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Abstract

This paper discusses an extremely rapid algorithm for lincar programming which is
based upon the direct approach to the saddle point of the Lagrangean. The algorithm appears
particularly well suited for problems of high dimensions and with a significant numbers of
non zero elements.
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Preface

The author of the paper discovered a new saddlepoint method for solving a special
control problem in 1980. Based on this idea, in 1985, the author developed a new method
which could solve large scale LP problems. The new method was entitled; “The LP Sad-
dlepoint Algorithm for LP” and was presented at the “ORSA/TIMS-St. Louis National
Meeting ” that same year. In August 1988, the author presented another paper entitled;
“A New Algorithm for LP Based on Direct Saddle point Convergence”at the “13th Inter-
national Symposium on Mathematical Programming”in Tokyo,Japan. In 1990,the author
and his assistants developed the algorithm computer software and established the first
LP Saddle Point Algorithm Research Center in China. In 1991, the software was applied
to production management problems in large scale iron and steel plants and oil refiner-
ies, which brought about several millions of dollars in profits. The software can solve LP
problems of over 10,000 dimensions on a 486 CPU computer.

This paper discusses: (1) saddle point sufficient and necessary conditions for LP
problems; (2) the iterative formula; (3) convergence of the algorithm; and (4) computa-
tional results.

In the January, 1994 this paper had been exchanged with the following USA univer-
sity: Washington University in ST. Louis, Professor Ervin Y. Rodin, Chung-Lun Li,
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Hiroaki Mukai; University of Maine, Professor George Markowsky; George Washington
University, Professor Donald Gress, James Talk, Anthony Fiacco; Southern Illinois U
niversity, Professor M. D. Troutt.

The author gives special thanks to Dr. George Markowsky of the Department of
Computer Science at the University of Maine and Dr. Marvin D. Troutt of the College of
Business Administration at Southern Illinois University at Carbondale for their support

and assistance.

1 Saddle Point Sufficient and Necessary Conditions for LP
Problems

Consider the general LP problems in the form.

(P) max X s.t. AX+6>=0, X>=0 1)
with dual
(D) min bTA s.t. ATA+¢<0, A=0 @

and Lagrangean
Z(X,A) =X + AT(AX + b) X>=0, Az=0 (3)
Definition. A point (X, A") with X" >0, A" >0 is said to be a saddle point for
Z(X,2) if it satisfies:

ZX*, A" = Z(X, A") forall X=0 (4

Z(X*,A") << Z(X", A forall A=0 (5)
Theorem 1. Let X*>=0and A" >=0. If (X", A") is a saddle point for Z(X,4) then
(a) AX*+6=0 (6)
(b)Y A" +¢<0 D)
() X'T(A"A" +¢)=0 1¢))
d) A*T(AX*+5)=0 ®

Proof. (1) By formula (5),(3),
TX + A TAX + ) <X +A(AX* + b)) forall Az=Z0 QO
or
QAT —-—MHiAaX +0H <o forall Az=0 AD
If AX" +6<70,A may be chosen sufficiently large so that (11) is violated. Thus (a) must
hold.

(2) By formula (4),(3),
X FATAX )2 TX+A2T(AX + b)) forall X =0 az)
or
(X*T—XDA™A +a)=0 forall X>=0 (13
If A"A* 4+¢>0, X may be chosen sufficiently large so that (13) is violated. Thus (b)
must hold.

(3) If X=0, (13) yields
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X *T(ATA" +c) =0 (14)
But X" 220 and (ATA" +¢)<<0 imply
X*T(ATA" +0)<0 (15)
Thus (c) must hold.

(4) If A=0, (11) yields

ATAX+5)<0 (16)
But A* >0 and (AX* 4+5)20 imply
AT(AX +86)=0 an

Thus (d) must hold.
Theorem 2. Let X* >0 and A*>0. Then (X~ , A") is a saddle point for Z(X,A) if
(a), (b), (c¢), and (d) hold.

