国防科技大学学报

强激光作用充气式轻型仿形诱饵探讨

赵健康

(国防科技大学自动控制系 长沙 410073)

摘 要 本文结合充气式轻型仿形诱饵的结构特点,探讨了强激光对轻型仿形诱铒作 用的几种效应,以及强激光作用后诱饵运动状态变化的情况,且对由此引起的诱饵轨道偏离 进行了数值计算与分析。

关键词 强激光,轻型仿形,诱饵 分类号 V412,TN24

An Approach to High Power Laser Interaction with Gas Filling Light Copying Decoy

Zhao Jiankang

(Department of Automatic Control, NUDT, Changsha, 410073)

Abstract In the light of structural characteristics of gas-filling light-copying decoy, we discuss high power laser interation with gas-filling light-copying decoy, and the change of decoy motion velocity after decoy is attacked by high power laser. Besides, its trajectory deflection has been calculated.

Key words high power laser, light-copying, decoy

目前,在导弹进攻目标时,为了防止攻击弹被拦截,攻方常利用各种手段来迷惑对 方,以达到攻击目标的目的。在各种各样手段中,较常见、也较为经济的方法,就是施 放各种诱饵,使防方不易识别真假弹头。近几年来,强激光等定向能技术迅速发展,人 们把目光转向利用定向能技术进行反导防御,特别是利用强激光进行反导防御。本文就 讨论强激光对攻方导弹施放的充气式轻型仿形诱饵的作用,用动力学原理来探讨在强激 光作用后,轻型仿形诱饵偏离轨道的情况,这样,有助于提高雷达识别攻击弹与诱饵的 能力。

* 1996 年 12 月 3 日收稿

1 充气式轻型仿形诱饵

常规施放的诱饵有重诱饵和轻诱饵。如带无线电干扰机的重诱饵,而轻型诱饵是战 术弹道导弹在自由段施放最为普遍的一种。常见的轻型诱饵有充气式轻型仿形诱饵、各 种金属丝等。下面着重讨论一下充气型轻型仿形诱饵。它是由铝或锡箔制成,结构尺寸 与弹头一模一样,这样,充气施放后,其外形与真弹头相同,使雷达难以识别。

以某型弹道导弹为例来分析,若其在自由段施放轻型仿形诱饵,仿形诱饵结构如图 1 所示。

故其体积粗估为

 $V_1 \approx \pi \times 0.325^2 \times 1.5/3 = 0.16 \text{ (m}^3\text{)}$

其表面积粗估为

 $S_1 \approx \pi \times 0.325 \times (1.5 + 0.325) = 1.95 \ (m^2)$

假设它所用材料为铝箔,壁厚为 $\sigma \approx 0.2 \text{mm}$,则此 诱饵本身结构质量为: $m = S_1 \sigma \rho \approx 1.2 \text{kg}$.

如果此诱饵在施放前,折叠存放在仓里,为了保证诱饵施放后能够展开,且不破裂, 我们假设诱饵施放后,其内气体压强为*P*₁=0.05 大气压,这样,我们可以估计,施放前 气体体积*V*₀.

 $V_0 = (P_1 V_1 / P_0)^{1/k} \approx 0.1 V_1$ (k 为绝热指数, $P_0 = 1$ 大气压) 故充气气体质量 $m_{\tau} = P_0 \mu \cdot V_0 / RT_0$ (T_0 为仓里温度) $\approx 0.02 \text{kg}$

所以,施放后轻型仿形诱饵总质量 M 大约不到 1.5kg (包括弹射装置)。

2 强激光对轻型仿形诱饵的作用

2.1 强激光传递冲量引起诱饵的运动状态变化

强激光照射目标时,目标照射表面局部迅速熔化或汽化,特别对短脉冲激光,当其 峰值在 10⁷W/cm² 以上,被照射表面将迅速汽化,形成蒸汽向外射出而传递目标一定动 量。因此,讨论强激光对诱饵作用,除了考虑可能对诱饵产生烧蚀破坏外,还需考虑在 照射过程中传递的冲量,为此,我们先讨论脉冲激光传递冲量对诱饵运动状态的影响。

