国防科技大学学报

JOURNAL OF NATIONAL UNIVERSITY OF DEFENSE TECHNOLOGY

Vol. 19 No. 4

磁悬浮列车滑模变结构控制器设计及实现

周晓兵 龙志强 李云钢 杨泉林

(国防科技大学自动控制系 长沙 410073)

摘 要 本文在建立磁悬浮线性模型基础上,设计变结构控制器,进行了仿真计算,并 用模拟电路进行实验,给出了仿真和实验结果。

关键词 磁悬浮列车,滑模控制,边界层

分类号 TM 571

The Design and Realization of Sliding Mode Controller of the MAGLEV Train

Zhou Xiaobing Long Zhiqiang Li Yungang Yang Quanlin (Department of Automatic Control, NUDT, Changsha, 410073)

Abstract The linear magnetic suspension model is used to design a variable structure controller with sliding mode, and realize this controller with a analog circuit. The results of simulation and experiment are presented.

Key Words MAGLEV train, sliding mode control, boundary layer

滑模控制是变结构控制的一种控制策略,滑动模态对参数变化及外扰不灵敏,有良好 的鲁棒性。磁悬浮系统是非线性不稳定系统,存在强参数扰动,采用滑模控制能够获得较 满意的性能。

1 磁悬浮系统的动态模型

某小型磁悬浮列车样本,以四组电磁铁支撑悬浮,考虑到列车转向架的机械解耦,可 以认为每组电磁铁是独立的。本文以一组电磁铁为例建立其非线性的动力学模型,单电磁 铁结构示意如图 1。

可以推导出力和气隙的非线性方程,将非线性方程在平衡点(*i*o,*z*o)处泰勒展开,可 线性化得到

^{* 1996}年11月21日收稿

 $\begin{cases} \Delta u = R\Delta i + L_0\Delta i - k_i\Delta z \\ m\Delta z (t) = -k_i\Delta i + k_z\Delta z + f_d \end{cases}$ (1) $\Box \Box L_0 = \frac{\mu_0 N^2 A}{2z_0}; \ k_i = \frac{\mu_0 A N^2 i_0}{2z_0^2}; \ k_z = \frac{\mu_0 A N^2}{2z_0^3}; \end{cases}$

 $\mu_0 = 4\pi \times 10^{-7}$: 空气中的磁导率; *i*: 线 圈电流; f_d : 干扰力; *M*: 悬浮体质量; *N* 线圈匝数; *A*: 一个气隙的面积; *R*: 线圈 的电阻。

选取 $x_1 = \Delta x, x_2 = \Delta x, x_3 = \Delta x$ 状态变量,可以写出系统的状态方程如下;

图 1 磁悬浮单电磁铁结构

$$\begin{bmatrix} x \\ x \\ x \\ x \\ y \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ \frac{k_z}{m} & 0 & -\frac{k_i}{m} \\ 0 & \frac{k_i}{L_0} & -\frac{R}{L_0} \end{bmatrix} \begin{bmatrix} x \\ x \\ x \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1/L_0 \end{bmatrix} \Delta u = Ax + B\Delta u, \ y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ x \\ x \end{bmatrix} = Cx$$
(2)

可以验证该系统的可控阵 $O = [B AB A^2B]$ 满秩,系统可控。

2 变结构控制器的设计[1]

对于给定的方程(3),考虑控制量受限的滑模控制器的设计。

取切换函数 s = cx, $c = [c_1, c_2, c_3]$, 则s = 0 定义了一个切换面, 而且 s(0, 0, 0) = 0, 切换 面通过平衡点。

 $\lim_{s \to 0} \frac{\mathrm{d}s}{\mathrm{d}t}$

0

为满足滑模的可达性和存在性条件,有广义滑模条件:

$\frac{\mathrm{d}s}{\mathrm{d}t} = \mathbf{c} \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} =$	c(Ax +	$\boldsymbol{B}\Delta u) =$	cAx +	$cB\Delta u$
---	--------	-----------------------------	-------	--------------