Proof. By (¢),
Z(X*,A")=A"Tp (18)
By Definition,
Z(X,A")=2Tb+X"(ATA* +¢) 19
Since (ATA* +¢)={0 then
Z(X,A)ATh=2(X",2") for all X=0 (20)
By (d),
Z(X",A)="X" 21)
By Definition,
Z(X",=c"X"+2(AX" +b) (22)
Since (AX " +5)2=0 then
Z(X",A=2TX=2Z(X",A") forall 2=0 (23

Thus the (X*,4") must be a saddle point.
Theorem 3. If (X°,A") is a saddle point for Z(X,A), then X" solves the primal
problem (P), A" solves the dual problem (D).
Proof, Since (X*°,1") is a saddle point the conditions of Theorem 1 must hold.
By definition of the saddle point

TXFA AX "+ =2 X+2T(AX+b) forall X>0 (24)
By (d) in Theorem 1,
TX Z=TX+A(AX+84) forall X=0 (25)

If X is a feasible solution for the problem (P), it satisfies the constraints of (), so

that
AX+520, A*T(AX+5)=0 then

"X =c"X, X is a feasible solution of (P), X" solves the primal problem (P).
By definition,
bTAT+X"T(ATA +0)<b"A+X"T(A"A+¢) forall A=0 (26)
By (c¢) in Theorem 1,
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BTAT <BTAHX"T(ATA+¢) for all A=0 QN

If A is a feasible solution for the problem (D), it satisfies the constraints of (D), so

that
ATA+c<<0, X T(ATA+c)<0 then
bTA* <{b"A, Ais a feasible solution of (D), A" solves the dual problem (D).
Theorem 4. If (X" ,A") is a saddle point for Z(X,A) then Z(X*,A*)=c"X"=56"4".
Proof. By definition.
Z(X" 3 =TX"+A2T(AX " +b)
Z(X AT ) =6"A + X T(ATA" o)
By (¢) and (d) in Theorem 1
Z(X* A =TX=p"2" (28)
We consider the following LP problems in the standard form:
P max ¢ X s.t. AX+b6=0, X=0 29)
with dual
(DY min & A s.t. ATA+c¢<<0, A unrestricted (30)
and Lagrangean
Z'(X,A) =X + A7T(AX + b) X = 0, A unrestricted

Theorem 5. Let X" >=0, A" Cunrestricted). If (X*,A") is a saddle point of
Z'(X,A), if and only if

(@) AX*+b=0 3D
(b)) ATA* +<0 (32>
) X"TATA +c)=0 (33)

X* solves the problem (P'), A® solves the problem (D). The proof of Theorem 5 is

omitted.

2 Application of the Principle to the LP Lagrangean

Consider the general LP problem in the form:
max ¢’X s.t. AX+b6=0 XZ>=0 39
with dual
min 574 s.t. ATA+ <0, A unrestricted 40
where A is a matrix of order m Xn,
and Lagrangean
Z(X,AD =X +AT(AX + b)
Setting : XW=0) s %@y =5 X5 0y X))
Xi@)=Qan @)y X02() s ooy Xn @)y =y X1 CE))
AD=A W@ AU, =y AQ), -5 4,0
L@ =QRu @) A (@) o5 A(e)s s A (2))
Consider the iterative process given as follows where positive scalars o, and p; are to be
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specified later;

@) = A@) — p,(AX (@) + &)
X)) = X@) + p,(ATAQ) + ©)

<Xz,(t) =0, if %,() <0 G =1,2,",n) b
At + 1) = A@) — p,(AX; () + &)
X+ 1)=X@) + p,(ATA, () + ¢
¢+ 1 =0, ifx,¢)=0 G =1,2,,n)

It is noted that formula (41) can be replaced by formula (41'),

A(t) = A@) — p(AX () + b)
X, (1) = X&) + 0, (ATAW) + ¢)
1) = 0, if 1.8 <0

< 41")
A+ 1) = A@) — p, (AX, () + &)
XG4+ 1)=X@) 4+ p,(ATA @) + ¢)
Xe¢+ D=0, ifx,¢+1)<<0

Suppose the set in formula (42);
BO = m =00 (42)
C@) = {i|xu(t) = 0}
By (41) and (42),
A) = A@t) — p(AgX5(t) + b)
Xis(t) = X&) + p(ARAQ) + ¢p)
43)

A+ 1) = AQ) — p,(ApX;p(2) 4 b)
Xp(t 4+ 1) = Xp(t) 4 p,(AZA (£) + ¢5)
By (43),
ApXpG + 1) + b= U — p,p,AgA}) (AsX(t) + b) + p,As(AFAG) + c3)
{AEA(t + 1)+ = U — p,p,ALAR) (ASAG) + c5) — P, AT(AsXp () + &)

44
Define “error” vectors R(z) and 7(z).
ApXp() + b
RG) = (45)
A-,’;A(t) + ¢g
AL (AgXs() + b) AT 0
v(t) = = R() (46)
Ap  (AFAG) + ¢p) 0 Ag
By (44),
1 — ApAL A
R(ﬁ+l)=M1'R(t),M1=[ plpz: B £ BT
— 0, As I — pp,ApAyg
(47)

