图2(b)中, $a_{0}=30$ cm, $T_{0}=$ 60kg, $\lambda_{2}=0.169646$ 。图 2(a)的 $\lambda^{2} < 1/2\pi^{2}$,系统为非线性硬特性,频响曲线相对 Q/ω =1 直线向频率增大的方向弯曲。而图 2(b)的 $\lambda^{2} > 1/2\pi^{2}$,系统为非线性软特性,频响 曲线相对 $Q/\omega=1$ 直线向频率减小的方向弯曲。可见二者在共振区的响应幅值均远小于 对应线性响应幅值,而且图2(b)较图2(a)的响应幅值更小。一般,若 λ^{2} 愈小于 $1/2\pi^{2}$, 或 λ^{2} 愈大于 $1/2\pi^{2}$ 时,频响曲线相对 $Q/\omega=1$ 直线向频率增大或减小方向弯曲的程度愈 大,二者在共振区的响应幅值愈小,而且后者比前者更小。反之,若 λ^{2} 愈接近 $1/2\pi^{2}$ 时,其在共振区的响应幅值称愈大。参数 $\lambda^{2}=EA/T_{0}(a_{0}/l)^{2}$,对材料、直径和跨度相同 的电线, λ^{2} 将随初始弛度 a_{0} 值增大而增大(一般 a_{0} 增大而 T_{0} 减小)。因此,当 a_{0} 由小 增大时,在共区的响应幅值随之增大;当 a_{0} 增大到使 $\lambda^{2}=1/2\pi^{2}$ 时响应幅值最大;此后, a_{0} 再增大时($\lambda^{2}>1/2\pi^{2}$),响应幅值则减小。

(二) 脉冲响应

当 $f(x,t) = P_0\delta(t)$ 时 ($\delta(t)$ 称单位脉冲函数) ,则 $\tilde{f}(l\bar{x},\tau) = P_0\delta(\tau/\omega)$,于是,方

程(19)成为

6

$$\dot{q} + q + \alpha_2 q^2 + \alpha_3 q^3 = P\delta\left(\frac{1}{\omega}r\right) = ek\delta\left(\frac{1}{\omega}r\right)$$
(35)

式中 α_2, α_3, P 由式 (20) 给出, ε 为 q 的幅值量级的小参数。 $P = ek, e \ll 1, k = 0(1)$ 。 现在用*L*-P法求方程(35)由静止始的脉冲响应。引入 $T = (Q/\omega)\tau$, 设

$$q(T, \varepsilon) = \varepsilon q_1(T) + \varepsilon^2 q_2(T) + \varepsilon^3 q_3(T) + 0(\varepsilon^4)$$
(36)

$$\frac{\Omega}{\omega} = 1 + e^2 \omega_2 + 0 \left(e^4 \right) \tag{37}$$

将式(36)和(37)代入方程(35),得

$$q_1'' + q_1 = k\delta(QT) \tag{38}$$

$$q_2'' + q_2 = -\alpha_2 q_1^2 \tag{39}$$

$$q_3'' + q_3 = -2\omega_2 q_1'' - 2\alpha_2 q_1 q_2 - \alpha_3 q_1^3$$
⁽⁴⁰⁾

初始条件:

$$q_i(0) = 0, q'_1(0) = k, q'_i(0) = 0 (i \neq 1)$$
(41)

由方程(38)至(40)和式(41)求得q1, g2和w2后代人式(36), (37)得

$$\frac{\Omega}{\omega} = 1 + \frac{3}{8} \left(\alpha_3 - \frac{10}{9} \alpha_2^2 \right) P^2 + 0(e^4)$$
(42)

$$q = ek \sin T + \frac{2}{3} \alpha_2 e^2 k^2 \cos T - \frac{1}{2} \alpha_2 e^2 k^2$$

$$-\frac{1}{6}\alpha_2 e^2 k^2 \cos 2T + 0(e^3) \tag{43}$$

现在略去倍频谐振项和e³项,得近似解为

$$q(t) = A_{1}\sin(\Omega t + \gamma) - B$$

$$A_{1} = \left(1 + \frac{4}{9}\alpha_{2}^{2}P^{2}\right)^{\frac{1}{2}}P,$$
(44)

式中

$$\gamma = tg^{-1}\left(\frac{2\alpha_2 P}{3}\right), \quad B = \frac{1}{2}\alpha_2 P^2$$
 (45)

则横向位移为

$$v(x,t) = \sin \frac{\pi x}{l} [a_0 A_1 \sin(\Omega t + \gamma) - a_0 B]$$
(46)

式(46)为考虑初始弛度影响时电线受均布脉冲激励的非线性响应近似解。其中 Ω 是电线的非线性基频,它由式(42)决定。略去式(42)中0(e^4)项,并注意到式(20),可得:当 $\lambda^2 < 1/2\pi^2$ 时,为非线性硬特性;当 $\lambda^2 = 1/2\pi^2$ 时,为线性特性;当 $\lambda^2 > 1/2\pi^2$ 时,为非线性软特性。式(46)中"- $a_0Bsin\pi x/l$ "项表示电线位移的振动中心线对平衡位置的漂移。

