振荡器相位噪声对 GNSS 接收机载波跟踪数字锁相环性能的影响^{*}

吴向宇,龚 航,朱祥维,欧 钢

(国防科技大学 电子科学与工程学院,湖南 长沙 410073)

摘 要:关于振荡器相位噪声引起的 GNSS 接收机载波跟踪数字锁相环相位抖动,目前的解析结论仍是 基于模拟锁相环的,不能说明相位抖动大小与中频积累时间的关系,因此不能有效指导高灵敏度、高精度载 波跟踪锁相环参数设计。本文首先推导中频积累输出的频率白噪声、频率游走噪声序列的功率谱,然后基于 数字二阶锁相环离散线性模型导出了环路相位抖动公式并进行了仿真验证,最后对公式进行了解析和数值 分析。分析结果表明:频率白噪声、频率游走噪声引起的二阶载波跟踪锁相环相位抖动,均随中频积累时间 单调递增,随环路带宽先递减后递增。本文推得的相位抖动公式及其随参数变化特征的分析结论,可用于具 体指导 GNSS 载波跟踪锁相环参数设计。

关键词:数字锁相环;相位噪声;相位抖动;相干积累时间;GNSS 接收机

中图分类号:TN965.5 文献标志码:A 文章编号:1001-2486(2012)01-0127-05

Impact of oscillator phase noise on carrier DPLL tracking performance in GNSS receiver

WU Xiangyu, GONG Hang, ZHU Xiangwei, OU Gang

(College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073, China)

Abstract: Present analytical conclusion of GNSS carrier tracking digital phase-locked loop (DPLL) phase jitter due to oscillator phase noise is derived based on the linear model of analog PLL. It is, however, not able to reveal the relationship between phase jitter and the coherent integration time (CIT), and it cannot guide the high sensitivity and high precision carrier tracking DPLL parameter design effectively. Firstly, this research derived the power spectral density of white frequency and random walk frequency phase noise sequences output from the phase detector. Secondly, the formulae of phase jitter were obtained based on the DPLL linear model and verified by simulation. Finally, analytical and numerical analysis on the obtained phase jitter formulae was carried out. The analysis results show that, both of DPLL phase jitter due to white and random walk frequency noise increase as the CIT grows, and decrease firstly and then increase as the loop bandwidth grows. The phase jitter formulae and the conclusions, which describe the relationship between DPLL phase jitter and the loop bandwidth and the CIT, can be used as guideline for GNSS carrier tracking DPLL parameter design.

Key words: digital phase-locked loop; phase noise; phase jitter; coherent integration time; GNSS receiver

振荡器相位噪声是 GNSS(Global Navigation Satellite System)接收机载波跟踪锁相环相位抖动的主要来源之一^[1-2]。文献[3]基于相位噪声的幂律谱模型^[4]和模拟锁相环线性环路模型,最早推导了相位噪声引起的模拟锁相环相位抖动公式。目前关于振荡器相位噪声对 GNSS 载波跟踪数字锁相环影响的研究,一直停留在总结借用文献[3]基于模拟锁相环的相关结论上^[5-7],这些结论只给出了相位抖动与环路带宽、相位噪声幂律谱系数的关系,不能说明数字锁相环离散间隔T(即接收机中频积累时间)对环路相位抖动的影

响,对这种数字锁相环借用模拟锁相环结论的适 用条件也未进行分析。

当载噪比较低时,通常需要增大中频积累时 间来提高鉴相信噪比,另一方面为满足接收机动 态需求,又要保证一定的环路带宽。此时,相位噪 声引起的环路相位抖动与环路带宽、中频积累时 间呈现怎样的变化关系,将影响到 GNSS 接收机 载波跟踪数字锁相环的最佳参数设计。本文在分 析接收机载波跟踪数字锁相环信号处理特征的基 础上,推导中频积累输出相位噪声序列的功率谱, 并基于离散环路模型导出环路相位抖动公式,进

^{*} 收稿日期:2011-05-16

基金项目:教育部新世纪人才支持计划资助项目(NCET-08-0144) 作者简介:吴向宇(1982—),男,河南南阳人,博士研究生,E-mail;wxy8203@yahoo.com.cn; 欧钢(通信作者),男,教授,博士,博士生导师,E-mail;ougangcs@gmail.com

而分析相位抖动与环路带宽和中频积累时间的 关系。

1 中频积累输出相位噪声序列功率谱

振荡器相位噪声的频域特性用相对频率起伏 $y(t) = \dot{\varphi}(t) / (2\pi f_{ref})$ 的单边功率谱密度 $S_y(f)$ 描述, f_{ref} 为标称振荡频率, $\varphi(t)$ 为振荡器相位噪声。 $S_y(f)$ 的经典幂律谱模型为^[4]