Suppose g,(i=1,",k), < m are the characteristic roots of matrices AzA% and ALAz.
Let m,, m, be the orthogonal matrices and
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£ . 0

G, 0 .
”]ABA;”’II- = [} G] - Ff (48)
0 0
0 &
2 . 0
G, 0 -
”zTAgAB"'z = ( ‘ ) , G, = £ (49
0 0
0 8

Theorem 6. For iteration formula (43),if a=max((1—p,p.g,)"+pig,) then ||Y &+

DI<Lall7 @) ||, where a is a scalar.
Proof. By (46) )

As o] {AZ 0

|l7(z+l)llz-——RT(z+l)[ ] ]R(rJrl) (50)
0 AL |0 Ay

By (47) and (50),

ApA} 0
¢ + DI = RT()MT r M,R(t)
ABAB
= RT() [I — PP AsAl — P As ] [ABAZ; 0 ]
' p2A% I — ppARAs] | 0 ATA,
I— ARAL A AgA% 0
{ 102 TB B P28 ]R(l) _ RT(Z)[ eV} ) ]
— P Ap 1 — p,p,AzAs 0 ApAs
d — ApAD)E + pRARAL 0
[ P10 A48 P:ApAp ] ) ]R(f.) (51)
0 (I — pp, ABAR)" + PiABAg
By (48) and (49),
G, 0
mn 0 ApAg 0 0 0
r T = . (52)
0 T, 0 ABAB 0 T, Gz
0 0
By (51) and (52).
G, 0)
T 0 0 T
17 + DIF = R7(t) [ . M L+ R (53)
0 m, G, 0 ;
0 0
Lo ol=eely o)+ ey :
0 0 p'pzoo) o o
M= 7 )
o ((12 0) (G, O’)L+ LG 0)
A 2
o 0 .lpzto ol | pZ(O o
(54)



Suppose a is the greatest characteristic root of matrix M.
a=max((1 — p0:8)°" + pig) (i =1,2,.k)
By (53), (54), and (55),

G, 0
0 0 Ed
Y@+ DIP<<aR"(2) R(®)
e vr<aro o0 [
0 0
AgAg 0
WY& 4+ D2 = R7 () { JR(;:)
AT A,
G, 0
0 0 T 0
=RT(t)| : R()
0 m, G, 0 a7
0 0

By (56) and (57),
7+ DI < all7@) |2

~Thus the theorem is proved.
k

2
\/7* Pz“kz+1px
/lgmax

gmax:max{g:)9 g,>0 then

Theorem 7. 1If p,=

u>1,

0<< (1 — ppg)’ + plg. <1 (1 =1,2,".k)
Proof. Suppose S=(1—p,p,g.)*+plg

d
(ﬁ = (0} — 2p,p,) + 20}pig,
. 2p, — & ds
1f = 5 = 09
ol 20%p; dg,
dZ
dgsz = 2p%0t >0
So that S has a minimal value Smin if g,=g" :Zﬁ;*_Pz.
2010,
B _k 2 k
ecause Pl—rv Pz—kz_+_1 ’
HE max HEmax
=2p1“p2=/‘gmax
20 p; 2
Smin=C0—p.p.g" V' +pig" =1~ v

so that  0<{Smin<1.
By (60).
S=1, ifg =0
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Szlv ifg.zpugmu

s
S(g,) is a quadratic curve as shown in Figure 1. 1
So that 0<<(1 —py0:2.)° +pig,<<1., if 0<g:<gmux- I
Theorem 8. If X,;(t)=X;, A(¢)=A" and |
r |
B 0 |
Y (@) = R
0 B Sauaf— — =—— — | I
. | |
_ Ag 0 ABXB + b -0 lﬂgm" g!n.x 14 8 max g
0 Asz) A% + s 2
then R* (¢) is a minimum variance. Figure 1
Proof. By (45) and the theorem condition,
dIR@|? T .
— o = X =
( dXB<t) XB(I)le; ZAB(AB B + b) O (63)
d|R@)|* _ Ty _
( D |y = PR+ =0 (64)
and
EIRWW 47
dXB(t)Z - 2ABAB (65)
dHR@®)|?
LIRDI — 24,43 (66)

Because the matrices A;Az and ApA% are the nonnegative definite and by (63), (64),
(65), and (66) [R(2)||* has a minimum if X5(¢)=X; and A&)=2". So that R(?) is a

minimum variance.