根据文献资料, 激光辐照传递的冲量平均约为 2×10⁻⁵Ns/J。现假设激光传递冲量为 *P*,诱饵受 *P* 冲量作用后,运动状态变化为 Δ*V*.由动量守恒

则: $\Delta V = P/M$ (M 为诱饵质量)

作为例子,我们来分析几种情况(假定短脉冲激光照射时间为 0.5s):

(1) 当强光照射光斑直径为 D=3cm 时,对于光斑平均功率密度为 10kW/cm² 的激光,这时 ΔV≈0.5m/s,光斑总功率为 70.7kW;对于光斑平均功率密度为 100kW/m² 的激光,则 ΔV≈5m/s,光斑总功率为 707kW.

(2)当强激光照射光斑直径为 D=10cm 时,对于光斑平均功率密度为1kW/cm² 的激光,这时 △V≈0.51m/s,光斑总功率为78.5kW;对于光斑平均功率密度为10kW/cm² 的 10 激光,则 △V≈5.1m/s,光斑总功率为 785kW.

从这里分析可以看出,由于轻型仿形诱饵质量较轻,当光斑功率在70kW以上时,诱 饵运动状态至少变化 0.5m/s以上。

若激光器与诱饵距离 R 为 150km 左右,采用波长 λ 为 1.315µm,光束质量 β 为 1.2 的激光器,且设激光大气传输效率 η 为 0.25,那么激光器总功率可由: $P = \pi \lambda^2 R^2 I \beta^2 / \eta \cdot D^2$ 计算可知:若 D 取 4.68m (此时光斑直径为 10cm),对于光斑功率密度 $I = 1 \text{kW/cm}^2$ (此时光斑功率为 78.5kW)时,则 P 约为 3×10⁵W.由此可知,若地面上脉冲激光器功 率在 3×10⁵W 以上,就可使 150km 高空的诱饵状态发生明显变化。

2.2 强激光烧蚀诱饵引起的运动状态变化

其次,我们来分析一下激光烧蚀诱饵的情况。假设铝箔诱饵表面反射率为 0.8,由 $(1-R)I_{0}t_{mr} \ge \rho l_{0}[C_{B}(T_{m} - T_{0}) + L_{m}]$

式中, I_0 为照射平均功率密度, ρ 为材料密度, C_B 为材料比热, L_m 为材料熔化热, l_0 为目标厚度($l_0=0.2$ mm)。

这样,当 $I_0 = 1$ kW/cm²,则熔化时间 $t_{mr} \approx 0.3$ (s);

当 $I_0 = 10 \text{kW/cm}^2$,则熔化时间 $t_{mr} \approx 0.03$ (s)。

因此,对铝箔诱饵,当照射光斑功率密度达到一定值,其在短时间内就会达到熔化 状态,这样铝箔承受的压强就大大降低了,尽管诱饵内气体压强较小,但气体还是很容 易穿孔射击,为此,我们讨论气体喷出对诱饵运动状态的影响。

气体在喷出前是滞止状态,设此时温度为 T_0 ,又设喷气速度为 V_{π} ,喷气前后音速为 a_0 、a,喷气孔出口与喉部截面积分别为F、F',由流体动力学理论可以推导:

$$\frac{F}{F^{*}} = \frac{1}{M} \left[\frac{2 + (k-1)M^{2}}{k+1} \right]^{k+1/2(k-1)}$$

$$a/a_{0} = \left[1 + (k-1)M^{2}/2 \right]^{1/2}$$

$$M = V_{\frac{\pi}{2}} / a$$

$$a_{0} = \sqrt{kRT_{0}}$$

式中, k 为绝热指数, M 为马赫数。

由上述关系式我们可以看到,当*F*=*F**,*M*=1,此时气流将稳定在音速流动。当*F* >*F**,*M* 有两个值,即当外界压强较高时(此时内外压强差都较小),气流速度为亚音速; 当外界压强很低时,由于气体喷出产生冲击波,气流将以超音速流动,此时,*M*>1.

