碳化钨及其混合物的冲击 Hugoniot 数据计算^{*}

王诚洪 邹 明

(国防科技大学应用物理系 长沙 410073)

摘 要 计算了多孔碳化钨(初始密度分别为密实碳化钨密度的 95%、85%、75%和 65%)在不完全压实状态和完全压实状态下的 *P*₁-*V*₁ 曲线和 *C*₂-*U*₁ 曲线以及碳化钨/碳、碳 化钨/碳化硅混合物(碳化钨含量分别为 3%, 5%, 10%)的 *P*₁-*V*₁ 曲线和 *C*₂-*U*₁ 曲线。

关键词 多孔材料;冲击压缩;完全压实;物态方程;混合物

分类号 TG113. 25

碳化钨作为一种硬质合金已应用在诸如地质勘探、矿山开采等需要硬度高、耐磨性 好的机械设备和反坦克武器中。随着高科技的迅速发展和人们对碳化钨性能的进一步认 识,它的应用范围也越来越广。除了作为硬质合金利用外,作为保护涂层材料它已用的 航天和其它领域中。目前研究人员发现^[1],在某些陶瓷(SiC)粉末中加入碳化钨粉末可 以改善材料的烧结性能,加快致密化速率,减少晶格缺陷和提高烧结体的强度和韧性。另 外,人们正试图在碳纤维复合材料中加入碳化钨粉末以改善其性能。

由于碳化钨及其复合材料的优越性能,特别是在高速冲击下显示出来的极大优势,所 以关于它们在冲击载荷作用下的特性研究成了人们关心的课题。本文的目的是计算多孔 碳化钨、碳化钨/碳和碳化钨/碳化硅混合物的冲击 Hugoniot 数据。

1 计算

1.1 多孔碳化钨

研究表明,根据冲击压缩程度的大小,多孔材料显现出不同的行为。当冲击压缩导致了多孔材料完全压实时,受压多孔材料是连续的,其冲击 Hugoniot 状态完全可以用密 实材料的热力学状态方程来描述,如果压实是不完全的,则受压多孔材料是不连续的,其 冲击 Hugoniot 状态要用本构方程来描述。

(1) 完全压实状态

采用 Mie-Gruneisen 物态方程:

$$\left(\frac{\partial P}{\partial E_v}\right) = \frac{r(V, E)}{V} \tag{1}$$

* 1993年10月12日收稿

式中
$$r(V, E) = \frac{a(a+2b\sqrt{2E})}{(2a+b\sqrt{2E})\sqrt{2E+(\frac{aV_0}{2r_0V})^2}}$$
(1')

$$C_s = a + bU_1 \tag{2}$$

式中, r_0 是密实材料在常态时的 Gruneisen 系数, $a \approx b$ 是实验测得的密实材料的 Hugoniot 关系中的系数,这里 C_1 是冲击波速度, U_1 是质点速度。假设密实材料在高压下具有 理想流体的性质,则有下列关系式成立:

$$P_{H}(V_{H}) = \frac{a^{2}(V_{0} - V_{H})}{[V_{0} - b(V_{0} - V_{H})]^{2}}, E_{H}(V_{H}) = \frac{a^{2}(V_{0} - V_{H})^{2}}{2[V_{0} - b(V_{0} - V_{H})]^{2}}$$

这里假设 $P_H >> P_0$ 和 $E_H >> E_0$ 。为了从(2) 式表示的参照密实材料的 Hugoniot 状态 外推到多孔材料的 Hugoniot 状态,积分方程(1) 得到

$$P_{por}(V) = P_H(V) + \frac{1}{V} \int_{EH}^{E_{por}} r(V, E) dE$$
(3)

式中 E_{por} (V) = $\frac{1}{2}P_{por}$ ($V_{00}-V$),这里 V_{00} 为多孔材料的初始比容。 把 (1') 代入 (3) 中,对 E 进行积分,得到

$$P_{por}(V) = P_{H}(V) + \frac{2a}{V} \sqrt{2E + t^{2}} \Big|_{E_{H}^{por}}^{S} - \frac{3a^{2}}{bV} \ln \left[\frac{1 + \frac{t}{\sqrt{2E}} - \sqrt{\frac{t^{2}}{2E} + 1}}{1 + \frac{t}{\sqrt{2E}} - \sqrt{\frac{t^{2}}{2E} + 1}} \right] \Big|_{S_{H}}^{S_{por}} + \frac{3a^{2}}{bV} \ln \left[\frac{\sqrt{1 + (\frac{bt}{2a})^{2}} - \frac{t}{\sqrt{2E}} + \sqrt{\frac{t^{2}}{2E} + 1} - \frac{bt}{2a}}{\sqrt{1 + (\frac{bt}{2a})^{2}} + \frac{t}{\sqrt{2E}} - \sqrt{\frac{t^{2}}{2E} + 1} - \frac{bt}{2a}} \right] \Big|_{S_{H}}^{S_{por}}$$
(4)