由式(1),(2),(9),(17)和(46)可得电线脉冲响应的张力(T)及其最大值(Tm)分别为

$$T = T_0 + \frac{EA}{2} \left(\frac{\pi}{l}\right)^2 a_0^2 \{ [A_1 \sin(Qt + \gamma) - B] + \frac{1}{2} [A_1 \sin(Qt + \gamma) - B]^2 \}$$
(47)

$$T_{m} = T_{0} + \frac{EA}{2} \left(\frac{\pi}{l}\right)^{2} a_{0}^{2} \left[(A_{1} - B) + \frac{1}{2} (A_{1} - B)^{2} \right]$$
(48)

设电线弹性模量 $E = 10 \text{kg/cm}^2$,直径 d = 0.6 cm,跨度 $l = 5 \times 10^3 \text{cm}$,冲击力 $P_0 = 0.002 \text{kg/cm}$ 。对于不同的初始弛度 a_0 值对应的脉冲响应结果列于表 1。

а ₀ (ст)	T o (kg)	λ2	a ₀ A ₁ (cm)	a ₀ B (cm)	⊿A (cm)	<i>T_m</i> (kg)	⊿T _m (kg)
5	110	0.00257	58.5107	6.2996	52.2111	200.6406	90.6406
10	100	0.00942	63.9071	12.6629	51.2441	201.6791	101.8791
19	80.5913	0.05066	77.2157	32.3669	44.8488	184.2788	103.6875
20	80	0.05655	76.5039	32.5113	43.9926	183,1128	103.1128
30	70	0.14541	66.9699	30.0625	36.9074	169.8073	99.8073
40	60	0.30159	51,4355	20.9335	30.502	154.0721	94.0721
50	50	0.56549	38,0575	12.7907	25.2668	138.3658	88.3658
60	40	1.01787	28.5671	7.4727	21.0944	123.0543	83.0543

表 1 $\Delta A = a_0 A - a_0 B$, $\Delta T_m = T_m - T_0$

由表 1 可见: 电线跨度中点对振动中心的脉冲响应幅值 4A 和对应的最大张力T "均随初始弛度值 a。增大而减小。在电线跨度中点处响应的最大位移 a。A1、对应点振动中心

偏离平衡位置的距离 a_0B 和动力响应的最大附加张力 ΔT_m 三者,在 $\lambda^2 < 1/2\pi^2 = 0.05066$ 时,均随 a_0 增大而增大;在 $\lambda^2 > 1/2\pi^2$ 时,它们则随 a_0 增大而减小;在 $\lambda^2 = 1/2\pi^2$ 时,它们达最大值。

四、结束语

关于考虑初始弛度的悬挂输电线的横向振动方程,含有平方和立方非线性项,一般 具有非线软特性和硬特性。这特性可用一无量纲参数²的值来区分。由上述对输电线的 基本模态的响应近似解分析可得以下结论:

要减小输电线受谐扰力时,于基频主共振区的响应,和要减小输电线受脉冲激励时的 响应及相应的动力附加张力,一般应当遵守二原则:(1)输电线要避免取 $\lambda^2 = 1/2\pi^2$ 时 的 a_0 值。(2)输电线应当在 $\lambda^2 > 1/2\pi^2$ 的软特性条件下,取适当适大的 a_0 值为宜。这二 原则,对架设输电线或对输电线路安全检查,将是有益的参考。

最后还应指出:本文的近似解,虽只讨论了电线的主要的基频响应,但所采用的假 设模态法和迦辽金过程,对于多频高阶模态的响应分析也是适用的。

参考文献

- [1] A.H.Nayfeh and D.T.Mook, Nonlinear Oscillation, John Wiley, New york (1979).
- [2] W.W.Carson and A.F.Emery, An Energy Method Determination of Large Cable Dynamics, J.appl. mech. 43,330(1976).
- [3] P.Hagedorn and B.Schafer, On Nonlinear Free Vibration of on Elastic Cable. Int. J. nonlinear Mech. 15, 333(1980).
- [4] A.Luongo, G.Rega and F.Vestroni, Monofrequent Oscillations of a Nonlinear Model of a Suspended Cable, J.Sound and uib. 82, 247(1982).
- [5] A.Luongo, G.Rega and F.Vestroni, planar Nonlinear Free Vibration of an Elastic Cable, Int. J.Nonlinea Mech. 19, 39(1984).

Response Analysis of Nonlinear Vibration of Overhead Power Line Under Suspension Chain State

Zhang Renshu

Abstract

The partial differental equation of nonlinear vibration of a suspended power line for consideration of initial degree relaxation is derived and a ordinary differential equation is obtained by using the Galerkin procedure. The an be found the approximate solutions of nonlinear vibration responses of a power line under the harmonic borces and pulse excitations. The influence of initial degree relaxations on the responses is analysed with some useful results.

1 41