跨声速母弹空腔流的数值模拟

夏刚 王承尧

(国防科技大学航天技术系 长沙 410073)

杨哓辉

(国防科技大学并行与分布处理重点实验室 长沙 410073)

摘 要 将 SLIP 格式和 LU-SSOR 隐式迭代方法结合,数值模拟了尖头母弹在开舱前后的跨声速定常流场。采用修正的 B-L 湍流模型,用轴对称 N-S 方程求解零攻角时母弹在 Mach 数 0.94 ~ 0.98 的临界气动特性和空腔流特性。开舱前母弹计算结果与实验以及 Sahu 的结果 能够很好吻合,开舱后空腔流的计算结果也给出了合理的理论分析。

关键词 临界气动特性,空腔流,母弹

分类号 V411

Numerical Computations of Trans-sonic Dispenser Cavity Flow

Xia Gang Wang Chengyao

(Deptartment of Aerospace Technology, NUDT, Changsha, 410073)

Yang Xiaohui

(National Laboratory for Parallel and Distributed Processing, NUDT, Changsha, 410073)

Abstract The combination of SLIP scheme and LU-SSOR method is used to predict the steady-state aerodynamics of trans-sonic ogive dispenser at Mach number 0.94 to 0.98; and the modified B-L turbulence model is applied in solving axisymmetric Navier-Stokes equation. Computed surface pressures of dispenser without cave have been compared with experiments as well as Sahu's numerical results and are found to be in good agreement; The results of cavity flow are al-so found to be reasonable.

Key words Critical Aerodynamics, Cavity flow, Dispenser

90 年代, 许多国家都加快了子母弹系统的研制, 1997 年后开始装备法国空军的阿帕奇反机场型导 弹就是其中一例。这类导弹携带多枚子弹, 接近目标后打开武器舱, 投掷子弹药。投掷子弹时母弹的飞 行马赫数一般为 0.5 到 2.0, 其中大部分子母弹系统都集中于马赫数 0.8 到 1.2 的跨声速范围释放子 弹。阿帕奇反机场型导弹是亚声速防区外发射的战术空对地导弹, 投掷子弹时也处于跨声速范围。临界 气动特性发生在马赫数 0.9 到 1.1 的跨声速飞行阶段, 此时导弹的气动系数随马赫数的变化十分剧烈,

严重影响导弹的静稳定性。特别是在开舱投掷 子弹后,母弹外形发生改变,加上母弹与子弹相 互干扰,直接影响到母弹与子弹后续飞行的稳 定性。因此,准确地预测导弹在开舱前后的气动 特性,在导弹早期研制阶段具有非常重要的意 义。

最近几年,人们在数值模拟导弹跨声速绕 流方面做了大量工作,从最初的轴对称单个外 形到三维 N-S 方程解多体组合的复杂外形,发

图 1 母弹简化模型(武器舱 1 已经打开)

Fig. 1 Model geometry of the simplified dispenser projectile (Bay 1 open)

^{* 1999} 年 2 月 10 日收稿 第一作者:夏刚,男,1975 年生,博士生

展迅速。而对于导弹开舱后的跨声速流动特性,数值研究相对较少,本文的工作就是通过对轴对称开舱 流场的计算,为求解三维流场寻求一种高效准确的算法和正确的分区策略。因此,本文从轴对称 N-S 方 程出发,分别求解了两个算例:算例 1 是 SOCBT 外形^[1],由尖头,柱体和船尾构成,该算例用于检验算 法和边条处理方法;算例 2 是本文计算的母弹简化模型,用于比较母弹开舱前后的表面压力分布并检验 分区策略。

由 Jameson 和 Yoon 提出的 LU -SSOR 隐式迭代方法收敛快,适于定常流的求解。Jameson 提出的 SLIP 格式计算量小,与 LU -SSOR 方法结合,将得到高效的数值算法。

1 基本方程与数值方法

设 $\rho_{v,p,u,v,e}$ 分别表示密度、压强、直角坐标系的两个速度分量和总能, (ξ, η) 表示计算空间的一般 坐标系; 引入物理空间(x,r) 到计算空间(ξ, η) 的坐标变换,则轴对称非定常 N-S 方程可写成如下形式:

$$\frac{\partial W}{\partial t} + \frac{\partial (F - F_v)}{\partial \xi} + \frac{\partial (G - G_v)}{\partial \eta} + H = 0$$
(1)

 $idA = \frac{\partial F}{\partial W}, B = \frac{\partial G}{\partial W}, 则有$

$$\frac{\partial W}{\partial t} + A \frac{\partial W}{\partial \xi} + B \frac{\partial W}{\partial I} = \frac{\partial F_v}{\partial \xi} + \frac{\partial G_v}{\partial I} - H$$
(2)

按照Jameson 和 Yoon 提出的隐式分裂, 方程(2) 成为:

$$[I + \beta \Delta t (D_{\xi} A^{+} + D_{\xi} A^{-} + D_{\eta} B^{+} + D_{\eta} B^{-})] \delta W = -\Delta t R$$

$$R = D_{\xi} F (W^{n}) + D_{\eta} G (W^{n}) + D_{\xi} F_{v} + D_{\eta} G_{v} - H$$
(3)

