国防科技大学学报

15cm×15cm 磁悬挂天平系统 (MSBS) 的电磁场分析与计算*

陈贵荣 杨泉林 尹力明

(国防科技大学自动控制系 长沙 410073)

摘 要 本文采用二维电磁场有限元法及磁路的简化计算法对 15cm×15cm 磁悬挂天 平系统(MSBS)的阻力线圈间距、磁场的分布情况进行了分析计算,并与测试结果进行了 分析比较, 给出了 15cm×15cm 磁悬挂天平系统 (MSBS) 的结构方案。

关键词 磁悬挂天平,磁场计算,有限元法 分类号 O441.4

The Magnetic Field Analysis and Computing of the $15 \text{cm} \times 15 \text{cm}$ Magnetic Suspension and Balance System (MSBS)

Chen Guirong Yang Quanling Ying Liming (Department of Automatic Control, NUDT, Changsha, 410073)

Abstract This paper analyses and computes the distance of the resonant coils and the magnetic field distribution for 15cm×15cm Magnetic Suspension and Balance System (MS-BS), analyses the testing results, and gives a structure project of the system.

Key words magnetic suspension balance; magnetic field calculation; finite element method.

MSBS 具有两种激磁方式:一种是电激磁(常导或超导线圈),另一种是永磁激磁,无 论哪一种激磁方式,都要求它能给 MSBS 提供一个高效率的磁场分布。对于结构十分复 杂的 MSBS 来讲,以电磁学知识很难预测它的磁场分布的详细情况,对它的磁场数值计 算也已不能用简单的磁路方法进行,而必须用磁场的数值计算方法。有限元法是一种根据

52

^{*} 国防预研基金资助项目 1996 年 12 月 17 日收稿

变分原理和离散化而求取近似解的数值求解方法,对于许多工程实际问题,它是一种行之 有效的数值计算方法。磁悬挂天平的静磁场问题可以归结为非线性泊松方程的定解问题, 可利用二维有限元法进行求解。目前,国外还未有人对磁悬挂天平的磁场分布问题进行过 专门讨论,我们在总结 3cm×3cm,6cm×6cm 两套 MSBS 常导电激磁磁场设计成功经验 的基础上,对 15cm×15cm MSBS 的磁场设计进行专门研究。

1 15cm×15cm MSBS 概况

我们研制的 15cm×15cm MSBS, 它包括 10 个电磁铁控制线圈,位置传感器及悬挂模型,悬挂模型为圆柱型永磁铁芯,如图 1 所示。

其中0与9号线圈是轴向控制线圈, 产生克服风阻的电磁力,内部不含铁芯;1 与3号线圈是前悬挂线圈,内含铁芯,产生 模型前部悬挂力;5与7号线圈是后悬挂 线圈,产生模型后部悬挂力;2、4和6、8号 线圈分别是模型前后侧向控制线圈,内含 铁芯,产生前后偏航力。

图 1 15cm×15cm MSBS 的电磁铁结构图

轴向两对阻力线圈的最大工作电流设计为 30A,在现有模型磁铁上,可产生±1.5N 的电磁力;每对悬挂线圈的最大工作电流设计为 15A,可产生-4~+8N 的升力;每对偏 航线圈的最大工作电流也设计为 15A,可产生±2N 的偏航力。图 2 为 15cm×15cm MSBS 的剖面图。

图 2 15cm×15cm 磁悬挂天平的两视图

2 阻力线圈 0,9 间距设计

当 MSBS 结构方案确定之后,就必须确定一些关键的结构尺寸数据,其中阻力线圈 0,9 除其本身应保证具有足够安匝数,产生足够的电磁力外,还应保证在悬挂模型区域 内,阻力线圈的磁场分布为直线,以保证控制系统的线性,减少非线性因素对控制系统的 影响。

由于阻力线圈 0,9 为一对空心线圈,其磁场分布可用物理学知识进行求解。它们之间 的间距,可从单个线圈的磁场分布来确定。即它等于阻力线圈从磁场降值到趋于零时,在 *x* 轴上所跨过的距离的两倍。其磁场计算公式如下:

$$B_{x} = \frac{2u_{0}I_{N}yL}{\pi} \frac{1}{r^{2}\sqrt{L^{2}+4r^{2}}}$$
(1)

式中, u_0 为空气磁导率, I_N 为线圈的安匝数,y 为线圈每边的中心离x 轴的距离,L 为 线圈每边平均匝长, $r = \sqrt{x^2 + y^2}$,x 为线圈的中心点到所求磁场点之间的距离。代入基 本数据 $I_N = 5120A$,y = 25 + 90 = 115mm = 0.115m, $u_0 = 4\pi \times 10^{-7}$,L = 180 + 50 = 0.23m,其计算结果如表1 所示

表1 阻力线圈 0,9 磁场分布

<i>x</i> (m)	0	0.02	0.05	0.08	0.1	0.12	0.15	0.18	0.2	0.22	0.25
B_{x} (GS)	252	242	202	155	122	97	68	49	39	32	34

表中所示出的模型中心点与线圈中心点之间的间距为 250mm 最为合适。即两阻力 线圈 0,9 之间的中心距为 500mm. 但应注意到,上述计算方法并没有考虑周围铁芯的影 响,如果考虑铁芯的影响,则磁场分布将随 x 的增大而下降更快,因此,阻力线圈 0,9 之间 的中心距应比 500mm 略小些为宜,最终选取为 420mm.

