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Abstract This paper is devoted to establishing the Chebyshev pseudospectral domain
decomposition scheme for elliptic equation, both one-dimensional and two-dimensional prob-
lems are discussed. The equivalent generalized variational forms for the Chebyshev pseu-
dospectral domain decomposition scheme are given.
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1 Introduction

In recent years, the parallel algorithm and the parallel computer provide the impor-
tant tools for larée—scale numerical computation. The domain decomposition method be-
comes more and more significanf due to its easy parallel property. 'There have been a
number of recent developments on the use of spectral techniques in more general geome-
tries. The basic idea has been to partition the compléte domain of the problem into sever-
val subdomains, . . ‘

The partitioning technique has been employed in finite-difference and finite-element
methods. In the context of spectral methods, it dates from the late 1970s. Delves and
Hall (1979) introduced a method which they called the global element method. Orszag
(1980) decribed a technique for patching at interfaces. Morchoisne (1984) developed a
method based on overlabping multiple domains. Patera(1984) used a variational formula-
tion for what he termed the spectral-element method.

This paper is devoted to the Chebyshev pseudospe.ctral domain decomposition
method for elliptic equation, both one-dimensional and two-dimensional problems are
considered, the patching technique is used. We find that the Chebyshev pseudospectral

domain decomposition method is equivalent to a generalized variational method.
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2 One-dimensional elliptic equation
Consider the Chebyshev pseudospectral domain degompoéiﬁbn method in I=(a,b)

for the linear problem
Lu=—vu,+Xu=f z€ (ab) .
{ ‘ o 2.1)
u(@a) =u®) =0
Where v, A are constants and v>0. ‘
We partition I into n subdomains as follows
[ a 3 ‘ . a 2 (]
| ] v > v A\ 1
a=aq a, a, a4 a, Aupy =
Let
N, ,
u?’(x) = ii,.[l“(é') s=1,,n
k=0
Where z= ,+12—a,§+a,+12+ax,ze [—1,1], and Tu: () is the k-th Chebyshev polynomi-

al.
The Chebyshev-Gauss-Lobatto points on [a.,b.] are the following
a, ﬂ a,+1+a,, j=0,"°,N,

a _—
() s+1
Y = —CO0S
2 N, 2

J
We construct the Chebyshev pseudospectral domain decomposition scheme by the

j= 1,-+,N, — 158 = 1,0
2.2)

following equations
Lul — fli=s0 =0
uy (@) = 0suy (a,p1) = 0 (@) = w1 (auyy)

dul _dul,,
E(aﬁ-l) = d=z

(a.!+1)
which the boundary conditions and the patching conditions or called the interface conti-

nuity conditions.
For any positive integer N,,let Py be the space.of algebraic polynomials of degree

at most N,,set .
PON! = {P E PN.\ and P(as) = p(aH-I) — 0}

Let INI:CO(L)—*PNI_Z defined by ]
Uy $) (z?) = $(2”) for 1 <j<N, — 1

i.e. ,Ileﬁ is the interpolant of ¢ of degree N,—2 at the internal Gauss-Lobatto nodes.
By the definition of the interpolant operator,we know that the first equation of (2.
2) is equivalent to the identities (between polynomials)
]N:Lu.\N=7Nxf S=19"',n
2.3

or
- Uuﬁau- + /\ZINSIAN = IN‘f
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Setting
Xy={v€ CW\ v|l, € Py, fors=1,,nandv=0o0nz=a,b}

For simplicity, we denote v|;, by v,. Multiplying each side of (2. 3) by v,w, and integrat-
ing over I,,we have

L (— vull. + 2y a)v0,(2)dz = L Iy Hv,w,(z)dx forall v € Xy (2.4)

By integrating by parts, we have from the boundary conditions and patching condltlons
‘ that

ZJ [vu,,(v,w) +A21Nu,vw(x)]d:c = EJ (]Nf)vw(z)dx for all v € Xy

su=] s=1

(2.5)
Conversely, let «” € Xy be a solution of (2. 5). By integrating by parts, we get that

EL [— vul,. + 21y (ulf — f)]vw (z)]dz — Eu lim ¥, — «¥.,,.) (@)v(x)w, ()
sm] « . f

=1 T
=0 forallv € Xy

By choosing suitable v, we have that
J [— vals. + Iy (B — NI (xddz =0 Vv, € Py,s=1,-,n
I, f .
By the quadrature rule, we have for each s=1,-**,n that

[ 0= ot + T — DIvwnrde

N_[ .
=D [— vl + Iy R — HIaw,; =0

where w,,; are the weighlt-soof Gauss-Lobatto quadrature formula. So we have
— vl + Iy (Ral — f)|ewap =0 s =1,n,j =1, ,N, — 1
and \
— vl + Iy (Bl — ) =0
Therefore

