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模同态广义逆的一些结果
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　　摘　要: 设U为结合环(含单位元 1) , M 为左U- 模。本文考察模同态的广义逆,并用模同态的正则逆

对模进行了分类, 我们分别给出了直内射模,不可分解模及强不可分解模的充分必要条件。
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Some Results of the Generalized Inverses of Module Homomorphisms

FENG L iang-gui

( College of S cience, Nat ional Univ. of Defens e Tech nology, C han gsha 410073, China)

Abstract: L etUbe an associative ring with 1, and M a leftU- module . We consider the modules by the gener alized

inver ses of homomorphisms, and we classify the modules with the regular inverses o f homomorphisms. We make some

necessar y and sufficient conditions fo r a module to be dir ect injectiv e, indecomposable , st rong ly indecomposable

respectiv ely .
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1　INTRODUCTION

The principle of least squar es w as int roduced by Legendre [ 1] and Gauss[ 2] to specif ically handle

the problem of inconsistent systems. A very important role play ed by the gener alized inverse is

pr oviding best approx imate so lut ion to inconsistent linear sy stems. In fact , let A∈C
m×n

, b∈C
m
, then a

vector x is a leastsquares solut ion of Ax = b if and only if

A x = A A
( 1, 3)

b

Moreover, the general least squar es solution is

x = A
( 1, 3)

b + ( I n - A
( 1, 3)

A ) y

w ith A
( 1, 3)
∈A { 1, 3} and arbit rary y∈C

n
, w here C is the complex number field. In fact , the idea of the

generalized inverses has been applied no t only the finite matrices but also to operato rs in various

abst ract set tings. ( See, for ex ample, [ 3] , [ 4] . ) In [ 5] , Daniel L . Dav is and Donald W. Robinson

int roduced the generalized inverses of morphisms. With the generalized inverse of mo rphism , they

show ed that the Ax iom of choice is equivalent to the condition w hich ever y mo rphism <: X→Y of F is

regular, w here F is a concrete category of nonempty sets and nonempty mappings. In this paper, w e

consider the modules by the generalized inverses o f homomo rphisms. We f irst handle the modules w ith

the regular inverses of endomorphisms. Then, w e classify the modules w ith the regular inverses of

endomor phisms. T hr ought this paper,Uw ill denote an associat ive ring w ith ident ity and M a unitary

left U- module.
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2　U- MODULES AND THE REGULAR INVERSES OF U- HOMOMORPHISMS

Let Ube an associat ive ring w ith 1, M , N( left ) U- modules. AU- homomorphism f :M→N is

said to be regular if there ex ists a homomor phism g: N→M such that f gf = f . Unfo rtunately , mostU
- homorphisms which are of inter est are not regular homomorphisms. How ever , w e have the follow ing

result ( see also [ 5] )

Lemma 1. LetUbe an associative ring w ith ident ity, f :M→N anU- homomorphism. T hen f is

regular if and only if Kerf is a direct summand o f M and Imf is a direct summand of N.

A U- homomorphism g : N→M is called a regular inver se of f : M→N if it sat isfies f gf = f .

That is, g is a g ener al ized 1 - inverse of f. We denote g∈ f { 1} . A U- module M is called a

decomposable module if M can be decomposed the direct sum of tw o proper submodules. Otherwise M

is called an indecomposable module. We are now able to state and prove the following result .

Theorem 1. Let M be a U- module and Á ∈End ( M ) . T hen the follow ing statements are

equivalent :

( i) M is an indecomposable module;

( ii) Á is regular if and only if either Á is 0 or Á is a unit ;

( iii) T he set of all non- zero regular endomorphisms of M is the group End
* ( M ) .

Proof ( i) ] ( ii) , Let M be an indecomposable module. If Á : M→M is regular, then ther e exists

7 :M→M such that Á 7 Á = Á . It follow s f rom Lemma 1 that ker Á and Im Á are direct summands

of M .

If w e let Á ≠0, then Ker Á ≠M and Im Á ≠0. Since M is an indecomposable module, We know

that K er Á = 0 and ImÁ = M . Therefo re Á is an automo rphism .

Conver sely , if Á = 0 or Á is an automorphism, then Á is reguler , since 0·0·0= 0 and Á Á - 1Á
= 1·Á = Á .

( ii) ] ( iii) is obvious.