3 电磁场方程与求解

悬挂模型在实验区域内受到电磁力和力矩的作用,这个力和力距是由电磁线圈产生的磁场与模型永磁磁芯作用的结果。对于永磁体来说,其磁化特性可用退磁曲线来表示, 而电磁线圈产生的磁场则十分复杂,用磁路的观点难以准确进行计算,必须借助于有限元 的求解方法。对于我们所研究的15cm×15cm 磁悬挂天平的电磁铁系统,可采用二维电磁 场有限元法求解,其剖分区域如图3所示。

对于图 3 所示磁场区域,可用磁场矢量磁位 A, 求解,其泊松方程边值问题如下:

$$\begin{cases} \Omega_{z} \frac{\partial^{2} A_{z}}{\partial x^{2}} + \frac{\partial^{2} A_{z}}{\partial y^{2}} = -\frac{Jz}{v} \\ S_{1} : A_{z} = A_{z0} \\ S_{2} : \frac{\partial A_{z}}{\partial n} = -\frac{H_{z}}{\gamma} \\ L_{z} \gamma_{a} \frac{\partial A_{z}}{\partial n} = \gamma_{b} \frac{\partial A_{z}}{\partial n} \end{cases}$$

$$(2)$$

式中, A_{zo}为磁场矢量磁位已知值, H_i为磁场切向分量已知值(规定切线t的正方向为 54

图 3 磁场剖分区域图

外法线 n 的正方向逆时针转过 90°),与式(2) 等价的条件变分问题:

$$\begin{cases} W(A_z) = \iint_{\Omega} \left\{ \frac{\gamma}{\partial} \left[\left(\frac{\partial^2 A_z}{\partial x^2} \right)^2 + \left(\frac{\partial^2 A_z}{\partial y^2} \right)^2 \right] - f A_x \right\} dx dy \\ - \int_{s^2} H t A_z ds = \min \\ S_{1z} A_z = A_{z0} \end{cases}$$
(3)

式中 $W(A_*)$ 称为能量泛函, $W(A_*) = \min$ 表示通过 A_* 的选取,使得能量泛函达到极小值, $S_1 \cdot A_* = A_{*0}$ 为强加边界条件。

通过平面电磁场二维有限元计算,图3所示磁场的分布情况如图4所示。

(a)升力线圈加电流含铁芯及永 磁材料的磁场分布 (b)升力线圈及平助线圈出电流, 含铁芯及永磁材料的磁场分布

图 4 磁场分布图

电磁场的实验测试是利用磁场分析和设计的一个重要手段,其结果可用来校验磁场 设计的优劣,同时利用它也可进行模型受力和力矩的分析计算,为天平的校准系统提供分 析数据。但这些工作都只能建立在模型结构设计加工完毕之后,而在模型设计过程中,唯 一能依赖的是磁场的理论分析和数值计算。

磁场测试的结果是磁场在真实条件下所体现的数值大小,磁场计算是在某些假设条件下的近似计算,两者之间必然存在一些误差,对此可通过磁场的基本理论进行分析,表 2 为升力线圈加电流和偏航线圈加电流时,坐标中心点(即永磁体模型端部)的磁密值,图 5 为两阻力线圈加电流时,无铁芯及铁芯情况下的磁场分布曲线。

升力线圈加电流									偏航线圈加电流							
电流值(A)	15	12	9	6	4	3	2.5	15	12	9	6	4	3	2.5		
实测值	660	550	430	290	210	140	120	225	185	130	95	58	45	39		
计算值	820	752	641	535	442	351	220	340	282	245	186	140	86	55		

表 2 永磁材料端部磁场实测与计算磁密(GS)值比较

图 5 阻力线圈加电流时,轴线上磁密分布曲线(LJ=200A/cm²) 其中:a 为无铁芯时的计算值 b 为有铁芯时的实测值 c 为有铁芯时的计算值

从表 2 看到:在坐标中心点,磁场的计算值高于实测值,这是因为在磁场计算时,其剖 面区域为二维平面磁场,它忽略了周围铁芯的存在,实际上另外一组升力,偏航线圈也是 有铁芯结构,它的存在必然对磁场分布产生影响,但由于它们之间相距较远,其影响相对 较小。

56

5 结论

.

采用电磁场的二维有限元计算可清楚地了解 15cm×15cm MSBS 的磁场分布,从而 优化其结构尺寸,但由于偏航和升力电磁铁存在,采用二维平面电磁场求解带来比较大的 误差。对于大尺寸的 MSBS 则必须采用三维电磁场求解,将磁场求解与功耗、受力、攻角 等特性综合优化达最佳程度。

参考文献

1 陈贵荣,尹力明、磁悬挂天平系统的磁场分析与计算、气动实验与测量控制,1993,(1)

2 胡之光·电机电磁场分析与计算·北京:机械工业出版社,1986

3 Sawada H. The $10 \text{cm} \times 10 \text{cm}$ MSBS at the National Aerospace Laboratory. AIAA 91-0397 Jan, 1991

(责任编辑 张 静) .