其中, D^- 和 D^+ 分别表示向后和向前差分; 方程(3)中, 令 $\beta = 1$, 作LDU 分解后将 A^+, A^-, B^+, B^- 按 最大特征值分裂, 然后用 Gauss-Seidel 方法迭代, 即得LU-SSOR^[2]方法:

$$\begin{bmatrix} \frac{1}{\Delta t} + \rho \\ I \cdot \delta W_{i,j}^{*} = A_{i-\frac{1}{2},j}^{+n_{1}} \delta W_{i,j-1,j}^{*} + B_{i,j-\frac{1}{2}}^{+n_{1}} \delta W_{i,j-1}^{*} + R_{i,j} \\ \begin{bmatrix} \frac{1}{\Delta t} + \rho \\ I \cdot \delta W_{i,j} = -A_{i+\frac{1}{2},j}^{-n_{1}} \delta W_{i+1,j} - B_{i,j+\frac{1}{2}}^{-n_{1}} \delta W_{i,j+1} + \begin{bmatrix} \frac{1}{\Delta t} + \rho \\ \Delta t + \rho \end{bmatrix} I \cdot \delta W_{i,j}^{*}$$
(4)
$$W_{i,j}^{n+1} = W_{i,j}^{n} + \delta W_{i,j} \\ \rho = \rho(A) + \rho(B)$$

2 边界条件

2.1 固壁边界条件

在物面处, $\partial p / \partial n = 0$, $\partial p / \partial n = 0$; 速度要满足无滑移条件, 法向速度 $q_n = 0$; 切向速度 $q_{\tau} = 0$ 。 2. 2 远场边界条件

在本问题中, 远场边界的流动均为亚声速, 因此边条处理仍沿用 Jameson^[2]等人的方法, 即沿边界 法向, 将流动考虑成一维问题, 故而引入 Riemman 不变量。约定用下标 、*e*、*b* 分别表示无穷远来流, 与 边界毗邻的内点和边界处的取值。远场边界处, *η*固定, 则对应左右特征线的 Riemman 不变量为:

$$R = \frac{x_{\xi v} - r_{\xi u}}{x_{\xi}^{2} + r_{\xi}^{2}} - \frac{2c}{\gamma - 1} \quad ; \quad R_{e} = \frac{x_{\xi v} - r_{\xi u}}{x_{\xi}^{2} + r_{\xi}^{2}} + \frac{2c_{e}}{\gamma - 1} \tag{5}$$

它们的取值由从内点外插得到的值和自由流条件决定,由此可以求得边界处的法向分速和声速:

$$q_n = \frac{R_e + R}{2} \tag{6}$$

$$c = \frac{Y - 1}{4} (R_{e} - R_{e})$$
 (7)

如果亚声速流出,则切向速度 q_{τ} 和熵S从内点外插,在此基础上求出p, ρ ;反之,将 q_{τ} 和S 赋以自由流条件。

远场出口处,由于可以确定是亚声速出口,故p = p, ρ ,u,v 由内点外插。

3 算例与讨论

本文的计算分两部分。算例1求解未开舱导弹的跨声速绕流;算例2的计算外形如图1,分别求解 打开一个舱和两个舱时的流场特性。

3.1 开舱前的流动

前面提到,算例1的目的是检验格式、边条处理方法和分区策略,因此选择了 Sahu 在 1990年计算的 SOCBT 外形,文献[1]中有大量实验数据和计算结果(但是在小攻角条件下完成的),由于小攻角时 迎风背风面流态差别不大,故本文仍引用来与零攻角的计算结果比较。网格是用代数方法分区插值生成 两块拼接网格,并局部加密。1、2区网格数分别为 311 × 61 和 91 × 121。

计算条件按实验条件给定:

图 2 壁面压强系数, 迎风面 Sahu 计算及 Langley 实验结果:
 M = 0.96, α= 4°

Fig. 2 Long itu dinal surface pressure distribution, computed by Sahu and tested by Langley, M = 0.96, $\alpha = 4$ deg, wind side.

图 3 壁面压强系数——本文计算结果: *M* = 0.96, α= 0°

Fig. 3 Longitudinal surface pressure distribution, computational results of this

 $Re = 4.5 \times 10^{6}, T = 320 \text{K}, P = 1.0, M = 0.96, \alpha = 0^{\circ}$

两区域互相重叠一层网格,即共用两层网格,区1的流动参数及通量在边界处直接传给区域2,无 需插值,保证了格式精度不降阶,因而有利于计算的收敛。此外,这种分区策略区域间交换数据少,适于 将计算并行化。

图 2 为文献[1]的数据,图 3 为本文计算的壁面压力分布。从 *Cp* 分布曲线看,激波形态和位置,与 Sahu 的计算结果都非常接近,在此基础上,本算例中的算法直接沿用到算例 2。

