### 八毫米低副瓣卡氏天线的优化设计:

綦凌飞 姚德森 毛均杰 (国防科技大学电子技术系 长沙 410073)

摘 要 为了解决副面遮挡导致小口径卡氏天线(D=293mm)副瓣电平恶化这一难题, 本文提出了一种优化赋形方法。采用优化口径场分布,对主、副面形状进行赋形设计。用该 法设计了一种八毫米低副瓣卡氏天线(sll₁≤-25dB),实验结果与理论计算十分吻合。

关键词 低副瓣;卡氏天线;赋形;优化

**分类号** TN820

本文讨论八毫米天线及馈电系统的优化设计,系统指标要求为:中心频率 35.2GHz,副瓣电平 sll1 ≤-25dB,驻波<1.3,天线口径 D≤300mm,方向图轴对称,双极化工作。基于这些要求,采用了卡 氏天线。对于本文中的小口径天线,采用标准的卡氏天线难以实现 sll1≤-25dB 的低副瓣要求,因为副 面的遮挡严重。为此,必须进行优化赋形设计。

3)

 $l_{e} = \frac{F_{e}}{1} \frac{e-1}{1}$ 

### 1 标准卡氏天线

#### 1.1 标准卡氏天线的设计公式

标准卡氏天线的几何关系如图1所示。考虑最佳遮挡,在 已知焦距 F,主面直径 D,馈源直径 d',馈源张角 Q,的条件下, 其设计公式为:

$$Q_m = 2tg^{-1} \frac{D}{4F}$$
(1)

$$d = \sqrt{\frac{2d'F}{\operatorname{ctg}Q_{\star} + \operatorname{ctg}Q_{m}}} \tag{2}$$

$$F_c = \frac{a}{2} (\operatorname{ctg} Q_c + \operatorname{ctg} Q_m) \tag{1}$$

$$e = \frac{\sin \frac{1}{2}(Q_{n} + Q_{m})}{\sin \frac{1}{2}(Q_{m} - Q_{n})}$$
(4)



$$L_v = \frac{F_c}{2} \frac{e+1}{e}$$
(6)

$$L_a = F - F_c \tag{7}$$

\* 1993年11月1日收稿

34

#### 1.2 标准卡氏天线的结果分析

基于天线的对称性,我们采用圆锥多模喇叭作馈源,喇叭内径为 27mm,外径为 28mm,口径面上 三个模 H11、H12、E11,模比为 E11/H11=0.4867e<sup>136.5</sup>,H12/H11=0.4439e<sup>190</sup>。根据模比计算出远区 E、 H 面方向图, 取两个面的平均值作为馈源方向图。

在已知馈源的条件下,要降低副瓣电平,则主面口径边缘电平应尽量低。这要求馈源的照射角Q, 要大, F和 D 不变。由式(2)可知, 副面直径 d 增大, 而 d 值增大使遮挡的影响增大, 从而导致副瓣电 平提高。若要减小遮挡的影响,则 d 值尽可能小, d 值减小将要求馈源照射角 Q, 小, 从而导致主面口 径边缘电平提高,天线的副瓣电平提高。可见,主面口径边缘电平与副面的遮挡是互为矛盾的。

考虑主面口径边缘电平和副面的遮挡,根据馈源方向图,我们选取F=92.8mm,D=293mm,Q.= 26°, d'=27mm, 副面边缘照射电平为-17.3dB。由式(1)~(7)设计出标准卡氏天线, 其几何尺寸为: D = 293 mm, F = 92. 8mm,  $Q_m = 77$ . 9°, d = 49. 4mm,  $L_a = 36$ . 8mm,  $F_c = 55$ . 96mm,  $l_v = 43$ . 53mm,  $l_c = 12$ . 44mm, Q,=26°. 此标准卡氏天线的副瓣电平理论计算值为-21.6dB.

根据上面计算的参数,加工了一标准卡氏天线。经实测,副瓣电平为一20.9dB。可见理论计算与实 测结果还是比较吻合的。它们之间的差主要是计算误差、机械加工、馈源方向图的近似取值造成的。对 此标准卡氏天线进行驻波测试发现:未加天线时馈电系统的驻波小于1.2,加上天线后驻波上升到1.5 ~1.6。这是由于从副面反射的功率将有部分进入馈源,从而使馈电系统的驻波比增加。为了降低驻波, 在副面顶点加上一锥形吸收材料,驻波降到了1.3以下,然而副瓣电平却提高了许多。为了同时解决副 瓣电平和驻波这两个问题,必须采用优化赋形设计。

#### 赋形卡氏天线 2

#### 2.1 主面口径场的确定

对于一般的圆对称场,其场可表示为

$$f_{*}(R) = \sum_{\rho=1}^{N} a_{\rho} \left[ 1 - \left( \frac{2R}{D} \right)^{2} \right]^{\rho-1}$$
(8)

此圆对称场分布的辐射场为

$$f(\theta) = \frac{1 + \cos\theta}{2} \sum_{p=1}^{N} a_p \frac{\Lambda_p(u)}{p}$$
(9)

