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Some Results of the Generalized Inverses of Module Homomor phisms
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Abstract: Let %e an associative ring with 1,and M a left % module. We consider the modules by the generalized
inverses of homomorphisms, and we dassify the modules with the regular inverses of homomorphisms. We make some
necessary and sufficient conditions for a module to be direct injective, indecomposable, strongly indecomposable
respectively.
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1 INTRODUCTION

The principle of least squares was introduced by Legendre [ 1]and Gauss[ 2]to specifically handle
the problem of inconsistent systems. A very important role played by the generalized inverse is
providing best approximate solution to inconsistent linear systems. In fact, let A c""",b ", thena
vector x is a leastsquares solution of Ax = b if and only if

Ax = AA"TD
Moreover, the general least squares solution is
x=A""b+ (In- A"74)y

with A'""Y A{1,3} and arbitrary y C",where C is the complex number field. In fact, the idea of the
generalized inverses has been applied not only the finite matrices but also to operators in various
abstract settings. (See, for example, [ 3], [4].) In [ 5], Daniel L. Davis and Donald W. Robinson
introduced the generalized inverses of morphisms. With the generalized inverse of morphism, they
showed that the Axiom of choice is equivalent to the condition which every morphism DX Y of Fis
regular, where (/7 is a concrete category of nonempty sets and nonempty mappings. In this paper, we
consider the modules by the generalized inverses of homomorphisms. We first handle the modules with
the regular inverses of endomorphisms. Then, we classify the modules with the regular inverses of
endomorphisms. T hrought this paper, Z/will denote an associative ring with identity and M a unitary

left /4 module.
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2 94 MODULES AND THE REGULAR INVERSES OF %4 HOMOMORPHISMS

Let %/be an associative ring with 1, M, N(left) %/ modules. A %/ homomorphism f : M - N is
said to be regular if there exists a homomorphism g: N — M such that f gf = /. Unfortunately, most 74
— homorphisms which are of interest are not regular homomorphisms. However, we have the following
result (see also[ 5])

Lemma 1. Let %/be an associative ring with identity,f : M -~ N an %/ homomorphism. T hen f is
regular if and only if Kerf is a direct summand of M and Imf is a direct summand of N.

A %/~ homomorphism g: N —M is called a regular inverse of f: M — N if it satisfies fgf = f-
That is, g is a generalized 1- inverse of f. We denote g f{1}. A Y/~ module M is called a
decomposable module if M can be decomposed the direct sum of two proper submodules. Otherwise M
is called an indecomposable module.- We are now able to state and prove the following result.

Theorem 1. Let M be a %/~ module and = End (M). Then the following statements are
equivalent:

(i) M is an indecomposable module;

(ii) 2 is regular if and only if either & is 0 or & is a unit;

(iii) The set of all non— zero regular endomorphisms of M is the group End” (M).

Proof (i)= (ii), Let M be an indecomposable module. If =: M - M is regular, then there exists
W: M - M such that ® W= = = . [t follows from Lemma | that ker ® and Im = are direct summands
of M.

If welet = # 0,then Ker ®# M and Im=# 0. Since M is an indecomposable module, We know

that Ker® = 0 and Im= = M. Therefore & is an automorphism-
-

12

Conversely ,if 2 = O or £ is an automorphism, then = is reguler,since 0- 0- 0= 0 and = =
=1

T
I
1

(ii) = (iii) is obvious.

(iii)= (i) Assume M is a decomposable module, then there exists Mj such that M= MY M2, Mi#
0 and MjZ M(j= 1,2). Let Pi: M - M1 be the canonical projection, and i1: M1 - M the canonical
injection. Then iip1 End (M) and (iip1) - (1) (ép1)= (ip1) . Since iip 1 0 it follows form (iii)
that (iip1) End (M) .That is, i1p 1is a unit. But the endomorphism 1p 1is not a unit, since i1p1 is not
a surjective 7/ homomorphism. Therefore M is an indecomposable module.

We denote by RF(M) the regular set R(M) {0} of End (M), and denote R(M) the set of all non
— zero regular endomorphisms of M. For example, Z can be considered to be a Z— module, Z is an
indecomposable module, then R#(Z) =Z>.

We say that a ring Z/is connected if the topological space Spec Z/is connected, this is the same
as saying that the only idempotents in &//are 0 and 1. By the previous theorem, we have the following
consequence[ 6, P. 63].

Corollary 1.1f M is a % module, then M is an indecom posable module if and only if End(M) is
connected.

A strongly indecomposable module is an indecomposable module. Let M be an injective
indecomposable module and J be the Jacobson radical of endomorphism ring End(M). Since End(M) is
alocal ring,J is the unique maximal ideal of End (M).Thus we have

Corollary 2. If M is a injective indecomposable module, then R(M)= End (M) - J.

Note that simple modules are indecomposable, but conversely it is not true. In fact, a simple

module is a strongly indecomposable module. For example, Z is an indecom posable Z— module, but Z is
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not a strongly indecomposable Z— module. M oreover, Z is not a simple module.