因此,当诱饵内气体喷出时,由于此时外界压强很低,故喷气速度为超音速。为了 分析简便,假设此时气体流动速度为音速,即*M*=1,*T*。取100km高度左右的环境温度 (约为195~200K)

则 $V_{\neg} = M_a = a$ (M=1) 又 $a = ((k+1)/2)^{1/2} \cdot a_0$ (k 为绝热系数) ≈ a_0

故 $V_{\neg} = \sqrt{kRT_0 \approx 282 \text{m/s}}$

由于气体喷出,势必传递冲量给诱饵,则诱饵运动状态发生变化。设此变化为 ΔV ,

则

又

$$\Delta V = -m_{\xi} V_{\xi} / M_{\mu}$$

 $\approx 3.7 \text{m/s}$

另外,如果激光功率更大,使诱饵大部分汽化,诱饵质量更轻,运动状态更易改变。

3 诱饵受激光照射后,轨道偏离的动力学模型

因为轻型仿形诱饵一般在自由段施放,因此,模型不考虑空气阻力,且把诱饵看成 质点。假设打击后诱饵轨为 I轨道,打击前轨道为 I轨,现将动坐标系 o-xyz 固连在 I轨 道上, x 方向指向矢径方向, y 方向为诱饵运动方向, z 方向遵守右手定向, 故打击前后 运动方程如下:

由上述关系,便可计算出在 I 轨道上任一点 r2 上诱饵运动状态变化引起的轨偏量 x、 y, z.

4 轨道偏离的计算结果

作为例子,我们假设轨道 [上某点的参数为:

$$\begin{cases} r_2 = 6451.45 \text{ km} \\ \dot{r}_2 = 4.0 \text{ km/s} \\ \theta = 0.8608 \end{cases}$$

又设激光打击诱饵后,引起诱饵速度变化为 ΔV_x 、 ΔV_y 、 ΔV_z ,则上述模型结构初始 12

量为:

$$\begin{cases} x_0 = \Delta V_x \\ x_0 = 0 \end{cases} \begin{cases} y_0 = \Delta V_y \\ y_0 = 0 \end{cases} \begin{cases} z_0 = \Delta V_y \\ z_0 = 0 \end{cases}$$

这样,可对上述模型数值积分,所得计算结果如下图:

图 5 z 方向偏离量随时间变化曲线

从图中可以看出:

(1) 在时间不长的情况下,偏离量随时间几乎呈线性变化。

图 7 强激光作用前后约 2s 内轨道偏移情况

(2) 无论哪个方向上偏离变化, 所产生的效果相同。

(3) 即使运动状态变化量较大,在几十秒后,偏离量还是较为显著。

5 结束语

通过上述分析可知,对于充气式轻型仿形诱饵,由于其质量较轻,本身壁厚较小,即 使强激光功率不是很大,也容易破裂,以致诱饵内气体喷出,传递一部分冲量,加上强 激光照射传递一部分冲量,这样,尽管激光功率不是特别大,也会使充气式轻型仿形诱 饵明显偏离原来轨道,而失去迷惑对方的目的。

感谢任萱教授提供宝贵建议。

参考文献

1 Messitt D. laser ship Defence System of the Future LEOS'90 conference Diyesi IEEE. N. Y. future, 1990

2 Meclatchy, A. Selby J E A. Atmospheric Atfenation of HF and DF laser Radoation. AD-747010, 1972

3 蒋汉文,邱信立.编著.热力学原理及应用.上海:同济大学出版社、1990

(责任编辑 张 静)