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Abstract　Consistency is one of the m ost fundamental syntact ic concepts in m athemat ical logic.

By t reat ing consistency in an abst ract w ay , Smullyan presented abst ract consistency class, and proved

the socalled Sm ully an′s unify ing pr inciple. In this paper, considering various propert ies possessed by

the class o f consistent sets o f w f fs in f irst-order logic sy stem , w e generalize the concept of abst ract

consistency class into the m ost general form - univ ersal abstract consistency class, and further prove

its universal unify ing principle. T his result can be used to prove the completeness theo rem s of f irst-or-

der logic sy stem and the universal refutat ion m ethod propo sed by us.
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　　摘　要　协调性是数理逻辑中最基本的语法概念之一。Smully an 提出了抽象协调类概念, 并证明了相应

的 Smullyan 合一原理。通过考察协调合式公式集类所具有的种种性质, 本文将抽象协调类概念推广至最一般

的形式——广义抽象协调类, 并证明了相应的广义合一原理。这一结果可以用于证明一阶逻辑形式系统和我

们所提出的广义反驳方法的完备性。
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The study of the interplay betw een syntax and sem ant ics is fundamental to the study of logic sy s-

tems. The syntact ic conceptû- of der ivabi lity corr esponds to the semant ic concept û= of consequence.

As a syntact ic counterpart of satisf iabi li ty , consistency is one of the most fundamental concepts in

mathem at ical log ic. To prove theorem:

Each consi st ent set #　of sentences has a model

in f irst-o rder logic system, based on the consistency of # , w e usually build our model ( called the

canonical model ) out of syntact ical mater ials
[ 1, 2] . By abst ract ly considering various propert ies po s-

sessed by the class of consistent sets o f sentences, Smully an proposed a concept of abstract consi st ency

class, and proved the so-called Sm ully an′s unify ing pr inciple[ 3, 4] . Smullyan′s unifying principle is a

generalizat ion o f the above theorem, w hich can y ield a variety of important m etatheor em s. For exam-

ple, the completeness theorems o f the f ir st-or der logic sy stem, the semantic tableau method or theR-

ref utation method can be proved by means of Smullyan′s unifying principle through const ruct ing their

abst ract consistency classes respect iv ely
[ 5] .

In this paper, by considering various propert ies possessed by the class of consistent sets o f w f fs in
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first-order log ic system, we generalize the concept of the abst ract consistency class into the m ost g en-

er al form—— univ ersal abstr act consi st ency class, and further pro ve its univ ersal uni f y ing p rincip le.

This result can be used to pr ove the completeness theorems of first-order logic sy stem and the univ er-

sal ref utation method
[ 6]

proposed by us.

1　Universal Abstract Consistency Class

First w e int roduce som e terminolog ies and no tat ions. T he rest follow s[ 5] . For each set X , let P
( X ) the pow er set o f X , and # X the cardinality o f X . N deno tes the natur al num ber set .

Lemma 1. 　If X be an inf inite set , then there exist tw o subsets X′, X″o f X such that X = X′∪

X″, X′∩ X″= Á and # X′= # X = # X″.

Let F be a first-o rder lo gic system . Its connectiv es are ～ and ∨, it s quantif ier is P , w hile the

rest connect iv es and quantif iers are just abbreviations. There are no var iables except individual vari-

ables in F . Thus al l predicate and funct ion symbols are constants. Assume that there are arbit rarily

many funct ion constants and predicate constants ( at least one predicate constants) in F . For each n

∈ N , Funct ( n) denotes the set of n-ar ity funct ion constants in F , and P red( n) the set of n-arity

pr edicate constants in F .

2 is the alphabet of F , and V ar is the countably inf inite set of individual variables of F . T erm is

the set of terms of F . L(F ) is the set of w ffs of F . □ means empty disjunct ion. Let L
~

(F ) =

L(F ) ∪ {□} . We r egard A ∨□ and □∨A as abbreviat ions for A . Obv iously, □ is unsat isf iable.

An interpretat ion I= < D,I0> of F consists of a non-empty setD and a m apping I0 . A func-

tion R: Var →Dis called an assignment in I. 2I deno tes the set of assignm ents in I. For each t∈

T erm and A ∈L(F ) , w e useI( t ) ( R) and I ( A ) ( R) to represent their semantic values respect iv ely .

Definition 1. 　Assume that # A L
~

(F ) , A ∈L(F ) and y 1,⋯, y k( k E 0) are all f ree variables

w hich occur in～ PxA . If y 1 ,⋯, yk have no bound occurrences in A and there is a k-arity funct ion con-

stant g of F w hich does not occur in # ∪ {A } , then g( y 1 ,⋯, yk ) is called a S kolem term of ～ PxA

w ith resp ect to # , w her e g is the co rresponding S kolem f unctor .