式中

$$u = \frac{\pi D}{\lambda} \sin\theta \tag{10a}$$

$$\Lambda_{\mu}(u) = \frac{2^{\mu} p! J_{\mu}(u)}{u^{\nu}} \tag{10b}$$

不同的 a<sub>p</sub>(p=1,2,...,N)值对应不同的副瓣电平,式(9)没有考虑副面遮挡的影响。若考虑副面遮 挡的影响,且近似认为被遮挡部分的口径场为均匀分布,其辐射场为

$$f(\theta) = \frac{1 + \cos\theta}{2} \sum_{p=1}^{N} a_p \left[ b_p \frac{J_p(u)}{u^p} - \frac{2d^2}{D^2} \frac{J_1(u')}{u'} \right]$$
(11)

式中

$$u' = \frac{\pi d}{\lambda} \sin\theta \tag{12a}$$

$$b_p = \frac{2^p p!}{p} \tag{12b}$$

设第一副瓣电平的位置为 
$$\theta_n$$
,第二副瓣电平的位置为  $\theta_n$ ,其副瓣位置  $\theta_i$ (*i*=1,2)满足  
 $f(\theta_i) = 0$  *i*=1,2

对式(11)求导

35

(13)

$$f(\theta) = -\frac{\sin\theta}{2} \sum_{p=1}^{N} a_{p} \left[ b_{p} \frac{J_{p}(u)}{u^{p}} - \frac{2d^{2}}{D^{2}} \frac{J_{1}(u')}{u'} \right] + \frac{1 + \cos\theta}{2}$$
  

$$\cdot \sum_{p=1}^{N} a_{p} \left[ \frac{kD}{2} b_{p} \cos\theta \left( \frac{J_{p+1}(u)}{u_{p}} - \frac{2pJ_{p}(u)}{u^{p+1}} \right) - \frac{kd^{3}}{D^{2}} \cos\theta \left( \frac{J_{0}(u')}{u'} - \frac{2J_{1}(u')}{u'^{2}} \right) \right]$$
(14)

副瓣电平为

$$sll_{i} = \frac{f(\theta_{li})}{f(\theta_{max})} \quad (i = 1, 2)$$
(15)

以  $sll_1$  为目标函数,  $sll_2 > sll_2$  为条件,进行优化设计。取 N = 7,用 Powell 优化方法,优化计算出一组 满足副瓣电平的  $a_p(p=1,2,\dots,T)$ 值:

$$a_1 = 0.5012, a_2 = 1.4401, a_3 = 1.4501, a_4 = 1.4005,$$
  
 $a_5 = 0.704, a_6 = 0.439, a_7 = 0.8062.$ 

#### 2.2 赋形的依据

主、副面赋形的坐标如图 2 所示,赋形后的主、副反射面应满足下列 三个条件。

(1) 功率守恒条件

根据几何光学原理,投射到副面和主面的每一小射束的功率,在反射前后保持不变。设轴对称馈源功率方向图为  $f_{\rho}^{*}(\theta_{2})$ ,主面口径的功率分布 函数为  $f_{\ell}^{*}(R)$ 。为使副面反射的几何射线不进入馈电喇叭,则从副面顶点

反射的射线应从喇叭外边缘经过,且投射到主面后应有 $R = \frac{d}{2}$ 。从而馈源 在角 $d\theta_2$ 内的功率与投射到副面的总功率之比,应等于对应口径上dR内 的功率与口径总功率之比,即

$$\frac{f_p^2(\theta_2)\sin\theta_2d\theta_2}{\int_{\theta_2}^{\theta}f_p^2(\theta_2)\sin\theta_2d\theta_2} = \frac{f_1^2(R)RdR}{\int_{d/2}^{D/2}f_1^2(R)RdR}$$
(16)

(2) 反射条件

主面反射射线应与 = 轴平行,即

$$\frac{\mathrm{d}z}{\mathrm{d}R} = -\mathrm{tg}\,\frac{\theta_1}{2}$$

副面和主面的形状应使各点射线的入射角等于反射角,则副面在(r2,θ2)点应满足

$$\frac{\mathrm{d}r_2}{r_2\mathrm{d}\theta_2} = \mathrm{tg}\,\frac{\theta_1+\theta_2}{2} \tag{18}$$

(3) 光程条件

为使主面口径场同相分布,必须使从馈源相位中心到主面口径面上的任一射线的光程相等。通常馈 源只有近似的相位中心。因此还要把馈源的相位方向图 ø(θ<sub>2</sub>)计算在内,即

$$\frac{\lambda}{2\pi}\phi(\theta_2) + r_2 + \frac{R - r_2 \sin\theta_2}{\sin\theta_2} + Z = K$$
(19)

以副面顶点射线为基准,有K=FA+FB+BC,K为常数。

### 2.3 主、副面赋形的计算公式

由上述三个条件,可导出主、副面赋形曲线的具体计算公式,以θ2为自变量,有

$$\frac{\mathrm{d}R}{\mathrm{d}\theta_2} = \frac{f_\rho^2(\theta_2)\mathrm{sin}\theta_2}{f_r^2(R)R} \cdot \frac{\int_{d'_2}^{\theta_2} f_r^2(R)R\mathrm{d}R}{\int_0^{\theta_1} f_\rho^2(\theta_2)\mathrm{sin}\theta_2\mathrm{d}\theta_2}$$
(20a)