式中 $t = \frac{aV_0}{2r_0V}$. 这是一个隐式方程可用牛顿迭代法求解,这样,在已知密实材料的 a 和 b 及 r_0 的情况下,对于一个给定的初始比容 V_{00} ,方程 (4) 就给出了一条 $P_{por} \sim V$ 曲线。这就是多孔材料在完全压实状态下的冲击压缩线,在求得冲击压缩线后,利用质量和动量守恒关系式,可得到多孔材料中冲击波传播速度 C_3 和波后粒子速度 U_1 的关系曲线。

(2) 不完全压实状态

采用文献 [2] 中的本构方程

$$V(p) = V_{por}(P) \left[1 + \left(\frac{V_{00}}{V_0} - 1 \right) e^{-(5n-9.4)(P-\sigma_Y)} \right]$$
(5)

式中n是加工硬化指数, oy 是屈服强度, V_{por}是多孔材料完全压实后的比容。

计算的具体步骤为:给定一个比容 $V = V_{por}$,将其代入(4)式求得 P_{por} ,然后令(5)式中的 V_{por} (P) = V_{por} , $P = P_{por}$,这样由(5)式求得的 V (P_{por})就是多孔材料在不完全压实状态下的压缩曲线,对于不同的初始比容 V_{00} 有不同的压缩曲线与之相对应。

1. 2 碳化钨/碳化硅和碳化钨/碳混合物

对于所讨论的两组分混合物,作如下假设:

(*i*)两组分是处在相等的压力下;(*ii*)两组分具有相等的的质点速度。 在假设材料具有流体性质的情况下,利用上面假设,混合物守恒方程为

质量守恒:

$$\rho_{00AB}C_s = \rho_{1AB}(C_s - U_1) \tag{6}$$

动量守恒:

$$P_1 - P_0 = \rho_{00AB} C_s U_1 = \rho_{1AB} (C_s - U_1) U_1$$
(7)

能量守恒:

$$E_{1} - E_{0} = \frac{1}{2} (P_{1} + P_{0}) (V_{00AB} - V_{1AB})$$
(8)

式中, ρ_{00AB} 是混合物的初始密度, ρ_{1AB} 是冲击后的密度, E_0 和 E_1 分别为混合物的初态和 终态比内能, $V_{00AB} = \frac{1}{\rho_{00AB}}$, $V_{1AB} = \frac{1}{\rho_{1AB}}$,把两个分量的比内能分开,则方程(8)为

$$\Delta E_A + (1 - X)\Delta E_B = \frac{1}{2}P_1(V_{00AB} - V_{1AB})$$
 (9)

式中 X 是物质 A 的质量分数, E_A 和 E_B 是两上组分的比内能,这里假设初始压力为零, 如果把环境能量当作参考能量,则 Δ 可以从方程中去掉。

每种组分的能量和压力可以分为热和弹性(等熵)分量两部分,即

$$E_A = E_{TA} + E_{EA}, \quad E_B = E_{TB} + E_{EB}$$
 (10)

$$P_{A} = P_{TA} + P_{EA} = P_{B} = P_{TB} + P_{EB}$$
(11)

式中下标 T 和 E 分别表示热和弹性分量,方程 (11) 中的第二个等式是由于压力相等的 假设而成立的,利用 Gruneisen 参数的定度 $r \equiv V$ ($\partial P / \partial E$)。和每个组分的 $\frac{r}{V}$ 为常数的假 设,两组分的热压可以用热能表示为

$$dP_{TA} = \frac{r_A dE_{TA}}{V_A} \approx \frac{r_{OA} dE_{TA}}{V_{OA}} \Rightarrow \rho_{TA} = \frac{r_{OA} E_{TA}}{V_{OA}}$$
$$dP_{TB} = \frac{r_B dE_{TB}}{V_B} = \frac{r_{OB} dE_{TB}}{V_{OB}} \Rightarrow \rho_{TB} = \frac{r_{OB} E_{TB}}{V_{OB}}$$
(12)