 $S_{y}(f) = h_{-2}/f^{2} + h_{-1}/f + h_{0}, 0 < f \leq f_{h}$ (1) 式中 h_{-2} 、 h_{-1} 和 h_{0} 分别为频率游走、频率闪烁和 频率白相位噪声的噪声系数, f_{h} 为噪声有效带宽。 相位闪烁和相位白噪声分量对环路相位抖动的影 响很小^[6], (1)式中已将其忽略。

设天线接收信号为 $s_r(t) = A \cdot D(\gamma t) C(\gamma t)$ cos($2\pi\gamma f_r t + \varphi_0$), A 为信号幅度, $D(\gamma t)$ 为调制数 据, $C(\gamma t)$ 为扩频码, f_r 为发射载波标称频率, γ 为 包含运动多普勒因素的速率系数, φ_0 为载波初 相。忽略伪码相位同步误差和调制数据的影响, 并假定对载波初相 φ_0 跟踪的瞬态过程已经结束, 则根据文献[8]的分析, GNSS 接收机载波跟踪环 的输入数字中频信号可被简化为 $s_r(n) = A$ cos[$2\pi(\gamma f_r - f_l)nT_s - \varphi(t_n)$], 式中 $f_l \cdot T_s$ 分别为 本振频率标称值和标称采样间隔, t_n 表示第 $n \cdot R$ 样点的采样时刻, $\varphi(t_n)$ 是由振荡器相位噪声引入 的数字中频信号载波相位噪声, 其表达式为

$$\varphi(t_n) = 2\pi\gamma f_T \int_0^{t_n} y(t) dt \qquad (2)$$

下面在分析 GNSS 接收机载波跟踪锁相环信 号处理特征的基础上,由基带信号相位噪声功率 谱推导得到中频积累后(鉴相器输入前)信号相 位噪声序列的功率谱。

1.1 载波跟踪环信号处理特征

GNSS 接收机锁相环载波跟踪的信号处理流 程如图 1 所示^[2],输入数字中频信号经过正交混 频并解扩后(假定伪码相位完全同步,图中略去 了伪码解扩过程),进行时间长度为 T 的中频积 累,积累结果作为鉴相器输入,同时积累寄存器清 零并开始下一段的积累,鉴相输出经过环路滤波, 生成载波 NCO 控制信号,控制生成两路正交的本 地载波。

NCO 生成本地载波的基础目标频率为 $\gamma f_r - f_l$,混频产生的倍频分量将被中频积累过程滤除,因此基带信号载波相位为 $\theta(n) = \varphi(t_n)$,本地载 波相位 $\hat{\theta}(n)$ 是对 $\varphi(t_n)$ 的估计。

本地载波生成、数字混频、解扩及中频积累的 处理速率为中频信号采样速率,对这些过程可按

图 1 GNSS 接收机载波跟踪信号处理流程 Fig. 1 Signal processing flow diagram of GNSS carrier tracking

模拟处理进行分析。这样, $\varphi(t)$ 、 $\hat{\theta}(t)$ 即分别为环路输入载波和本地载波相位, $\varphi(t)$ 的单边功率谱密度为^[4]

$$S_{\varphi}(f) = \gamma^2 f_T^2 S_y(f) / f^2 \qquad (3)$$

载波跟踪相位误差为 $\theta_e(t) = \varphi(t) - \hat{\theta}(t), I, Q$ 两路信号在 *iT* 时刻的积分输出为

$$\begin{cases} I_i = \frac{1}{T} \int_{(i-1)T}^{iT} A\cos\left[\theta_e(t)\right] dt, \\ Q_i = \frac{1}{T} \int_{(i-1)T}^{iT} A\sin\left[\theta_e(t)\right] dt \end{cases}$$
(4)

因此中频积累、清零过程等效于时域脉冲响 应为 $h_i(t) = [u(t) - u(t - T)]/T$ 的滤波器, u(t) 为单位阶跃函数,鉴相器输入是对该滤波器 输出的 T 间隔采样,鉴相、环路滤波和 NCO 控制 量更新等的处理速率均降为 1/T,相关分析应在 离散域进行。

1.2 鉴相输入相位序列功率谱

稳态跟踪时 $\theta_e(t)$ 较小,(4)式可近似为 $I_i \approx A \setminus Q_i \approx A \cdot \varphi_e(i), \varphi_e(i) = \varphi_I(i) - \varphi_{nco}(i),$ 其中 $\varphi_{nco}(i)$ 源自本地载波NCO,它与NCO频率控制量 之间的离散传输关系为^[9]

$$N(z) = T(z+1)/2z(z-1)$$
 (5)