取常值切换控制

$$\begin{bmatrix} cAx + cBk_1 < 0 & s > 0 \\ cAx + cBk_2 > 0 & s < 0 \end{bmatrix}$$

 $\Delta u = \begin{bmatrix} k_1 & s > 0 \\ k_2 & s < 0 \end{bmatrix}$

有

在此约束条件下,滑模存在于两个超平面

$$p_1: cAx + cBk_1 = 0$$

$$p_2: cAx + cBk_2 = 0$$

之间, 当 p 1 和 p 2 与 s = 0 平行时整个切换面都是滑动模态区。即满足

$$\frac{k_{z}c_{2}}{mc_{1}} = \frac{c_{1} + c_{3}k_{i}/L_{0}}{c_{2}} = -\frac{k_{i}c_{2}}{mc_{3}} - R/L_{0}$$
(3)

88

由菲力普夫理论, 当系统处于滑模运动时, 实质上要满足

$$s = 0$$
, $\frac{\mathrm{d}s}{\mathrm{d}t} = 0$

设系统进入滑动模态后的等效控制为 *u*^{*},

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = \boldsymbol{A}\boldsymbol{x} + \boldsymbol{B}\boldsymbol{u}^*$$

 $\mathbf{h} \frac{\mathrm{d}\mathbf{s}}{\mathrm{d}t} = \mathbf{c} \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = 0$ 解出 $u^* = - [\mathbf{c}\mathbf{B}]^{-1} \mathbf{c} \mathbf{A}\mathbf{x}$,代入状态方程(2),可得到三个微分方程,在s = 0的约束下只有两个是独立的,任选两个可以得到如下的滑模运动方程。

$$\frac{\mathrm{d}x_{1}}{\mathrm{d}t} = x_{2}$$

$$\frac{\mathrm{d}x_{2}}{\mathrm{d}t} = \frac{k_{z}}{m}x_{1} - \frac{k_{i}}{m}x_{3}$$

$$s = \mathbf{c}\mathbf{x} = 0$$
(4)

向量 c 的选择应保证滑模运动的稳定性。由滑模运动方程可得

$$\overset{\circ}{x_{1}} - \frac{c_{2}k_{i}}{c_{3}m} \overset{\circ}{x_{1}} - \left(\frac{k_{z}}{m} + \frac{k_{i}c_{1}}{mc_{3}}\right) x_{1} = 0$$
 (5)

为保证滑模运动稳定,该方程的根必须要在左半平面,*c*的选取决定了滑模运动的动态性能,同时,为保证有较大的滑动模态区,它们的选取应尽可能满足等式(3)。控制系统方框如图 2 所示。

图 2 控制系统框图

3 滑动模态控制与线性控制的关系^[2,3]

対磁悬浮系统采用滑模控制,就是其输入 $u = u_0 + \Delta u$ 按函数 $s = c_1x_1 + c_2x_2 + c_3x_3$ 切換

$$u = \begin{cases} k_1 + u_0 & s > 0\\ k_2 + u_0 & s < 0 \end{cases}$$

*u*₀ 为静态悬浮的偏置电压。通过*c*₁,*c*₂,*c*₃ 的选择来满足控制系统的性能指标。由于系统可控,在*s*=0上的滑模运动的动态特性取决于*c*,而与控制*u*的选择无关^[2],由上面分析可知,对于受限的控制*u*,不是所有的初始状态都能到达滑模面,因此系统不是全局稳定的,滑动模态只存在于两个超平面之间。