3.2 开舱后的流动

算例 2 对某母弹外形做了修改,所计算的开舱流动是本文的重点。对于实际的开舱流动,是比较复杂的三维流场,需要用三维的 N-S 方程组进行模拟。作为定性分析和方法上的试验,这里采用轴对称控制方程,旨在定性地分析出母弹开舱前后气动特性的主要变化。此外,如图 1,计算的对象是简化的母弹模型,与原型不同之处就是开舱方式做了简化。考察沿周向均匀抛撒的情况,假设子弹抛出后舱部壁面成圆筒状,其半径 d 小于弹身半径 D,因此 d 的大小反映开舱的深度。参考试验模型的尺寸,这里取 d = 0.8D.。网格生成方法同算例 1,分为四个区。各区网格数分别为 131 × 61、63 × 121、243 × 61 和 151 × 121。

计算了来流马赫数从 0.94 到 0.98 的几种情况, 马赫数 0.96 比较有代表性, 因此文中只列出该马赫数下的计算结果。图 4 是打开两个舱时的流场等马赫图, 图中竖直方向的粗实线表示计算分区的边界。图 5 将未开舱、只开舱 1、以及舱 1 舱 2 都打开三种情况下的壁面压力分布绘在一张图中, 以便比

较。图6分析了空腔流的拓扑规律。

打开武器舱 1 后, 第一道激波仍然存在, 但舱的打开迫使激波位置略微前移, 使得波前加速距离缩 短,这是开舱后第一道激波变弱的主要原因。两个舱都打开后,第一道激波已退化成数道压缩波,此后气 体仍为超声速,经空腔区逐渐减速到亚声速。亚声速气流在空腔区的右边界台阶顶点上受压缩,加速、减 压,加速到超声速后又紧接着是台阶后的超声速膨胀,继续减压。随后由于边界层的不断加厚使膨胀了 的超声速气流受到压缩,在空腔后产生了一道比较强的激波。从图4、图5和图6可以看出,只打开一个 舱和两个都打开, 流场特性差别相当大。 原因就在于只打开一个舱时, 第一道激波后的亚声速气流经空 腔区减速,等到了空腔区的右边界,压缩不足产生超声速气流,从而也就没有第二道激波。

Hunt 流线拓扑规律用公式表述就是:

$$\left(N + \frac{1}{2}N\right) - \left(S + \frac{1}{2}S\right) = 1 - n \tag{8}$$

Hunt 证明了二维流场或截面流线的奇点总数满足上式,轴对称流动也可以作为二维情况分析。图 6表明,计算得出的两种开舱定常流动都满足拓扑规律。

从等马赫图线看,打开舱1只有第一道激波,两舱都打开后只有第二道激波。图5的壁面压力分布

曲线表明,只打开一个舱壁面压力的影响不大。但是,如果两个舱都打开,空腔区的压力分布变化就非常大。同时也可以看到,空腔的出现主要对空腔区及一小块邻域有影响,离空腔稍远的区域基本不受什么影响。

可以推断,在有攻角飞行时,空腔将在很大程度上改变弹体的俯仰力矩以及静稳定性。空腔的存在 对于空腔前后的流场都有不同程度的影响,这也正是亚声速扰动全局传播特性的体现。

4 结论

LU-SSOR 方法结合 SLIP 格式,用于跨声速临界流计算时,收敛速度快,精度较高,在临界状态,计算结果表明空腔对弹体的压力分布影响十分显著,能够满足工程应用的要求,适合推广到母弹三维空腔流的计算。本文边界条件处理方法正确,分区策略能够保持格式精度,因此在以后的三维流场计算中可以沿用。区域边界间信息传输量少,适合于并行化处理。

参考文献

- 1 Sahu J. Numerical Computations of Transonic Critical Aerodynamic Behavior. AIAA Journal, 1990; 28: 801~816
- 2 Jameson A, Yoon S. Lower-Upper Implicit Schemes with Multiple Grids for the Euler Equations. AIAA Journal, 1987: 25:929~ 935

3 杨晓辉. 二维/三维超声速飞行器底部复杂流场的并行数值模拟研究: [博士学位论文], 国防科技大学博士学位论文, 1991

(上接第31页)

- 4 I. Tamura et al. Thermomechanical Processing of High Strength Low Alloy Steels., Butterworth & Co., London, 1988, : 1 ~ 16
- 5~ J. L . Robbins et al. Journal of the Iron and Steel Institution. 1964, 202: 804
- 6 Y. G. Nakagawa et al. Metallurgical Transaction. 1972, 3: 3223
- 7 吴凡等.见:94年秋季中国材料研讨会文集,,(新材料加工和研究技术,2),283~286,北京:化学工业出版社
- 8 K. Aihara et al. Proceedings of Mechanical Working and Steel Processing Conference Vol. 29, St. Lois, Missouri, USA, 20-22 Oct. 1991, Publ. The Iron and Steel Society, Inc., 410 Common wealth Dr. Warrendale. Pennsylvania 15086, USA, 1992: 285 ~ 290