国防科技大学学报

金属铝弹性常数从头计算的一种新方法*

章雅平 唐荣奇 赵伊君

(应用**物理系**)

摘 要 本文报导用原子簇模型计算金属铝的弹性常数。具有面心立方结构的 Al₁₃原子 簇在不同晶格常数下总能由多重散射 X。方法(MS-X。)算出。采用 Morse 势函数对原子簇 总能进行最小二乘法拟合,然后用拟合出的势参数算出金属铝的弹性常数。我们的计算结果 与其他理论计算值及实验值符合甚好。

关键词 原子簇, 弹性常数 分类号 0571.2

近年来,对原子簇的研究始终是一项挑战性的任务。这是因为一方面原子簇本身具 有许多奇异性质,存在着广泛的应用前景。另一方面把它作为模型可以解决固体物理中 的许多问题。对原子簇的研究大体沿着两个方向进行。其一是从实验和理论上研究原子 簇本身的特性,如幻数、奇偶性等^[1]。其二是把原子簇作为模型研究固体材料性质,包括 含杂质固体及固体表面性质^[2-8]。Messemer 和 Knudson 等^[2]从对 Cu、Ni、Pd 及 Pt 等过 渡金属和贵金属的研究中,发现随着原子数目的增加,原子簇的分子轨道逐渐趋于固体 的电子结构。由 13 个原子构成的 fcc 结构已能显示金属能带结构的主要特征。Yang 等 人^[3]用 X。散射波方法计算了 Fe_n(n=4,9,15)。结果表明具有 bcc 结构的 Fe₁₅,其态密度 已具备了金属铁态密度的主要特征。Lee 和 Callaway 等人^[5~7]用密度泛函理论对 Fe、Ni 和 Cu 的原子簇研究中,进一步确认了上述结论。理论计算出的 Cu₁₃和 Fe₁₅的态密度与相 应固体的态密度极为相似。原子簇的带宽和交换分裂值接近于能带计算结果。计算出的 Fe₁₅的 Fermi 能级两侧峰值结构也与能带论计算结果相当符合。作者最近用密度泛函理 论研究 Li₉和 Li₁₅中^[8]得到的结论是可以把 Li₁₅看作是固体锂的一个代表部分,在一个不 完备的基函数空间中,Li₁₅具有固体锂的多方面性质,包括反映固体力学性质的体积模 量。

上述研究表明,尽管原子簇与固体具有概念上的差异,但把它作为模型研究固体性

^{* 1991}年4月11日收稿

质确实是一个有力手段。本文的目的是要推广这一模型,用它来计算固体的弹性常数。就 作者所知,除了 Rao 等^[4]和本文作者^[8]用原子族模型计算过金属锂的体积模量外,尚未见 到国内外有人用此模型作过类似工作。我们希望从这项研究中得到一些有益的启示和一 些有意义的结果。

1 原理

13 个铝原子排成面心立方结构(fcc)。晶格常数记 为 $2a_0$. 图 1 示出了原子族 Al₁₃的几何结构。Al₁₃的总能 采用多重散射 X_s 方法($Ms - X_s$)计算。该方法的详细介 绍见文献^[9]。计算中使用的参数为: $\alpha = 0.72853$, Al 原 子的 $L_{max} = 2$, 外球 $L_{max} = 4$. 原子球半径由 Norman 规则 给出。

图 1 Al₁₃几何结构示意图

金属铝弹性常数的计算采用有心力近似。此时,弹性常数表示为[9]:

$$C_{11} = \frac{a_0^4}{4\Omega_0} \sum_{l_1 l_2 l_3} [l_1^4 D^2 V [(l_1^2 + l_2^2 + l_3^2)^{\frac{1}{2}} a_0]$$
(1)

$$C_{12} = \frac{a_0^4}{4\Omega_0} \sum_{l_1 l_2 l_3} l_1^2 l_2^2 D^2 V [(l_1^2 + l_2^2 + l_3^2)^{\frac{1}{2}} a_0]$$
(2)

由于 Cauchy 关系而有

$$C_{44} = C_{12} \tag{3}$$

式中 D 为算符

$$D = \frac{1}{r} \frac{d}{dr} \tag{4}$$

 Ω_0 为每原子体积。对于 fcc 结构, $\Omega_0 = 2a_0^3$. V 为任意一对原子间相互作用势。 l_1 , l_2 , l_3 为整数,并满足

$$l_1 + l_2 + l_3 = \textbf{(5)}$$

 Σ' 表示求和时扣除 $l_1 = l_2 = l_3 = 0$ 的项。

在有心力近似下,立方晶体的平衡条件为[9]

$$\sum_{l_1 l_2 l_3} \left(l_1^2 + l_2^2 + l_3^2 \right) DV \left[(l_1^2 + l_2^2 + l_3^2)^{\frac{1}{2}} a_0 \right] = 0$$
(6)

计算中原子间相互作用势用 Morse 势函数表述。其表达式为:

$$V(r) = D_{e} \left[e^{-2a(r-r_{0})} - 2e^{-a(r-r_{0})} \right]$$
(7)

式中, D_{e} , α 和 r_{0} 为三个待定参数。由于平衡条件(6),只有两个参数是独立的。势函数 与原子簇总能通过下面关系联系起来:

$$V(r) = E(r) - E_0 \tag{8}$$

式中, E(r)和 E₀分别为 Al₁₃在半晶格常数 r 和无穷时的总能。

2 结果与讨论

表1列出用多重散射 X。方法计算 Al₁₃原子簇总能随晶格常数变化的计算结 果。

由式(7)及(8),对总能进行最小二乘 法拟合,得拟合参数为 $D_c=0.7315$ eV, α =1.1603Å⁻¹及 $r_0=3.0785$ Å.

