国防科技大学学报

爆轰波在可压缩金属板面上

斜反射初始参数的计算

王诚洪 李 剑 王聪彬

摘 要 本文计算了爆轰波在可压缩金属板面上斜反射时的初始参数。计算中选用的五 种炸药是TNT(ρ_0 为1.64g/cm³, 1.45g/cm³)、RDX (ρ_0 为1.59g/cm³, 1.76g/cm³, 1.80 g/cm³)、RDX/TNT (77/23) (ρ_0 为1.75g/cm³)、Pentolite (ρ_0 为1.65g/cm³, 1.68 g/cm³) 和B炸药 (ρ_0 为1.71g/cm³), 三种介质是铁、铜和铝。

关键词 爆轰波,正规反射,马赫反射,普朗佗一迈益尔膨胀,初始参数 分类号 O382.3

爆轰波在可压缩金属板面上斜反射时的初始参数的计算具有重要的实际意义。因为 若要确定炸药爆炸在周围介质中所形成的冲击波 的 衰 减 规律及整个作用场的动力学参 数,首先必须确定冲击波的初始参数。

实际遇到的爆炸作用情况多属于爆轰波对介质表面的斜冲击。例如,碎甲弹撞击坦 克后,塑性炸药对装甲表面的作用,以及在轴心进行点引爆的战斗部爆炸时,爆轰波对 壳体侧壁面的作用等都属于爆轰波对金属平板的斜冲击问题。另外,在爆炸焊接、爆炸 粉末压实中也涉及到类似的问题。作者参阅文献 [1] 计算了爆轰波在可压缩金属板面上 斜反射时的初始参数。

1 物理模型

设爆轰波阵面OA以爆速D向装药与介质的分界面斜入射,入射角为φ₀,在爆轰波 的作用下,介质内将形成一斜冲击波(当介质发生相变时,有可能要出现两个或两个以 上的波)。同时,介质表面在爆轰波的作用下,发生压缩变形,变形角ε的大小取决于 爆轰压力及介质的可压缩性。对于一定的炸药和介质,根据爆轰波入射角的不同,爆轰 产物中可以发生正规反射,非正规马赫反射和普朗佗一迈益尔膨胀(参见图1)。非相

¹⁹⁸⁹年11月29日收稿

变时的情形见图(a)、(b)、(c);相变时的情形见图(d)、(e)、(f)。

将坐标系取在入射爆轰波阵面与界面交点 O处,这时爆炸物以 D的速度垂直流入爆 轰波阵面,而爆轰产物以 $(D - u_i)$ 的速度 (u_i) 为爆轰产物 在实验室坐标系中的速度) 流入(1)区。从另一角度看,平行于原始分界面的炸药流以速度 $q_0 = D/\sin \varphi_0$ 穿过爆轰波 阵面 O 4 而后向分界面方向内折一个 θ 角,并以 q_1 的速度流入(1)区。而爆轰产物流 q_1 穿 过反射冲击波 O 8,而后,若能顺利地外折 $(\theta - e)$ 角,并以 q_2 的速度平行于变形后的 分界面 O C进行流动,这时发生的反射为正规反射。反之,若 $(\theta - e)$ 大于与 q_1 相对应 的最大可能的折转角,将形成被推离壁面的反射波,即发生非正规的马赫反射现象。当 入射角 φ_0 超过某一角度时,随着 φ_0 的继续增大,折转角 θ 也逐渐减小。当 θ 小于壁面 变形角 e 时,爆轰波冲击壁面后,将不再反射回冲击波,而是反射 回 稀 硫 波。这就是 说,在壁面处发生了爆轰产物的膨胀,而在爆轰产物中出现了扇形的普朗佗一迈益尔流 动区。

在动参考系中,介质以速度 qmo=qo平行于分界面流入介质中的 斜 冲 击 波阵面之后,以qm的速度平行于变形后的界面流出。

2 计算公式

2.1 介质中冲击波参数关系

当介质中有一斜冲击波传播时,由波阵面两侧的速度几何关系,并由质量和动量守 恒关系可得到:

$$q_m = \frac{\rho_{mq}}{\rho_m} q_0 \frac{\sin \varphi_3}{\sin (\varphi_3 - \varepsilon)} \tag{1}$$

$$P_{m} = \rho_{m0} q_{0}^{2} \sin \varphi_{3} \left(1 - \frac{\rho_{m0}}{\rho_{m}} \right)$$
(2)

$$tge = \frac{(1 - \rho_{m0}/\rho_m)tg\varphi_3}{1 + (\rho_{m0}/\rho_m)tg^2\varphi_3}$$
(3)