Clearly, g( y 1 ,⋯, y k) is f ree ( subst itutable) fo r x in A , hence û- ～ S
x
g( y

1
,⋯, y

k
) A = ～ PxA .

Definition 2. 　Assume that A ∈L
~

(F ) , x is a bound var iable of A and y does not o ccur in A .

K
x
yA denotes the r esult gained by r enaming designated bound occurrences of x w ith y in A .

Obviously, û- K
x
yA ≡ A .

Definition 3. 　Assume that # A L~ (F ) .

( 1) We say that there ar e enoug h f unct ion constants in F , if f for each n∈N, Funct ( n) is inf inite.

( 2) We say that ther e ar e the most f unction constants in F , iff for each n ∈ N, # Funct ( n) =

# Funct( 0) E # Var and # Funct( 0) E # P red ( n) .

( 3) We say that # is suf f iciently pure in F , if f for each n∈N, there ar e # L(F ) n-arity func-

tion constants o f F w hich do no t occur in # .

Lemma 2. 　If there are the m ost function constants in F and # A L
~

( F ) is a finite set , then #
is suff icient ly pure in F .

Definition 4. 　LetHA P(L~ (F ) ) .

( 1) H is closed under subsets if f w hen # ∈Hand #′A # , then #′∈H;

( 2) His of f ini te char acter if f for each # , # ∈Hif f ev ery f inite subset of # is a member of H.

Obviously, ifHA P(L
~

(F ) ) is o f finite character, thenHis closed under subsets.

The concept of universal abst ract consistency class is g iven as fol low s.

Definition 5. 　IfHA P(L
~

(F ) ) sat isf ies:

( 1) H is closed under subsets;
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( 2) Assume # ∈Hand A , B ∈L(F ) , then

a) □| F;

b) If A is an atom ic for mula, then A | # or ～ A | # ;

c) If A ∈# , x is a bound var iable of A and individual variable y does not occur in A , then # ∪
{K

x
yA } ∈H;

d) If～～ A ∈ # , then # ∪ {A } ∈H;

e) If A ∨ B ∈ # , then # ∪ {A } ∈Hor # ∪ {B } ∈H;

f ) If ～ ( A ∨ B ) ∈ # then # ∪ {～ A , ～ B} ∈H;

g ) If P xA ∈ # and term t is f ree for x in A , then # ∪ {S
x
t A } ∈H;

h) If ～ PxA ∈ # and g( y 1 ,⋯, yk ) is a Skolem term of ～P xA w ith respect to # , then # ∪
{～ S

x
g( y1,⋯, y k) A } ∈H;

then w e say that His a univer sal abst ract consi st ency class of F .

According to Definit ion 5, w e can conclude that

( 1) Obv iously, both Á and { Á } are universal abst ract consistency classes of F ; neither

P(L(F ) ) nor P(L
~

(F ) ) is a universal abst ract consistency class of F ;

( 2) If His a univer sal abstract consistency class o f F , then Á ∈Hand {□} | H;

( 3) If His a univer sal abstract consistency class o f F and # ∈H, then□ | # .

Proposition 1.　LetH1 = {# AL
~

(F ) û# is consistent } , thenH1 is a unviersal abst ract consis-

tency class of F .

It is by means o f various propert ies of H1 that w e propose the univ er sal abst ract consistency

class.

Lemma 3. 　Assum e that H is a unviersal abst ract consistency class of F . Let

H′= {#′A L
~

(F ) ûif # A #′is a f inite set , then # ∈H}

ThenHAH′andH′is a unviersal abstr act consistency class of finite character.

2　Universal Unifying Principle

In order to prove the univer sal unify ing pr inciple for the univ ersal abst ract consistency class, w e

int roduce tw o im po rtant lemm as here.

Lemma4. 　Assum e that HAP (L
~

(F ) ) is a universal abst ract consistency class of finite char-

acter and Ais a lim it ordinal. If {# NA L~ (F ) ûN< A} A Hsatisfies:

# 0 A # 1 A ⋯ A # NA ⋯,　N< A
then ∪

N< A
# N∈H.

Proof. 　It is obvious sinceH is closed under subsets and o f finite character. 　□

Lemma 5.　Assum e that His a universal abst ract consistency class of F w hich is of finite char-

acter and # ∈H. If # ≠ Á is suf f icient ly pure in F , then ther e is # *
∈Hw hich sat isf ies:

1) # A # * ;

2) # *
is suf ficiently pure in F ;

3) If A ∈L
~

(F ) and # * ∪ {A } ∈H, then A ∈ # * .