E 11m (u, ,— uh D@ Dwlx) =0 Vve Xy

sam] 7
On the other hand, choosing suitable v(a,+,)#0, we deduce the boundary condi-
tions and the patching conditions.
In fact, we have completed the proof of the following theorem.
Theorem 1. The Chebyshev pseudospectral dofnain decomposition scheme (2. 2) is

equivalent to the generalized variational form (2. 5)
3 Two—dimensional'elliptic equation

Consider the following two-dimensional elliptic equation
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L =— Au-+ u=f infd
3.1
u Ian =0
where A is a constant, and f is the known function,{ is the region in Fig. 1.
(alvbz) (az-ba) (a, vba) (a, .b;)
a, 0,
(a; b, Xa;.b
(@146, TRt he (arb)
nz n:! 04
(a1,6)) @6 (ayaby) (2,+6))
Fig. 1. Region O Fig. 2. The partition of @

We partition () into five subdomains Q,,s=14,5,and Q=J2_,Q,
Denote ' .
| r=232,N32 s=1,-,5
L= aﬂs N an.,, s=1,,4 .
The coordinates ‘of the Chebyshev-Gauss-Radau points on {2, are denoted by (=%, %),
m=0,,M,,n=0,++,N,,where M,, N, are positive integers. Assume that M,=M,, M,
=M,, N,=N;, N,=N;=N,.In fact

x'(nl) =z, m= 0y, M,
'(;)za.r+12_ a"\,os 21\371'?:-1 _{_a.\+12+a.<’ s=2,3,4;m = 0,+,M,
1_’(”5) = xr(n4)’ m = O""vMs
b, — b 27n b, +b
w _ 9 2q 3 2 — .
Y 2 3N, + 1 7 0seees Ny
b, — b 2nn b, + b
@ _ 2 1" 2 1 — yorm s
» 2 SN, +1 7 2z 055N,

3y — 4 (€3] —
Vn'o = Y T Yus n =— O""9N3
(5) _— (D — ‘
Nl = Y n = 09"'9N5

Let (x,y) € [a,b6]X[c,d], consider the‘following series form’s solution

MI‘ N.‘
wN(x,y) = D) D a LT, s =1,-,5
. =0 j=0
where I=b;a§+b—{2-a, y=d_z—c7}+d_2|_6, ¢, 7€ —1,1],and T,—(C), T,;(9) are the i-

th, j-th Chebyshev polynomials respectively. ‘
The Chebyshev pseudospectral domain decomposition scheme of (3.1) is (3.2)-(3.
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4).
N flacs® yey = 0sm = 1,2, M, sn = 1,-+,N,,s = 1,:+,5 (3.2)
Boundary conditions :
uM¥a,,y?) = uMV(a,,y’) = u“”"(.r“’ b)) = 04ym = 0, ,M,,n =0, ,N,
ul ‘”(al,y.‘,”) _— uIZM.N(I,(nZ)’bl) = 0ym = 0, ,M,,n = 0,+ 4N,
uﬁ"”(x,‘,?’,'bl) — u?’"(x,(,,a),bz) =,m =0, ,M,
A"N(x“),b,) — uf""(d“y,‘,“) =0,m =0, ,M,n= om,...;N‘

4N (ay, 99 = ¥ (g, ,yO) = u15u Nz ,by) = 0ym = 0,++ ,My,n = 05+, Ny

(3.3)
Patching conditions . ’
dult ulr™
Wy N (i 50,) = ui Nz ,b,) ul (Ir(nl)’bz) = azy (. 58,) m =0, ,M,
) - M.N ‘ ulsu.N ‘ :
"N (ay,yP) = ué‘"'f(ag ,y.E“); (az ,y‘z’) = oz (@5,5:2), n= 05+, N,
. o -M,N |
uy'"N (ay, yi¥) = uN (a, s Yn ) = (as YD) n=0,",Nj;
duN : ‘o M.N -
Luﬁl'N(I,(:)abz) = us"N (x5 b, )s Dy (xy 5b,) = au (-T(“ bz)’ m = 0,,M,