式中, ρ_{m0} 为波前介质的密度, $\rho_m n P_m 分别为波后介质的密度和压力。$

根据实验得到的金属及其它凝聚介质的Hugoniot关系为:

$$D_m = a + bu_m$$

并考虑到质量守恒,可得到:

$$\frac{\rho_{m_0}}{\rho_m} = 1 - \frac{1}{b} + \frac{a}{bq_0 \sin \varphi_3} \tag{4}$$

对于铁而言,当压力P在12.8~32.5万巴范围内时,要发生相变,在其中要产生两个塑性冲击波,第一个冲击波将铁压缩到相变时的压力12.8万巴,第二个冲击波将铁由 相变压力压缩到终态。出现塑性双波时,设第一个击波后的参数用下标 t 表示,则[2]

 $P_i = 12.8 \pi \Xi$, $V_i = 1/\rho_i = 1.196 \times 10^{-4} (m^3/kg)$

将(1)~(3)式中的 P_m 和 ρ_m 用 P_i 和 ρ_i 代替,则可求得 φ_{3i} , e_i 和 q_i . 进一步可求得第二个冲击波后的参数,即

$$q_{m} = q_{i} \frac{\rho_{i} \sin\left(\varphi_{3} - \varepsilon_{i}\right)}{\rho_{m} \sin\left(\varphi_{3} - \varepsilon\right)}$$
(5)

$$P_{m} = P_{i} + \rho_{i} q_{i}^{2} \sin^{2}(\varphi_{3} - \varepsilon_{i}) \left(1 - \frac{\rho_{i}}{\rho_{m}}\right)$$
(6)

$$tge = \frac{tg\varphi_3 - \frac{\rho_i}{\rho_m} tg(\varphi_3 - \varepsilon_i)}{1 + \frac{\rho_i}{\rho_m} tg\varphi_3 tg(\varphi_3 - \varepsilon_i)}$$
(7)

$$\frac{\rho_i}{\rho_m} = 1 - \frac{1}{b} + \frac{a + (b - 1)[q_0 \sin \varphi_3 - q_i \sin (\varphi_3 - \varepsilon_i)]}{bq_i \sin (\varphi_3 - \varepsilon_i)}$$
(8)

2.2 爆轰波在可压缩金属板面上的正规斜反射

如图 1 中的(a)和(d)所示,爆轰波阵面后(1)区参数为CJ参数,在本文中均假设爆 轰产物遵守多方气体定律,状态方程为E = pV/(K-1),则

$$p_j = \frac{\rho_0 D^2}{K+1}, \quad \rho_j = \frac{K+1}{K} \rho_0, \quad c_j = \frac{K}{K+1} D, \quad u_j = \frac{1}{K+1} D$$

于是可得:

$$q_1 = c_J \sqrt{\left(\frac{K+1}{K}\right)^2 c \operatorname{tg}^2 \varphi_0 + 1}$$

11

$$tg\theta = \frac{tg\varphi_0}{Ktg^2\varphi_0 + K + 1}, \quad M_1 = q_1/c_j$$

$$q_2 = \frac{\rho_j}{\rho_2} \frac{q_1 \sin\nu}{\sin\left[\nu - (\theta - \varepsilon)\right]}$$
(9)

$$\frac{p_2}{p_j} = \frac{2K}{K+1} M_1^2 \sin^2 \nu - \frac{K-1}{K+1}$$
(10)

$$\frac{\rho_2}{\rho_j} = \frac{(K+1)M_1^2 \sin^2 \nu}{(K-1)M_1^2 \sin^2 \nu + 2}$$
(11)

$$tg \varepsilon = \frac{\left(1 + \frac{\rho_j}{\rho_2} tg^2 \nu\right) tg \theta - \left(1 - \frac{\rho_j}{\rho_2}\right) tg \nu}{\left(1 - \frac{\rho_j}{\rho_2}\right) tg \nu tg \theta + \left(1 + \frac{\rho_j}{\rho_2} tg^2 \nu\right)}$$
(12)