表 1 Alia总能随晶格常数变化关系

晶格常敷(A)	Al ₁₃ 总能(Ryd)
4.04	- 5931. 5947
4.13	- 5931. 9147
4.18	- 5932. 2371
4.39	- 5931. 8427
4.76	- 5931. 5664
6. 15	- 5930. 3091

本文得到的平衡晶格常数及结合能列于表 2. 为了比较,表中同时列出了其他理论值 及实验值。

· <u>····································</u>		
Ashcrott(质务)"		0.28
Ross(无相关 APW)。	4. 12	0. 30
Janak(有相关 APW)・	4.01	0. 282
Chelikowsky(重整化原子)d	4. 41	0.219
Lam(自治赝势)。	4. 01	0. 268
Bauschlicher(全电子 ECP) [/]	4.07	0.068
本文计算值	4.15	0.189
实验值"	4.02	0.25

表 2 铝的晶格常数及结合能

a~g 见参考文献[9].

从表 2 可以看出,本文计算的晶格常数比实验值偏大 3%,而结合能比实验值偏小 24%.用原子簇模型计算出的结合能偏小是由于表面效应。把表面能考虑进去,这个问题可以解决^[4,8]。

利用拟合出的势参数,由式(1)和(2)得到金属铝的弹性常数 C₁₁和 C₁₂.由于势参数 由一个原子簇得出,求和是在一个原子簇内进行。结果列于表 3 中。赵伊君和张志杰在 前几年从内聚能和体积模量的实验值出发,得到原子间相互作用势,并由此计算了金属 铝的弹性常数。表 3 中同时列出了他们的计算结果及实验值。

	C ₁₁	C ₁₂	C44	
计算值(1)*	8.74	6.44	6 • 44	
计算值(2)**	8.83	6.73	6 • 73	
实验值	10.8~11.2	6.13~6.60	2.79~2.85	

表 3 铝的弹性常数 (10¹¹dyn/cm²)

* 计算值(1)为赵伊君和张志杰的结果,见资料[9];**计算值(2)为本文结果。

实验值引自资料[9]。

从表 3 中看出,本文采用原子簇模型计算出的 C₁₁和 C₁₂与赵伊君和张志志计算的结 果及实验值均符合得相当好。

值得指出的是,一般说来,金属的弹性常数并不满足 Cauchy 关系。因此,采用 Morse 84

势函数之类的对势,即有心力近似,对 C44而言很不合适。进一步的研究必须抛弃这个近 似。

3 结 论

本文采用原子簇模型完成了从第一原理出发计算金属铝的弹性常数。本文 C₁₁和 C₁₂ 的理论值与其他理论计算值及实验值都符合很好。从力学性质的角度证明采用原子簇模 型研究固体性质的可行性。由于金属材料中 Cauchy 关系不成立,C₄₄的理论值与实验值相 比,误差太大,说明有心力近似的不合理性。

作者感谢张志杰、孙风国和袁建民同志在完成本计算中给予的帮助。

参考文献

1 王广厚等. 物理学进展, 1978, 7 (1)

Z Messmer R P, Knudson S K, et al. Phys Rav. 1976 : 1396

3 Yang C Y, Johaon K H, Salahub D R, Kaspor J and Messmer R P. Phys Rev B24, 1981: 5673

4 Rao B K, Jena P and Shillady D D Phts Rev. B30, 1984 : 7293

5 Lee K, Callauray J and Dhar S. Phys Rev, B30, 1984 : 1724

6 Lee, K, Callauray J, Kwlry K, Tang, and Ziegler A. Phys. Rev. B31, 1985: 1796

7 Blaha P and Callauray J. Phys Rev B33, 1986: 1706

8 Tany R. Phys Rev B43, 1991; 9255

9 章雅平. 国防科技大学应用物理系硕士论文

A New Method of ab Initio Calculation of Elastic Constant of Metal Aluminium

Zhang Yaping Tang Rongqi Zhao Yijun (Department of Applied Physics)

Abstract

We report in this paper the first principle calculation of elastic constants of metal aluminium using a model of cluster Al₁₃ with face—centered—cubic structure. Total energies of Al₁₃ are first calculated at various lattice spacings using the $M_s - X_a$ method, after that total energies are fitted using morse potential function, the porameters of which are finally used to calculate the elastic constants of aluminium. The results are: $C_{11}=8.83$ $\times 10^{11}$ dyn/cm² and $C_{12}=6.73 \times 10^{11}$ dyn/cm², which are in good agreement with ather theories and experiment.

Key words cluster, elastic constants