- (3.4)
For simplicity of expression, we suppose that £2, is a rectangular region.
Q.={(z,y) | (x,y)E [a 0] X[’o,’d]} Let w({)= (1—§z)"’;' {6 [—1,1]. Define

w, ,(x) =w(C),x— §+b+ d+c

s, () = @(©),y = F—5t +

For any positive integer M,, N, let I’M » Py be the spacés of algebraxc polynomials of
degree at most M,, N, respectively. Set
Py ., = {p(x,y):p(z,y) € Py X Py, }
Py~ = {p(x,) € PM’.N_‘ and p(z,y) laa, = 0}
Let Ly, :C*(Q,)—>Py, —».n,-» defined by
Uy P (x5 30) = D=8,y ) form =1, ,M, — 13n = 1,+~,N, — 1
i.e. Iy, is the interpolant of ® at the internal Chebyshev-Gauss-Radau nodes in £2..
By the definition of Iu v »we know that (3. 2) is equivalent to the identities
(between polynamigls)
A IMx.NxLu'.y‘N = IMx.Nxf'a s = ‘19"' »5 (3.5)

or
i o '
52 Ina™™) — a—;(IM'\u.C"”) + XLy wu™N = Iy yfos = 1,5 (3.6)

Setting ‘
XM.N - {'U E’ CO(Q) |'U|nJ e PMx,N‘,fOr s = 1,"',5 and 'Ulan = 0}
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For simplicity, we denote v,=wv|,. Let us multiply each side of (3. 6) by vy, (z)w,,

(y) and integrate over £,. We have

Y & '
| Ll(— o It = 5 (ol + Rl Yo, (@ (7)dady
€X))
- Jn Unn Do,y ()0, (dady, for all v € Xyx

By integrating by parts and summing for s=1,+,5,noticing that Iy, =Iy,,In,=Iy =
In, sIn,=1Ix,, we have from the boundary conditions and patching conditions that

J Ly u¥™), (v, (2)).0,.(y) + TyulY), (0,0,.,(3)),@,..(z)

s

+ AZIM N, u_,M'N]dxdy (3. 8)

EJ Uy v v, (2)wy, (y)dazdy forall v € Xyn

s=]
Conversely, suppose ™" € Xy be a solution of (4. 4). By integrating by parts, we get
that
o .
2] [— s L) — 57 L) + Bl Gl — 3o, (2o, (1)dady

s=x]

Oy ui'Y) O p,uz"™)
mf T Mazy2 Yvw,  (2)w,,, (y)ds

oy
oIy utM) AU v ut™)y ’
-], « ”5; — v (@) o (s
a(IN u a(IN u ) .
_ Jr — 8.7: Yvw, 3 (x)w,, 3 (y)ds

Uy uNy Uy uMMy
o J'r Méy4 - Masys Jvw, (z)w,,,(y)ds
=0 forallv € Xyn
(3.9

By choosing suitable v, we have that
) az & .
[, I am ™ = ™ + ¥l G = o (Do, (3dady

=0 V€ Physs=15

By the quadrature rule, we have for each s=1,-+,5 that

2 2
J [— %(IN_‘ui‘"”) = ™) L Gl — ) Jon, (D () ddy

N,

2
Z 2[ 57 <1N_‘u.;“-"> — a%z"%“f"") + L, (RutY — o, (2 58w

m=0 a=0

M N
L [

aZ az .
= 2 2= 5 Unut™ — 5yt ™) 4 L, Rt — 3o, (2307l

m=]1 p=}
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_ V vl e PIOWI.N'
"where of,,w;, are the weights of the Chebyshev-Gauss-Radau formula, thus
az

- ’a——(INu: My — _“‘(quy N) + IM W, Ay f)l;-;f:’.,:" = ()
. 5=1,"',53m=1,“',M1;n=1,"“vN.{-
Therefore — z(INuMN) %(qu M)+ Iy o, (Bt — )=0 (3.10
whlch is same to (3. 5) On the other hand,we have from (3. 9),(3.10) that
a(I ull a(I uMt
VJ.r, 2( - May May Jovw,  (z)w,, (y)ds

a(I ud'M) a(I WYy
J- 3 Nax )'le.z(-z)wz,z(y)ds

a(I Ny a(I uMN)
J s Na‘.zf Yvw, 3 (z)w,,; (y)ds

a(I u“") a(I w4
J Mt “asy-"v Yva, (2w, ,(y)ds

L= 0 Vo € XM N
By choosmg suttable-'v, we can deduce the patching condmons(3 4), the boundary con-
ditions is easily obtained due to «™'¥ € Xy.».
In fact, we have completed -the proof of the following theorem.
Theorem 2. The Chebyshev pseudospectral domain decomposition scheme (3. 2)-(3. 4)

is equivalent to the generalized variational form (3. 9).

4 Summary

ey

This paper deéls with the Chebyshev pseudospectral domain-decomposition scheme
for elliptic equation, both one-dimensional and two-dimensional problems are discussed.
These new schemes can be paralleled in computation and easily applied to complex ge-
ometry. We also give the eqdivalent variational forms correspond to discrete Chebyshev
pseudospectral domain decomposition scheme, which is significant to the analyses of the
convergence and stability of the Chebyshev pseudospectral domain decomposition

method.
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