在分界面处,界面两边的压力相等,即

$$p_2 = p_m \tag{13}$$

以上,我们对于非相变和相变情况,分别建立了(1)~(13)方程式,其中含有 p_2 , ρ_2 , q_2 , ϵ , ν , p_m , ρ_m , $\varphi_3 和 q_m 9$ 个未知参数,因此可以用上述方程来分别求解爆轰波在 分界面处发生正规反射(相变和非相变两种情况)时分界面初始冲击波参数。

对于一定的入射角 φ_0 ,可求得一组 θ , e, v. 如 $\theta < e$,则此时发生普朗佗一迈益尔 膨胀。将 θ , e, v代入公式

$$\operatorname{tg}(\theta-\varepsilon) = \frac{M_1^2 \sin^2 \nu - 1}{M_1^2 \left(\frac{K+1}{2} - \sin^2 \nu\right) + 1} \operatorname{ctg} \nu$$

若两边不等,则此时发生马赫反射,使得刚开始马赫反射时的入射角φ₀为临界角φ₀。. 2.3 爆轰波在可压缩金属板面上的非正规马赫反射

如图 1 中 (b) 和 (c) 所示,把马赫杆 oo' 近似处理为一斜冲击波,马赫杆的速度为 $D_3 = q_0 \sin \beta$.由守恒关系可得:

$$\frac{p_3}{p_3} = (K+1) \left(1 - \frac{\rho_0}{\rho_3} \right) \left(\frac{\sin \beta}{\sin \varphi_0} \right)^2 \tag{14}$$

$$tge = \frac{\left(1 - \frac{\rho_0}{\rho_3}\right)tg\beta}{1 + \frac{\rho_0}{\rho_3}tg^2\beta}$$
(15)

$$q_{3} = \frac{\rho_{0} D \sin \beta}{\rho_{3} \sin \varphi_{0} \sin(\beta - \epsilon)}$$
(16)

$$E_{3} = E_{0} + \frac{1}{2}(p_{3} + p_{0})\left(\frac{1}{\rho_{0}} - \frac{1}{\rho_{3}}\right) = \frac{p_{3}}{(K-1)\rho_{3}}$$
(17)

式中E。可由CJ参数求得:

$$E_{0} = \frac{p_{j}}{(K-1)\rho_{j}} - \frac{1}{2\rho_{0}}(p_{j}+p_{0})\left(1-\frac{\rho_{0}}{\rho_{j}}\right)$$

共9个方程,来求解非相变时的9个未知参数 q_m , p_3 , ρ_3 , β ,ε, φ_3 , ρ_m , p_m , q_3 . 为了求解相变时的这9个未知参数,要用方程(5)~(8)代替方程(1)~(4)。

2.4 爆赛产物在可压缩金属板面上的普朗伦—迈益尔膨胀

物理图象如图1中的(c)和(f)所示。由稀疏波理论可推得:

$$\varepsilon - \theta = \left[\sqrt{\frac{K+1}{K-1}} \operatorname{arctg} \sqrt{\frac{K-1}{K+1}} (M_3^2 - 1) - \operatorname{arctg} \sqrt{M_3^2 - 1} \right] - \left[\sqrt{\frac{K+1}{K-1}} \operatorname{arctg} \sqrt{\frac{K-1}{K+1}} (M_1^2 - 1) - \operatorname{arctg} \sqrt{M_1^2 - 1} \right]$$
(19)

$$\frac{p_3}{p_j} = \left[\left(\frac{K-1}{2} M_1^2 + 1 \right) / \left(\frac{K-1}{2} M_3^2 + 1 \right) \right]^{K/(K-1)}$$
(20)

上面,我们建立了(19)和(20)两个方程,它们当中含有 e, M_3 , p_3 3 个未知数,为了 解这些参数,必须满足介质中冲击波 参数的 基本关系式(1)~(4)(非相变情况),或 式(5)~(8)(相变情况),以及界面处的压力连续条件(18)式,这时 7 个方程式含有 7 个未知参数: e, M_3 , p_3 , q_m , φ_3 , ρ_m , p_m . 求得上述参数后, 由 $\frac{\rho_3}{\rho_j} = \left(\frac{p_3}{p_j}\right)^{\frac{1}{K}}$, $\frac{c_3}{c_j} = \left(\frac{p_3}{p_j}\right)^{\frac{K-1}{2K}}$, $\sin \mu_3 = \frac{1}{M_3}$, 可求得 ρ_3 , c_3 , μ_3 .