M) -

= &, then

Corollary 3.1f M is a simple module, then R#(M) is a division ring and R#(M )=

Let M bea %/ module. If= :M - M, =":M - M are endomorphisms such that
it is not necessarily true that ® '=® ='= =' But if Y= ='= ="' then = W= = = and W= W= W.
Moreoer, if ® Rr(M),="' = {1}, then it is not necessarily true that P Rr(M) from Lemma 1,
However, there exists a W (l?l} such that W Rr(M).In general,if ® Rr(M), W Rr(M),then it
is not necessarily true that

(a) =+ W Rr(M),

(b) 2W¥ Rr(M),

In particular, if M is a simple module, it follows from corollary 3 that the two cases above are

~ ~ I~
NN

true, and RF(M) is a division ring.

Corollary 2. The following statements' for a %/ module M are equivalent:

(1) M is a strongly indecomposable module;

(ii) R(M)=End (M), and (R'(M).,+ )is a semigroup, where R'(M)= End(M) - R(M).

Proof. (i) = (ii) - By Theorem 1 (iii) and corollary 2.

(11)= (1). Assume that R( M) = End (M) and R°(M) is a semigroup.Let ® End(M), ¥ R'
(M),if =¥ R(M) then ® Wis a unit. It follows that W(X W) '®  R(M),since ¥(2X W) '= . WP
(W) =TY=EY) '==W=EY = Alsoit follows that YEY T oyry =2=yy)
=, then it follows that W(= W)™ '= = 1,since W(2 W) '® R(M). Obviously (2 W)™ '= W= 1, thus
Wis a unit, W R(M) . That is impossible. T herefore R'( M) is an ideal of End (M), that is, M is a

strongly indecomposable module.

3 FURTHER RESULTS AND APPLICATIONS

Note that End (M) € R(M) S End (M), End (M) {0} S Rr(M)S End (M), then we can
classify the %/ modules by R(M) and Rr(M).In the previous results, we considered the case R #(M)
= End (M) {0}.Now we consider the case Rr(M) = End(M).

Proposition 1. Let M be a %4 module. If Re(M) = End(M) .thenFar, oM = 0, where Far,onM ,
is the flat dimension of RF(M) M.

Proposition 2. If M is a semi— simple 24 module, then Re(M)= End (M) .

The proof of propositions above are easy, so we omit it.

Since every subspace of a finite— dimensioned vector space V is a direct summand of V,thus we
have the following result.

Corollary 4. If V is an — dimensional vector spaces over a division ring, then RF(V) = End(M).

As an example we consider the linear transformations of an — dimensional vector space V over the

X n

field of complex numbers, we consider the matrices C" " as the linear transformations V -V, then we

have the following corollary.

nx n

Corollary 5. Every A C" ", there exists a B C" "such that ABA=A.

Proposition 3 Let M be a projective 7/~ module. If Rr(M) = End(M) ,then every a M, there
exists submodule Ta such that Ia is a direct summand of M, where 02 1 %/

Proof. By Lemmal and the Dual Basis theorem, the result can be obtained easily -

We denote Emo(M) = {f:N -M} f isa monomorphism,N is direct summand of M }. Also, we
denote Emo(M)={f: N-M} f N=f,f ~ =0,f Emo(M)}. Then it follows that End (M) <
Emo(M)S End(M). In case Ri(M)= Emo(M) e have the following result.

Theorem 3. The following statements for a /- module M are equivalent:



109

(i) M is a direct injective module;
(i1) Re(M)= Emo(M).

Proof. (i) = (ii) Let M be a direct injective module, introduced by W. K. Nicholson [see7] . f=
Rr(M),then it follows from Lemmal that ker= is a direct summand of M. It follows that= = W, W
ke = O,ALP b = = The'\n it follgws that = W. That is Rr(M) S ET(M). Conversely,
assume f W then f ~=f,f ~» = 0, where N is a direct summand of M,f  Emo(M). Since
M is a direct 1n]ectlve module, it follows that there exists g: M M such that gf = in. Moreover, it
follows that fgf ~=fiv=f= f A,fgf No= O—f N Thenfgf—f. T hat Ls,f Rr(M),Emo(M) <

Rr(M).Therefore RF(M) = Emo(M)

(ii)= (i).Let g: N - M be a monomorphism, where N is a direct summand of M. It follows from
Rr(M)= Emo(M) that g is regular. T hus there exists @ M —M such that f9%= g. Moreover, it follows
that gp v9&P~v= gp~, where P~ is the canonical projection of M onto N. Since g is a monomorphism

~

(left cancellabel) and P~ is an epimorphism (right cancellable), it follows that PN@= iN. Then it
follows that ivpy® = iv- in=in. Let g be iv N®then g is a homomorphism from M to M such that
gg=in. It follows from [7] that M is a direct injective module. Since every injective module is a direct
injective module we also have the following corollary.

Corollary 6. If M is an injective module, then R#(M)= Emo(M).

Suppese X= A1Y A2Y Y Awand X= B1Y B2Y YV Bu. If R(Ai), R(B;) satisfy that R(A:) =
End (Ai),R(Bj)= End B(j) and R°(Bj) is closed under the addition operation, then it follows from
Theorem 1 and Theorem 2 that n= m, and after reindexing, Ai= Bi. Now we apply the results of the
preceding section to the problem of Matlis of Krull= Schmidt's theorem. [see 8] It is known that if
the endomorphism ring of a %4 module M is a semiregular ring, then the problem of Matlis has an
affirmative answer [see 9]. Since every VN regular ring is a semiregular ring, we have the following
corollary.

Corollary 7. If M satisfies that R*(m) = End ( M), then the problem of Matlis has an affirmative

answer.
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