Theorem 9. For formula (43), if p1=——k——, PszTZﬁm u>1,
V UG max
then ||7'(t)||2:> 17 (2} || =0.
Proof. By Theorem 6, N7 G+DIF<al7O)?
By Theorem 7, 0<<a<1
So that t—=oc 1Y NP7 () [|?=0
Theorem 10. For formula (43), if p,= k 2 p>1

\/—" p2:k2+]p!
/*lgmnx

and the two equations AzX5(¢) +b=0 and A3A(t)+cz=0 have solutions, then as t—>oco,
X ()X (o0) and A(£)—>A(o0). X (oo) must be the solution of (P) and A(z) must be
the solution of (D).

Proof. By Theorem 9,

|7 (c0)||=0 (67)
By (67) and Theorem 8., the two equations have solutions,

ApXp(o0)+6=0 (68)
AFA(o0) +c5=0 (69)
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By (42),

Xp(0) >0, Xi((o0)=0
By (41),

Xe(o0)=0, if Xic(oe)=0
By (43) and (69),
Xp(o0) =X 5(c0)>0

By (71) and (72),
XB(OO)]
X (o0) = =0
Xc(OO)J
By (41) and (70),
Xe(o0)+p (ATA(o0) +¢0) <0
By (71),
Xc(o0)=0 and p,>0, so that
AcA(oo) +¢<0
By (69) and (75),

ATACo) e | s
A

c

T
] A(oo)+ [ }<O

e
Xp(o0) AE Ca
Because X" (e0)(ATA(c0) +¢) = [ ] H ]A(OO)-I— l ] ]
Xc(o0) AI Ce
By (69), (71) and (77),
XT(o0)(ATA(o0)+¢)=0
Xp(o0)
Because Ax(o0) +b=(AsAc) [X(;(OO)]
By (71) and (68) .
AX(e0)+b=0
By (73), (80), (76), and (78).
X (00)>20
AX () +b=0
ATA(o0) 40
X" (o) (ATA(0)+c)=0

70

an

(72)

73)

(74)

5)

(76)

an

78

79

(80)

(81)

By theorem 5, the point (X(oc),A(o0)) is a saddle point, so that X(co) is the optimal

solution of ('), A(o0) is the optimal solution of (D).

3 Some Computational Results

ATE&.T Bell Lab provided fifty (50) LP problems (the NET LIB) for testing pur-
poses. Table 1 (restrict to length, delered) shows the comparison of the problem solu-
tions between the NET LIB and the LP Saddle Point Algorithm. It may be noted that the

objective function values differ in some instances,however,all the solutions of the Saddle
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Point Algorithm were strictly examined. We improved the NET LIB problems into the

form of formula (29). If X* is the primal problem solution, A* is the dual solution, then

they were checked to satisfy the following conditions

(D

),
3
4
(5

X3
X'=[X6J, X;>0 Xe&=0
lAsX 3 +bll<<107°
NAZA" +csll<<107*

FAt 4,107
lekXs —6"A [|<107

It is obvious that (X*,A" ) satisfies the saddle point’s sufficient and necessary con-

dition which is shown in Theorem 5. Thus, X* and A" must be the optimal solutions of
the problems (P') and (D').
The name GREENBEA was the only problem for which convergence could not be

achieved.

A careful examination of the computer software proved that the model data of

the problem contained several errors.

The Saddle Point Algorithm's results were obtained on a UNISYS U6000/35,
CPU80486 system with memory of 16MB and the speed of 26 MIPS while utilizing Algo-
rithmic Language FORTRANZ77.

4 Significant Characteristics of the New Algorithm

(a)

(b)

()

(d

(e

¢

(g)

Selection of an initial point is arbitrary and no special start-up procedures are
required.

The number of iterations is independent of the dimensions of the LP prob-
lems. It depends on gmin/gmax. gmax is the greatest characteristic root of
A% Ag while gmin is the smallest.

Each of the iterations is a vector times a matrix, therefore the computational
results prove extremely fast.

It is not necessary to solve a system of linear equations during the entire com-
putational process.

The solutions to both primal and dual problems approach the saddlepoint si-
mulraneously. The stop conditions of computer are the saddlepoint’s suffi-
cient and necessary condition, therefore the precision of the solutions will be
guaranteed.
The essential matrix A is not changed during the iterative process. Cumulative
errors from the transformation of the matrix do not occur.

Due to the above fact, matrix A is not changed in the computational process
and its density is kept unchanged, therefore, the computer memory will be
saved.
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(h)  Degeneracy presents no problem for the algorithm.

(1) The algorithm is parallel and suitable for a multi-CPU super computer.
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