系统的滑模运动方程由(4)式表示,该运动方程是降维的线性方程。下面讨论参数 c

选择的工程方法。

考虑系统全状态反馈线性控制器的设计,取位移、速度、电流三个状态设计全状态反馈。即设计 $u = k_x^T x$ 中的反馈增益 $k_x^T = [k_{x1}, k_{x2}, k_{x3}]$ 。电流反馈可以单独设计,其物理意义是为了减小线圈的时间常数,使得线圈电流有宽频带的电压跟踪能力,恰当地选择电流反馈增益 k_{x3} ,系统可以近似化简为二阶系统:

$$\frac{\mathrm{d}x_{1}}{\mathrm{d}t} = x_{2}$$

$$\frac{\mathrm{d}x^{2}}{\mathrm{d}t} = \frac{k^{2}}{m}x_{1} - \frac{k^{i}}{m}x_{3}$$
(6)

x3 可以认为是该简化的二阶系统的输入。

此系统是原系统(2)的降维,也是可控的,反馈增益 kx1、kx2的选择可以采用极点配置的方法,使系统(6)满足一定的动态性能。

可以看出该二阶系统与滑模运动方程(4) 是一致的, $\Pi c_3 = -1, c_1, c_2$ 选择为 k_{x1}, k_{x2} , 则 c 能使滑模运动同系统(6) 有相同的动态性能。

磁悬浮线性控制器的实现一般采用加电流环的超前网络控制器。超前网络的形式为 $\frac{T_{1s}+1}{T_{2s}+1}k_0$,则在系统的中频段内,控制量可以近似表示为 $u = u_0 + \Delta u = u_0 + k(k_0T_{1x_2} + k_{0x_1})$ – x_3),其中 k_0 表示位置环校正网络增益,k表示电流环校正网络增益。则可取

$$\Delta u = \begin{cases} k_1 & k_0 T_1 x_2 + k_0 x_1 - x_3 > 0 \ \underline{\exists} k = k_1 \ k_0 T_1 x_2 + k_0 x_1 - x_3 \end{cases}$$

$$k_2 & k_0 T_1 x_2 + k_0 x_1 - x_3 < 0 \ \underline{\exists} k = |k_2| \ k_0 T_1 x_2 + k_0 x_1 - x_3 \end{cases}$$

则滑模控制可理解为变电流环增益的一级超前网络线性控制,增益 k 随函数 $k_0 T_1 x_2^2$ + $k_{001} - x_3$ 的取值而变化。当取 $c_3 = -1$ 时,滑动参数 c_1, c_2 分别与 $k_0 T_1, k_0$ 相对应。因此 可以借助性能良好的线性控制器的参数来设计滑模控制参数。

4 仿真及实现

4.1 仿真

某小型磁悬浮列车样车的参数如下:

 $m = 100 \text{kg}, A = 14 \text{cm}^2, z_0 = 4 \text{mm}, N = 700, i_0 = 3.3 \text{A}, R = 6.3 \Omega$

可以计算得到 $k_i = 89, k_z = 73300, L_0 = 0.1077$ 。

由此参数和上述的选择原则,选取 $c_3 = -1, c_1 = 5000, c_2 = 100$,仿真中采样步长为 0.001s,初始状态为z = 0.012m, z = 0, i = 0,平衡点 $z_0 = 0.004m, i_0 = 3.3A$,平衡点等 效平均驱动电压 $u_0 = 20V, k_1 = 70V, k_2 = -20V$,外加扰动 5kg,仿真结果如图 3。

从仿真的闭环系统动态响应曲线可看出, 位移无超调, 状态轨迹首次与滑动面相交时 系统并没有进入滑动区域。从响应曲线也可清楚地看出系统的动态过程: 在初始时刻 $z = 0.012m, z^{\circ} = 0, i = 0, s > 0$, 此时 u = 90V, 电流开始上升, 系统进入正常运动段; t = 0.15s时 s 改变符号, 于是 u = 0V, 直到 t = 0.25s 时, 系统进入滑动模态。