3 计算结果及讨论

(1)图 2 给出了 $\theta \sim \varphi_0$ 和 $e \sim \rho_0$ 关系曲线,对方程馆 $\theta = tg \varphi_0 / (Ktg^2 \varphi_0 + K + 1)$ 进行简单的数学运算可知, θ 存在极大值,并且此极大值与炸药的 K值成反比。从图中可以看出,当 $\varphi_0 = \varphi_{0,0}$ 时, e有一个突跃;当 $\varphi_0 = \varphi_{0,N}$ 时, $e \sim \varphi_0$ 曲线与 $\theta \sim \varphi_0$ 曲线相交,此时 $\theta = e$,无反射波产生,(2)区的压力与(1)区的压力相等,为 CJ 压力。在交点之后, $e > \theta$,发生普朗佗—迈益尔膨胀。

(2)当φ₀=φ₀。时,发生马赫反射,介质中的压力有一突跃。由于铁、铜等都是可 压缩介质,所以马赫杆与介质表面的夹角β不可能象冲击波作用在刚性壁上那样为90°,

13

否则马赫杆后的气流就不能向变形后的 壁 面 折 转,这样在变形后的壁面附近会出现真 空。β角的值在铁出现相变时不连续,而对于铜等不发生相变的介质,就不出现β值不 连续的情况,见图3.

(3) 对于Pentolite($\rho_0 = 1.682g/cm^3$),当 $\varphi_0 \leqslant 72.2^\circ$ 时,铁中压力 $p_m > 32.5$ 万巴, 此时铁中只有一个塑性冲击波;当 $72.2^\circ < \varphi_0 \leqslant 90^\circ$ 时,12.8万巴 $< p_m < 32.5$ 万巴,此 时铁中有两个塑性冲击波。对于TNT($\rho_0 = 1.64g/cm^3$),当 $60.9^\circ \leqslant \varphi_0 \leqslant 63.8^\circ$ 时, $p_m > 32.5$ 万巴,此时铁中只有一个塑性冲击波;当 $0^\circ < \varphi_0 < 60.9^\circ$ 和 $63.8^\circ < \varphi_0 \leqslant 90^\circ$ 时, 12.8万巴 $< p_m < 32.5$ 万巴,此时铁中出现塑性双波。对于RDX($\rho_0 = 1.59g/cm^3$),当 $\varphi_0 \leqslant 70^\circ$ 时,铁中只有一个塑性冲击波;当 $70^\circ \leqslant \varphi_0 \leqslant 90^\circ$ 时,铁中有两个塑性冲击波, 见图 4 和图 5.

(4)爆轰波与可压缩介质相互作用时,一般来说,随着入射角 φ_0 的变化,会出现正规 反射、马赫反射和普朗佗一迈益尔膨胀三种情况(见图4),但是,有些炸药的爆轰波冲 击某些介质时(RDX(ρ_0 =1.767g/cm³)/Fe, RDX/TNT(77/23)/Fe, Pentolite/Al, B炸 药/Al),在介质中只出现正规反射和普朗佗一迈益尔膨胀,而无马赫反射产生(见图7)。

P.(万巴) 45 40 35 30 25 TNT/Cu 20 B炸药/Cu 15 ዎ。(度) 10 40 50 60 70 80 90 10 20 30 .

参加本工作的还有刘利、盛洪江同志。

14

参考された 献に ひょうしょう しょう

[1] 北京工业学院八系《爆炸及其作用》编写组。爆炸及其作用。北京: 国防工业出版社, 1979

[2] Sternberg H M, elat. 斜爆轰波与铁的相互作用. J. Phys. Fluids, 1966, 9(7)

Initial Parameter Computation of Detonation Wave Oblique Reflection on a Compressible Metal Plate

Wang Chenghong (National University of Defence Technology)

Li Jian (China University of Science and Technology)

> Wang Congbin (Zhangzhou Public Security Burcau)

Abstract

Initial parameters of detonation wave oblique reflection on a compressible metal plate have been computed in this paper. When the computation is made, five kinds of explosives: $TNT(\rho_0: 1.64g/cm^3, 1.45g/cm^3)$, RDX $(\rho_0: 1.59g/cm^3, 1.76g/cm^3, 1.80g/cm^3)$, RDX/TNT(77/23) $(\rho_0: 1.75g/cm^3)$, Pentolite $(\rho_0: 1.65g/cm^3, 1.68g/cm^3)$ and B explosive, and three kinds of media; Fe, Cu and Al are selected.

Key words detonation wave, regular reflection, Mach reflection, Prandtl-Meyer rarefaction, initial parameter