Proof. 　See [ 7] fo r details . 　□

Theorem 1　 ( U niv ersal U nifying Pr inciple) . Assume that H is a universal abst ract consistency

class of F . If # ∈His suf f icient ly pure in F , then # is sat isf iable.

Proof. 　T he theorem is t rivial if # is em pty , so w e m ay assume # ≠ Á . Hcan be further sup-

posed to be of f inite character by Lemm a 3. Since # is suff icient ly pure in F , it follow s f rom Lem ma

5 that ther e ex ists # *
∈Hsatisfying the condit ions 1) , 2) and 3) .

Let I = < D,I 0 > and R∈ 2I defined as follows:
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( 1) LetD= T erm, i. e. Dom ain D is the term set o f F ;

( 2) If f is a n-arity funct ion constant , then I0( f ) :Dn
→Dis def ined as fol low s:

　　　　I 0( f ) ( t1 ,⋯, t n) = f ( t 1, ⋯, tn ) ,　t1 ,⋯, t n∈D
　　If P is a n-arity predicate constant , then n-arity predicateI0 ( P) on Dis defined as follow s:

　　　　I 0( P ) ( t 1,⋯, tn ) = t rue　if f　P ( t1, ⋯, t n) ∈ # *
,　t 1,⋯, tn∈D

( 3) Assignment R: V ar →Dis def ined by

　　　　 R( x ) = x ,　x ∈V ar

To prove I and Rsatisfy ing # , w e need only pr ove the fo llow ing statement by st ructural induct ion:

　　　　 If E ∈ # * , then I( E ) ( R) = tr ue .

We consider the follow ing cases:

( 1) E is an atomic formula, obv iously I( E ) ( R) = tr ue .

( 2) Suppose E ∈ # *
and E = ～ A .

( a) A is an atom ic fo rmula. Since # * ∈Hand ～A ∈# * , w e haveA | # * . ThusI( A ) ( R)
= f alse, therefo reI( E ) ( R) = I(～ A ) ( R) = tr ue.

( b) A = ～ B . T hen ～～ B ∈ # * , so # * ∪ {B} ∈H. so B ∈ # * . Thus I( B ) ( R) = true

by induct ive hypothesis, hence I( E) ( R) = true.

( c) A = B ∨ C. T hen ～ ( B ∨ C) ∈ # *
, so # *

∪ {～ B , ～ C} ∈H. T hus # *
∪ {～B}

∈Hand #*
∪ {～ C} ∈H sinceH is closed under subset s, so ～ B ∈ #*

and ～ C ∈ #*
. H ence

I(～ B ) ( R) = tr ue = I(～ C) ( R) by induct ive hypothesis, so I(～ E) ( R) = I(～ ( B ∨C) ) ( R) =

tr ue . ( d) A = P xB. Then～ P xB ∈ # * . Let x 1 ,⋯, x m( m E 0) be all bound variables occurred

in B . Since Var is countably infinite, then there ex ist m dist inct individual variables z 1 ,⋯, z m w hich do

not o ccur in～ PxB . We take each bound occurrence of x 1, ⋯, x m in B as designated bound occurrence,

and let H= K
x

1z
1
⋯K x

mz
m

, then H(～ PxB ) = ～ PxH( B ) ( note that ev en for som e i( 1F i F m ) such that

x i = x , w e do not renam e the non-designated bound occur rences of x in the most outer level of ～

P xB) . T hus # * ∪ {～PxH( B ) }∈H, so ～P xH( B) ∈# * . Let y1 ,⋯, y k( k E 0) be all f ree variables

occurred in ～ Px H( B ) , then y 1,⋯, y k, z 1 ,⋯, z m are dist inct each other , and none o f y 1 ,⋯, yk has a

bound occur rence in H( B) . Since # * is suf ficient ly pure, then there is a k-arity funct ion constant g

w hich does not occur in # *∪{ H( B ) } . Hence g( y 1 ,⋯, y k ) is a Skolem term of～ P xH( B) w ith respect

to # *
, then # *

∪ { ～ S
x
g ( y1,⋯, yk )H( B) } ∈ H, so ～ S

x
g( y 1,⋯, y k) H( B) ∈ # *

. T her efore I ( ～

S
x
g( y

1
,⋯, y

k
)H( B ) ) ( R) = tr ue by inductive hypothesis. SinceI( g ( y1 ,⋯, y k) ) ( R) = g( y 1 ,⋯, yk ) and û- B

≡ H( B) , w e have

I(～B ) ( R[ x / g( y 1 ,⋯, y k ) ] )= I(～H( B ) ) ( R[ x /I( g( y 1 ,⋯, y k ) ) ( R) ] ) = I(～S
x
g( y

1
,⋯ ,y

k
) H( B) ) ( R)

= tr ue

Then I ( B) ( R[ x / g ( y 1,⋯, y k) ] ) = f alse, so I( PxB ) ( R) = f alse, so I( E ) ( R) = tr ue .