36



(17)

$$\frac{\mathrm{d}r_2}{\mathrm{d}\theta_2} = r_2 \mathrm{tg} \, \frac{\theta_1 + \theta_2}{2} \tag{20b}$$

$$\frac{\mathrm{d}z}{\mathrm{d}\theta_2} = \frac{\mathrm{d}R}{\mathrm{d}\theta_2} \mathrm{tg} \frac{\theta_1}{2} \tag{20c}$$

$$\frac{\lambda}{2\pi}\phi(\theta_2) + r_2 + \frac{R - r_2 \sin\theta_2}{\sin\theta_2} + Z = K$$
(20d)

上式的四个方程中,有 $\theta_2$ 、R、 $r_2$ 、Z、 $\theta_1$  五个未知量,因此方程有无限多组解。为了确定唯一解, 应代入边界条件。以副面顶点射线为边界条件,有 $\theta_2=0$ , R=d/2,  $r_2=l_u$ , Z=BC。

#### 2.4 赋形卡氏天线的计算

卡氏天线的赋形是以标准卡氏天线为原形,第二节设计的标准卡氏天线由于副面遮挡太大,使得副 瓣很高。考虑副面遮挡的影响,最后我们选择了如下标准卡氏天线的结构尺寸:

 $D = 293 \text{mm}, F = 92.8 \text{mm}, Q_m = 76.57^\circ,$ 

d = 37.78 mm,  $l_a = 26.49$  mm,  $l_r = 10.554$  mm,

 $l_v = 55.75 \text{mm}$ ,  $l_c = 61.8 \text{mm}$ ,  $Q_s = 17^\circ$ 

以标准卡氏天线为原形,解微分方程组(20)。从副面顶点反射出的射线经馈电喇叭外边缘投射到主面,经主面反射投射到主口径面,以此路径的射线为边界条件和等光程条件的基准,即 $\theta_2=0, r_2=55$ . 75, R=18.89, Z=50.815, K=184.14。边界条件的确定及K已知,则式(20)方程组有唯一解,计算出的主、副面的赋形坐标是些离散点。为了计算方向图的方便,对赋形的坐标点进行曲线拟合。为了提高拟合精度,主、副面均采用10段3次样条函数<sup>[2]</sup>,拟合精度达到10<sup>-3</sup>量级。拟合曲线如图3所示,F点为馈源相位中心点。由于主、副面均采用10段3次样条函数进行拟合,而每一段所包含的离散点数是不同的,这给计算带来很大的困难。如果选择不当就会出现一些反相点口径场分布。因此,要优化每一段的点数,使口径场同相,且幅度分布接近本节第一小节所确定的口径场分布。经过优化计算最后得到图3所示的主、副面曲线。

#### 2.5 方向图的计算

采用射线跟踪法理论计算方向图<sup>[2]</sup>,计算结果如图 4 所示。从方向图上可以得到  $sll_1 = -26.919$ dB,  $sll_2 = -26.975$ dB。





# 图 3 主、副面拟合曲线

# 3 实验结果

用上面计算的主、副面赋形曲线加工出赋形卡氏天线。实验测得中心频率 f=35.2GHz 的方向图如

37

图 5 所示。

实验测得的 *sll*,与理论计算的 *sll*,高 2dB 左右。这 是因为:(1)理论计算时,副面在馈源的远区,即用的 是馈源远区方向图,而实际副面在馈源的中间区;(2) 馈源的相位中心难以确定。尽管对馈源的位置进行了 调整,也难以使馈源相位中心与焦点 *F* 重合;(3)馈源 照射角小(Q,=17°),使副面边缘照射电平较大(-7. 7dB),副面边缘的绕射影响远区方向图;(4)加工、安 装误差。



把赋形卡氏天线与馈电系统组合成天馈系统,测 图 5 实验测量的方向图 得其驻波小于 1.3,比馈电系统的驻波稍大。这是由于:(1)赋形计算时是利用几何光学原理,使几何 射线不进入馈源;(2)副面边缘的绕射射线有部分要进入馈源。

### 参考文献

- 1 刘克成,宋学诚.天线原理.长沙:国防科技大学出版社,1989
- 2 朱伯承.小口径毫米波跟踪天线:[学位论文].长沙:国防科技大学电子技术系,1993

3 刘德贵.FORTRAN 算法汇编(1,2).北京:国防工业出版社,1984

# The Optimum Design of 8mm lower Sidelobe Cassegrain Antenna

Qi Lingfei You Demiao Mao Junjie (Department of Electronic Technology)

#### Abstract

Subreflector blockage causes the side lobe level of litlle aperture cassegrain antenna to rise. In order to solve the problem, an optimization-correction method is presented. The method optimizes aperture distribution and corrects the shapes of dual reflector. A 8mm lower sidelobe cassegrain antenna is designed. The experimental result is in agreement with the theory computation.

Key words lower sidelobe; Cassegrain antenna; correction; optimizatoin

38