( iii) ] ( i) Assume M is a decomposable module, then there ex ists M j such that M= M1Ý M 2,M j≠

0 and M j≠M ( j = 1, 2) . Let P1 : M→M 1 be the canonical pr oject ion, and i 1: M 1→M the canonical

inject ion. T hen i 1p 1∈End (M) and ( i1p 1)·( i 1p 1)·( i1p 1 ) = ( i 1p 1) . Since i 1p 1≠0 it fo llow s form ( iii)

that ( i1p 1 )∈End
*
(M) . That is, i 1p 1 is a unit . But the endomorphism i 1p 1 is no t a unit , since i1p 1 is not

a sur jectiveU- homomorphism . Therefore M is an indecomposable module.

We denote by R F(M ) the regular set R (M)∪{ 0} of End ( M ) , and deno te R (M) the set of all non

- zero regular endomorphisms of M . Fo r example, Z can be considered to be a Z- module, Z is an

indecomposable module, then R F( Z) µ Z2.

We say that a ring Uis connected if the topolog ical space SpecU is connected, this is the same

as saying that the only idempotents inUare 0 and 1. By the prev ious theo rem , w e have the follow ing

consequence[ 6, P . 63] .

Corollary 1. If M is aU- module, then M is an indecomposable module if and only if End( M ) is

connected.

A str ong ly indecomposable module is an indecomposable module. Let M be an injective

indecomposable module and J be the Jacobson radical o f endomo rphism ring End( M ) . Since End( M ) is

a lo cal ring , J is the unique max imal ideal of End ( M ) . T hus w e have

Corollary 2. If M is a inject ive indecomposable module, then R(M ) = End (M) - J .

Note that simple modules are indecomposable, but conversely it is not t rue. In fact , a simple

module is a st rongly indecomposable module. For example, Z is an indecomposable Z- module, but Z is
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not a st rongly indecomposable Z- module. M oreover, Z is not a simple module.

Corollary 3. If M is a simple module, then R F(M ) is a division r ing and R F(M ) = End (M) .

Let M be aU- module. IfÁ :M→M , Á ′:M→M are endomorphisms such that Á Á ′Á = Á , then

it is not necessarily t rue that Á ′Á Á ′= Á ′. But if 7 = Á ′Á Á ′, then Á 7 Á = Á and 7 Á 7 = 7 .

M oreoer, if Á ∈RF (M ) , Á ′∈Á { 1} , then it is not necessarily t rue that <′∈RF ( M ) fr om Lemma l,

How ever, there ex ists a 7 ∈<{ 1} such that 7∈RF (M ) . In gener al , if Á ∈RF (M ) , 7∈RF (M ) , then it

is no t necessarily t rue that

( a) Á + 7∈RF (M) ,

( b) Á 7 ∈RF (M ) ,

In part icular, if M is a simple module, it fo llow s from corollar y 3 that the two cases above are

t rue, and RF (M) is a div ision ring.

Corollary 2. The follow ing statements′fo r a U- module M are equivalent :

( i) M is a st rong ly indecomposable module;

( ii) R (M ) = End
* (M) , and ( R

c(M ) , + ) is a semig roup, w here R
c(M ) = End (M) - R(M ) .

Proof. ( i) ] ( ii) . By T heorem 1 ( iii) and coro llary 2.

( ii) ] ( i) . Assume that R( M) = End
*
(M ) and R

c
( M) is a sem igroup. Let Á ∈End( M ) , 7 ∈R

c

(M ) , if Á 7 ∈R (M) , then Á 7 is a unit . It follow s that 7 ( Á 7 ) - 1Á ∈R (M ) , since 7 ( Á 7 ) - 1Á ·7
( Á 7 ) - 1Á 7 ( Á 7 ) - 1Á = 7 ( Á 7 ) - 1Á . Also, it follow s that 7 ( Á 7 ) - 1Á ·7 ( Á 7 ) - 1Á = 7 ( Á 7 ) - 1

Á , then it follow s that 7 ( Á 7 )
- 1Á = 1, since 7 ( Á 7 )

- 1Á ∈R (M ) . Obv iously ( Á 7 )
- 1Á 7 = 1, thus

7 is a unit , 7 ∈R (M ) . T hat is impossible. T herefo re R
c( M ) is an ideal of End (M ) , that is, M is a

st rong ly indecomposable module.

3　FURTHER RESULTS AND APPLICATIONS

Note that End
* (M ) A R ( M ) A End (M ) , End

* (M ) ∪ { 0} A R F (M ) A End (M ) , then w e can

classify theU- modules by R (M ) and RF (M ) . In the pr ev ious results, w e considered the case R F(M )

= End
*
(M )∪{ 0} . Now w e consider the case RF (M) = End(M ) .