 $\varphi_I(i)$ 的表达式为

$$\varphi_I(i) = \frac{1}{T} \int_{(i-1)T}^{iT} \varphi(t) dt$$
 (6)

它是对 $\varphi_I(t) = \varphi(t) * h_I(t)$ 的T间隔采样, $\varphi_I(t)$ 的功率谱为 $S_{\varphi_I}(f) = S_{\varphi}(f) |H_I(f)|^2$ 。

令 *s* = ε + j2π*f* 且 ε 无限逼近于 0⁺, 可将 *S*_{*φ*_{*l*}}(*f*) 变换为 *s* 域表示 *S*_{*φ*_{*l*}}(*s*), 求其反变换得 *φ*_{*l*}(*t*) 的相关函数 *R*_{*φ*_{*l*}}(*τ*), 再对 *R*_{*φ*_{*l*}}(*τ*) 的 *T* 间隔 采样序列做 *z* 变换, 可得 *φ*_{*l*}(*i*) 的功率谱 *Φ*(*z*)。

与频率白噪声相应的 $\varphi_i(t)$ 双边功率谱密度 $S_{\varphi_i}(f)$ 到 s 域表示的变换过程为

$$S_{\varphi_{I}}(f) = \frac{2\pi^{2}\gamma^{2}f_{T}^{2}h_{0}}{j2\pi f \cdot (-j2\pi f)} \cdot \frac{1}{T^{2}} \cdot \frac{1 - e^{-j2\pi f}}{j2\pi f} \cdot \frac{1 - e^{j2\pi f}}{-j2\pi f}$$

$$= \frac{2\pi^{2}\gamma^{2}f_{T}^{2}h_{0}}{T^{2}} \cdot \lim_{\varepsilon \to 0^{+}} \frac{2 - e^{(\varepsilon + j2\pi f)T} - e^{-(\varepsilon + j2\pi f)T}}{(\varepsilon + j2\pi f)^{4}} = \frac{2\pi^{2}\gamma^{2}f_{T}^{2}h_{0}}{T^{2}} \cdot \frac{2 - e^{sT} - e^{-sT}}{s^{4}} = S_{\varphi_{I}}(s)$$

$$(7)$$

求 S_{ar}(s) 的双边反变换并对其做 T 间隔采样,得离散相关函数

 $R_{\varphi_{I}}(n) = \pi^{2}h_{0}\gamma^{2}f_{T}^{2}T[n^{3}u(n) - (n-1)^{3}u(n-1) - n^{3}u(-n) + (n+1)^{3}u(-n-1)]/3$ (8) $\forall R_{\varphi_{I}}(n) \& z \notin \mathbb{R}^{p}$

$$\Phi_0(z) = \pi^2 h_0 \gamma^2 f_T^2 T \left[\frac{6}{\left[(z-1)(z^{-1}-1) \right] - 1}{3} \right]$$
(9)

用相同的方法可求得与频率游走噪声相应的 $\varphi_{I}(i)$ 的功率谱为

$$\Phi_{-2}(z) = \pi^4 h_{-2} \gamma^2 f_T^2 T^3 (z^4 + 26z^3 + 66z^2 + 26z + 1) / [15(z-1)^4]$$
(10)

对于频率闪烁噪声,在 $S_{\varphi}(f)$ 变换至s域表示 时将出现虚数因子,使后续处理无法进行。因此以 上求 $\varphi_{I}(i)$ 功率谱的方法不适用于频率闪烁噪 声,以下的分析只针对频率白噪声和频率游走 噪声。

2 环路相位抖动公式的推导与验证

2.1 理论推导

鉴相增益归一化的数字锁相环离散线性模型 如图 2 所示^[9],图中 n'(i)为鉴相输出噪声, F(z) N(z)分别为环路滤波器和载波 NCO 传输 函数,环路闭环传输函数为 H(z) = $F(z)N(z)/[1 + F(z)N(z)]_{o}$

对环路线性模型来说, $\varphi_I(i)$ 和 n'(i) 引起的

$$H(z) = \frac{(8B_L^2 T^2 + 12B_L T)z^2 + 16B_L^2 T^2 z + 8B_L^2 T^2 - 12B_L T}{9z^3 + (8B_L^2 T^2 + 12B_L T - 18)z^2 + (16B_L^2 T^2 + 9)z + 8B_L^2 T^2 - 12B_L T}$$
(12)