( 3) Suppose E ∈ # *
and E = A ∨ B .

Since A ∨B ∈ # *
, then # *

∪ {A } ∈H or # *
∪ {B} ∈H. T hus A ∈ #*

or B∈ # *
, hence

I( A ) ( R) = t rue or I( B ) ( R) = t rue by inductive hypothesis. Hence I ( E) ( R) = I( A ∨ B ) ( R) =

tr ue .( 4) Suppose E ∈ # *
and E = PxA .

Fo r any t∈D , then t∈ Term and I( t ) ( R) = t. Let x 1 ,⋯, x m( m E 0) be all bound variables o c-

curred in A . Since Var is countably infinite, then there are m dist ince indiv idual variables y 1 ,⋯, y m

w hich dif fer fr om x and do no t occurred in A or t. We take every bound occur rence of x 1 ,⋯, x m in A as

designated bound occurrence, and let H= K
x

1y
1
⋯Kx

my
m
, then H(Px A ) = P xH( A ) and t is f ree for x in

H( A ) . Since PxA ∈ # * and # * ∈H, then # * ∪ {Px H( A ) } ∈H, so PxH( A) ∈ #* , thus S
x
t H( A )

∈ # * . By induct iv e hypo thesis w e haveI( Sx
t H( A ) ) ( R) = tr ue . Since û- A ≡ H( A ) , then

I( A ) ( R[ x / t ] ) = I(H( A ) ) ( R[ x /I( t ) ( R) ] ) = I ( Sxt H( A ) ) ( R) = t rue.
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Because of the ar bit rariness of t , w e conclude that I( E ) ( R) = I( PxA ) ( R) = t rue.　□

Corollary 1. 　Assum e that there are most funct ion constants in F andHis a universal abst ract

consistency class of F . If # ∈His a f inite set , then # is sat isf iable.

Proof. 　It follows f rom Lemma 2 and Theorem 1 direct ly. 　□

It must be pointed out that

1) T he purity condit ion for # in the univer sal unify ing principle is real ly necessary , o therw ise #
may not be sat isf iable. For example, suppose that ther e is only one individual constant c and one 3-ari-

ty predicate constant P in F . Let # = {～ P x ( P ( x , y , c ) ∨～P ( x , y , c ) ) } andH= { Á , # } . Clear ly

His a universal abst ract consistent class o f F . But # ∈His not suff icient ly pure in F and # is un-

sat isf iable.

2) If His a universal abst ract consistency class o f F andF′is an extension of F obtained by

adding new constants to F , then Hmay not be a univ ersal abst ract consistency class o f F′, and

further there may no t ex ist a universal abst ract consistency class H′o f F′such that HAH′. For

example, it is the case w hen F′is an ex tension of F obtained by adding a new 1-arity funct ion con-

stant g.

3) For application of the universal unifying pr inciple to a concrete problem , one can alw ays as-

sume that the purity condit ion holds for # . Otherw ise, one can discuss the problem in an ex tension

F′of F . For example, to prove the follow ing proposit ion:

Proposition 2. 　Each consistent subset # o fL( F ) is satisfiable.

w e can obtain an extension F +
of F by adding # L (F ) n-arity new funct ion constants for each n

∈ N . Then # A L(F + ) is suf ficient ly pure in F + , and # is also consistent . Let

H= {#′A L
~

(F + ) û#′is consistent }

His a universal abstr act consistency class of F +
by Proposition l, and # ∈H. Hence # is sat isf iable

by the universal unifying principle.

Proposit ion 2 is the f irst form of completeness theorem of f ir st-order logic sy stem . T he second

fo rm of completeness theorem can follow from it direct ly :

Proposition 3. 　Assume that # A L(F ) and A ∈L(F ) . If #û= A , then # û- A .

3　Conclusion

Based on the concept of the abst ract consistent class, w e have proposed the concept of the univer-

sal abstr act consistency class and proved its universal unifying principle. Universal unify ing principle

is a pow erful lo gic too l for w ide applicat ions. By using it , the completeness theorems of the first-o rder

log ic system and the universal refutat ion method
[ 6]

propo sed by us can by proved.
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