Proposition 1. Let M be a U- module. If RF (M) = End(M ) , thenFdR
F
( M)M= 0, where FdR

F
(M) M ,

is the f lat dimension of RF (M )M .

Proposition 2. If M is a semi- simpleU- module, then R F(M ) = End (M) .

The proof of pr opo sit ions above are easy, so w e omit it .

Since ever y subspace of a f inite- dimensioned vector space V is a direct summand of V, thus w e

have the follow ing result .

Corollary 4. If V is a n - dimensional vector spaces over a division ring , then RF ( V ) = End(M ) .

As an example w e consider the linear t ransfo rmat ions of an - dimensional v ecto r space V over the

field of complex numbers, w e consider the matrices Cn×n as the linear tr ansformations V→V , then w e

have the follow ing corollary .

Corollary 5. Ever y A∈C
n×n , there ex ists a B∈C

n×n
such that A BA = A .

Proposition 3 Let M be a pr oject iveU- module. If RF ( M) = End (M ) , then every a ∈M , there

exists submodule Ia such that Ia is a direct summand of M , w here 0≠I△U.

Proof. By Lemmal and the Dual Basis theorem, the result can be obtained easily .

We denote Emo(M ) = { f : N→M } û f isa monomorphism , N is dir ect summand of M } . Also , w e

denote Emo(M ) = { f : N→M } ûfdûN = f , fdûN⊥ = 0, f ∈Emo( M ) } . Then it follows that End
*
( M ) A

Emo(M )A End( M) . In case R F(M ) = Emo(M ) ,w e have the follow ing result .

Theorem 3. The follow ing statements for aU- module M are equivalent :
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( i) M is a direct inject ive module;

( ii) R F(M ) = Emo(M ) .

Proof. ( i) ] ( ii) Let M be a direct inject iv e module, intr oduced by W. K. Nicholson [ see7] . IfÁ ∈
RF (M ) , then it fol low s f rom Lemmal that kerÁ is a direct summand o f M . It fo llow s thatÁ = 7d, 7d

ûker Á = 0, 7dûker Á ⊥ = Á . T hen it follow s that Á ∈Emo(M ) . T hat is RF ( M ) A Emo( M) . Conversely ,

assume f
d∈Emo(M ) , then f

dûN= f , fdûN⊥= 0, w here N is a direct summand of M , f ∈Emo(M ) . Since

M is a direct injective module, it fo llow s that there ex ists g: M→M such that gf = iN . M oreover, it

fo llow s that f
d
gf
dûN= f

d
iN = f = f

dûN , fdgfdûN⊥= 0= f
dûN⊥. T hen f

d
gf
d= f

d. T hat is, fd∈RF (M ) , Emo(M) A

RF (M ) . Therefor e RF (M) = Emo(M ) .

( ii) ] ( i) . Let g: N→M be a monomo rphism , where N is a direct summand of M . It follow s from

RF (M ) = Emo(M ) that gd is regular. T hus there ex ists U:M→M such that fdUgd= g
d. Mo reover , it follow s

that gp NUgPN = gp N , w her e P N is the canonical pr oject ion of M onto N. Since g is a monomorphism

( left cancel label) and PN is an epimorphism ( right cancellable) , it follow s that PNUg = iN . Then it

fo llow s that iN p NUg = iN·iN = iN . Let g- be iN
p
NU, then g

- is a homomorphism fr om M to M such that

g
-
g = iN . It follow s f rom [ 7] that M is a direct inject iv e module. Since every inject ive module is a direct

inject ive module w e also have the follow ing coro llary.

Corollary 6. If M is an inject ive module, then R F(M ) = Emo(M ) .

Suppese X = A 1Ý A 2Ý ⋯Ý A n and X = B1Ý B 2Ý ⋯Ý Bn . If R( A i ) , R ( B j ) satisfy that R( A i ) =

End
*
( A i ) , R( B j ) = End

*
B( j ) and R

c
( B j ) is closed under the addition operat ion, then it follow s from

Theorem 1 and T heo rem 2 that n= m, and af ter r eindexing, A iµ B i. Now w e apply the results of the

pr eceding section to the problem o f M atlis of Krull- Schmidt′s theorem. [ see 8] It is know n that if

the endomorphism ring of a U- module M is a semiregular ring , then the problem of M at lis has an

aff irmat ive answ er [ see 9] . Since ever y VN r egular ring is a sem iregular ring , w e have the follow ing

co rollary .

Corollary 7. If M satisfies that R F(m) = End ( M) , then the problem of M at lis has an af firmative

answ er .
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