把方程(10)~(12)代入方程(9)得到

$$P_{1} = \frac{\sigma_{A}P_{EA} + \sigma_{B}P_{EB} - \frac{XE_{EA}}{V_{OA}V_{OB}} - \frac{(1-X)E_{EB}}{V_{OA}V_{OB}}}{\sigma_{A} + \sigma_{B} - \frac{1}{2}(\varphi - \eta_{A}\lambda_{A} - \eta_{B}\lambda_{B})}$$
(13)

式中 $\sigma_A = \frac{X}{r_{OA}V_{OB}}, \ \sigma_B = \frac{(1-X)}{r_{OB}V_{OA}}, \ \varphi = \frac{V_{OOAB}}{V_{OA}V_{OB}}, \ \eta_A = \frac{X}{V_{OB}}, \ \eta_B = \frac{(1-X)}{V_{OA}}, \ \lambda_A = \frac{V_{1A}}{V_{0A}}, \ \lambda_B = \frac{V_{1B}}{V_{0B}}$ 这里 V_{1A} 和 V_{1B} 分别为受冲击过的组分 A 和 B 的比容。

参照文献 [3], 弹性压力 P_{ε} 的表示式采用 Murnaghan 物态方程

$$P_{E} = \frac{\beta_{os}}{\beta_{os}} [(\frac{V_{0}}{V_{1}})^{\dot{\beta}_{os}} - 1]$$
(14)

式中 β_{os} 是标准条件下的等熵体积模量, β_{os} 是 β_{os} 在恒熵时对压力的一阶导数。对方程 117 (14) 积分,得到弹性能 E_{E}

$$E_{E} = -\int_{V_{OK}}^{V} P_{E} \mathrm{d}V \tag{15}$$

考虑有一飞片对材料进行冲击压缩(飞片自左向右飞行),则有

$$P_{1} = \rho_{m} [a' + b' (V_{d} - V_{1})] [U_{d} - U_{1}]$$
(16)

式中 ρ_m 是飞片密度, U_a 是飞片速度, a'和 b' 是飞片的实验 Hugoniot 关系 $C_s = a' + b'U_1$ 中系数。

考虑到方程 (14) 和 (15),可知方程 (13) 给出的压力是用两个比容 V₁A和 V₁B表示 的,即

$$P_1 = P_1(V_{1A}, V_{1B}) \tag{17}$$

换句话说,方程(13)给出的是一个 Hugoniot 曲面,这个曲面依赖于两个组分的各自比容,而不是简单地依赖于混合物总的受冲击过的比容。这样,由方程(1),(2),(16)和(17)所构成的方程组中含有 *P*₁,*U*₁,*C*_s,*V*_{1A}和 *V*_{BA}五个未知数。为了求解这个方程组,必须测量一个冲击波参数,一般是测量冲击波速度,因为冲击波速度易于测量。一旦冲击波速度测定后,就可确定其它四个未知参数,并利用方程(11),(12)和(14)确定两组分的热能,因而也就确定了它们的温度。

这里,我们采用另外的方法,即平均特性法来处理问题。按照平均特性法,混合物 被当成单一组分的物质来对待,相应的初始参数计算公式如下:

$$V_{OAB} = \sum_{r} X_{r} V_{or}$$
(18)

$$(V/r)_{OAB} = \sum_{r} X_{r} (V/r)_{or}$$
(19)

$$\beta_{OSAB} = V_{OAB} \left(\sum_{i} \frac{X_{i} V_{oi}}{\beta_{oin}}\right)^{-1}$$
(20)

$$\beta_{OSAB} = \left[\frac{\beta_{OSAB}^2}{V_{OAB}} \sum_{r} X_r V_{\sigma} \left(\frac{1+\beta_{\sigma s}}{\beta_{\sigma s}^2}\right)\right] - 1$$
(21)

式中下标 *i* 代表第 *i* 种组分的状态参量,下标 AB 代表合成后的状态参量,X 是质量分数, 这时方程(13)简化为

$$P_{1} = (E_{E_{1}} - \frac{V_{0}}{r_{0}}P_{E_{1}}) / [\frac{1}{2}(V_{00} - V_{1}) - \frac{V_{0}}{r_{0}}]$$
(22)