在用计算机实现的情况下,采样频率影响系统性能,仿真结果表明,采样频率越高,抖动越小,采样频率越低,抖动越大,过低的采样频率会导致系统不稳定。

图 3 采样频率 1000Hz 下系统阶跃响应

4.2 控制系统的实现

用一个简单的模拟控制器实现该变结构控制。在实验中, 位置信号用一个涡流位移传 感器检测, 电流信号用一个电流互感器检测。位移的速度信号不能直接由位移信号微分得 到, 因模拟电路难以实现微分, 即使实现了噪声也很大。因此, 考虑用一个一级超前网络实 现速度信号, 保证在系统的中频段有较好的微分效果, 而在中频段后, 又对高频噪声有快 速 的抑制作用, 同时也可以减小抖动。具有继电特性的非线性环节用一个过零比较器实 现。控制系统实验框图如图 4 所示。

图 4 控制系统实验框图

具体实验中电流传感器的增益为1,位移传感器的增益为 $k_p = 1000V/m$,超前环节中 $T_1 \gg T_2$, $kk_p = c_1$, $kk_pT_1 = c_2$;按设计取k = 5, $T_1 = 0.02$, 取 $T_2 = T_1/20$,采用单管功放, 开关管为大功率晶体管(GTR),采用集成驱动元件 M 57215。由于过零比较器为正负饱和 输出,可以直接作为驱动元件的输入,因此不再需要脉冲调宽电路,使得功放电路简化。输 出电源电压 90V,考虑到在平衡点近似有 20V 偏置电压,则 $k_1 = 70V$, $k_2 = -20V$ 。实验结 果如图 5 所示。

图 5 实验结果

从结果来看, 位移存在 10% 左右的超调, 经过 0.2s 左右, 系统进入滑动模态, 稍有抖动, 动态性能良好。在系统稳定运行的情况下, 也作了 10kg 负载的冲击实验, 结果表明系

统有良好的抗冲击能力。

系统(2) 也可以改写为以相变量为状态的方程, 即以位移的误差及其各阶导数为状态 的状态方程, 遵循上述同样的设计原则, 也可以设计一个控制受限的滑模变结构控制器。 具体实现时, 不再需要电流互感器, 用两级超前网络近似在中频段得到位移的速度和加速 度。为了与上述方法比较, 将实验结果示于图 6.

图 6 以相变量为状态的实验结果

以相变量为状态设计滑模控制器,实验结果不太好,由切换函数响应明显可以看出抖动较大。原因主要是只有位移传感器,实现时,速度和加速度近似在中频段由微分得到,尽管加了低通滤波器,但微分后速度,特别是加速度的噪声很大,而前一种状态选取方法,由于电流和位移都可以由传感器得到,只有速度由微分得到,因此噪声较小,抖动也小。如果有加速度传感器,后一种方法抖动也会减小,性能得到提高,当然由于加速度计一般较贵,成本会增加。

由两种方法比较可以看出,状态测量噪声要小,太大会增加抖动,严重时可能使系统 不稳定。

上述方法都存在固有的抖动,这会影响列车乘坐的舒适性。可以考虑在切换面附近定 义一个边界层,在边界层内实施连续控制,可以有效减小抖动。定义边界层 Φ> 0,选择如 下的控制律

$$\Delta u = \begin{bmatrix} k_1 & s > \Phi \\ s/\Phi & |s| < \Phi \\ k_2 & s < - \Phi \end{bmatrix}$$

Φ的选择由模型和参数不确定性的估计决定,此处选择 Φ= 0.2,采样频率 500Hz, 仿 真结果如图 7 所示。

图 7 有边界层的系统阶跃响应

该仿真结果表明,系统不存在抖动,性能优良。因此采用边界层的方法是解决抖动问题的有效方法。

5 结论

本文设计了一个控制量受限的滑模变结构控制器,控制器的输出在两个恒定值之间 切换,与电子开关器件的特性相吻合,简化了控制系统,特别是功率放大器的结构。在小型 磁悬浮列车样车上的实验表明,这种方法是成功的。

参考文献

1 Slotine JJE 等. 应用非线性控制. 北京: 国防工业出版社, 1992

2 李永盼. 磁悬浮轴承滑动模态控制的研究: [博士论文]. 北京: 清华大学工程物理系, 1994

3 高为炳. 变结构控制理论基础. 北京: 中国科学技术出版社, 1990