 $\vec{\mathfrak{X}} \stackrel{\text{\tiny}}{=} P_{E_1} = \frac{\beta_{OS}}{\beta_{OS}} \left[\left(\frac{V_0}{V_1} \right) \beta_{OS} - 1 \right]$ $E_{E_1} = \frac{\beta_{OS}}{\beta_{OS}} \{ V_1 - V_{00} + \frac{1}{1 - \beta_{OS}} \left[\left(\frac{V_0}{V_{00}} \right)^{\beta_{OS}} V_{00} - \left(\frac{V_0}{V_1} \right)^{\beta_{OS}} V_1 \right] \}$

这样用方程(18)~(21)确定混合物的初始参数,然后在给定飞片速度的条件下,由 方程(1),(2),(16)和(22)联立求解冲击波参数。

多孔度为1.2,碳化钨所占的质量百分比分别为

3%,5%,10%,对应图中从右至左三条曲线

图 1 多孔碳化钨冲击压缩 P₁-V₁ 曲线
多孔碳化钨的密度分别为密实碳化钨初始密度的 95%
85%, 75%和 65%, 对应图中从左至右四条曲线

图 3 密实碳化钨/碳冲击压缩 P₁-V₁曲线 碳化钨所占的质量百分比分别为 3%, 5%, 10%, 对应图中从右至左三条曲线

3%,5%,10%,图中三条曲线基本上重合在一起

图 6 多九碳化钨/碳仲田压缩 G, - 01 曲线 多孔度为 1. 2,碳化钨所占的质量百分比分别为 3%,5%,10%,图中三条曲线基本上重合在一起

2 结果和讨论

计算结果是以曲线的形式表示出来,计算中所用多孔碳化钨的密度分别为密实碳化 钨密度的 95%,85%,75%,密实碳化钨的参数为: ρ_0 =15.02g/cc,a=4.92km/s,b= 1.339, r_0 =1.50,n=2.15, σ_y =0.4GP. 图 1 是多孔碳化钨在完全压实范围和不完全实 范围的 P_1 - V_1 曲线,从图中可看出,冲击波压力约为 7GP $_a$ 时,多孔碳化钨才完全压实。

对于碳化钨的混合物,碳化钨所占的质量百分比分别为 3%, 5%, 10%,碳的参数 为: $\rho_0 = 1.76$ g/cc,a = 0.24km/s,b = 2.38, $r_0 = 1.10$;碳化硅的参数为: $\rho_0 = 3.12$ g/cc,a = 8.00km/s,b = 0.95, $r_0 = 1.25$;飞片的参数为 $\rho_0 = 7.90$ g/cc,a = 4.57km/s,b = 1.49。计算中 β_{on} 和 β_{on} 近似地用密实材料的实验 Hugoniot 关系 $C_s = a_s + b_s U_1$ 的系数表示: $\beta_{on} = \rho_{on}a_s^2$, $\beta_{on} = 4b_s - 1$ 。这里 β_{on} 的表示式是根据弱击波近似导出的。从方程 (22)的 推导过程可知,此方程既适用于密实混合物,也适用于多孔混合物和单一组分的物质 (这是两组分混合物的退化情况)。为了求得多孔混合物的冲击 Hugoniot 数据,除了用方程 (22) 外,还可以利用求多孔碳化钨冲击 Hugoniot 数据的方法来实现。由于在计算中采用了 Mie Gruneisen 物态方程,这就暗示了冲击压缩导致了多孔混合物的完全压实,所 以,这里没有涉及多孔混合物的不完全压实状态。另外,我们设想,利用平均特性法,先求出冲击波速度 C_s ,这样由方程 (1),(2),(13)和 (16)所构成的方程组中只含有 P_1 , U_1 , V_{14} , V_{16} 四个未知数,从而方程组是封闭的,于是可求解。

1 张丙荣,尹维英等.材料工程,1991,(5)

2 Ki-Hwan oh, Per-Anders Persson, J. Appl. phys. 1989, 66: 4736

3 Barry R Krueger, Thad Vreeland. Jr, Appl. phys. 1991, 69: 710

The Calculation of Shock Hugoniot Data of Tungsten Carbide And its Mixture

Wang Chenghong Zou Ming

(The Department of Applied Physics, NUDT, Changsha, 410073)

Abstract

The Hugoniots of porous tungsten carbide (their initial density is respectively 95%, 85%, 75%, and 65% of that of the solid tungsten carbide) in incompletely and completely densified regimes are calculated. We also obtained the calculated Hugoniout of carbon and silicon carbide infiltrated with 3, 5, 10wt% tungsten carbide respectively.

Key words porous material; shock compression; completely densified; equation of state; mixture