输函数为^[10]

将上式分别与 $\Phi_0(z)$ 、 $\Phi_{-2}(z)$ 一同代入(11)式,参考文献[11]的积分表,即可导出频率白噪声、频率游走噪声引起的二阶锁相环相位抖动为

$$\sigma_0^2 = \frac{\pi^2 h_0 \gamma^2 f_T^2 (27 + 12B_L T - 8B_L^2 T^2)}{8B_L (9 + 8B_L^2 T^2 - 24B_L T)}$$
(13)

$$\sigma_{-2}^{2} = \frac{\pi^{4}h_{-2}\gamma^{2}f_{T}^{2}(1215 - 1620B_{L}T + 1080B_{L}^{2}T^{2} + 192B_{L}^{3}T^{3} - 128B_{L}^{4}T^{4})}{320B_{L}^{3}(9 + 8B_{L}^{2}T^{2} - 24B_{L}T)}$$
(14)

2.2 仿真验证

本节用软件生成分别含频率白噪声和频率游 走噪声的中频载波数据,通过数字锁相环跟踪仿 真,对(13)、(14)式开平方所得的相位抖动进行 验证。中频载波数据的参数设置和生成方法 如下:

(1)设定中频载波标称频率 4MHz,采样率 f_s = 16.368MHz。生成相位噪声时,参照 GPS L1 载 频 f_T = 1575.42MHz,接收信号频率系数设为 γ = 1,相位噪声系数 h_0 、 h_{-2} 取文献[5]中温补晶振的 参考值 h_0 = 1e - 21、 h_{-2} = 2e - 20,相位噪声截止 频率取 f_h = 100kHz。 (2)用方差为 $h_0 f_s f_r^2 / 2$ 的白序列驱动采样率 为 f_s 的离散积分器^[12],生成频率白噪声相位序 列;用方差为 $2\pi^2 h_{-2} f_s f_r^2$ 的白序列驱动两级采样 率为 f_s 的离散积分器^[12],生成频率游走噪声相位 序列;再用 FIR 低通滤波器将相位噪声带宽限定 在 f_h 以内。

(3)分别将限带后的频率白和频率游走相位 噪声样点值,加到中频载波在各采样点的标称相 位上,取正弦函数即可得分别含频率白和频率游 走相位噪声的中频载波数据。

对生成的两种中频载波数据进行数字二阶锁相环跟踪仿真,环路带宽和中频积累时间取遍 B_L

(11)

图 2 数字锁相环离散线性模型 Fig. 2 Discrete linear model of DPLL

跟踪误差可独立分析。本文研究相位噪声对跟踪

环的影响,即可认为 $\varphi_{i}(i)$ 仅由 $\varphi_{i}(i)$ 引起,环路

相位抖动即指 $\varphi_e(i)$ 的标准差 σ ,其方差表达为

 $\sigma^{2} = \frac{1}{2\pi i} \oint_{|z|=1} [1 - H(z)] [1 - H(z^{-1})] \Phi(z) \frac{dz}{z}$

F(z)和(5)式的N(z),可求得相应环路的闭环传

由环路带宽为 B_L 的二阶跟踪环环路滤波器

=1~20Hz、T=1~20ms的所有组合。环路达到 稳态跟踪后,鉴相器输入信号相位的标准差即体 现环路跟踪相位抖动。统计仿真结果得到频率白 噪声和频率游走噪声引起的环路相位抖动,分别 与(13)、(14)式开平方得到的理论值作比较,所 得相对误差分别如图 3 和图 4 所示。图 4 中 B_L 取值范围 4~20Hz,是因为 B_L <4Hz 时频率游走 噪声引起的跟踪相位抖动过大,环路不能保持稳 定跟踪。

图 3、图 4 显示,频率白噪声、频率游走噪声 引起的数字二阶锁相环相位抖动仿真值,与前文 推得的理论值最大相差不超过 8%,仿真与理论 结果吻合得较好,验证了本文离散域分析方法和 所得解析公式的正确性。

图 3 仿真与理论结果的相对误差(频率白噪声) Fig. 3 Relative error between simulation and theoretical results (white frequency noise)

图 4 仿真与理论结果的相对误差(频率游走噪声) Fig. 4 Relative error between simulation and theoretical results (random walk frequency noise)

3 相位抖动与环路参数的关系

根据朱利判据^[13],可求得数字二阶跟踪环 H(z)的稳定条件为 $B_LT < 0.44$ 。显然,当 B_L 和T二者中的一个取值增大时,另一个的最大允许值 将减小。在环路稳定的前提下,对(13)、(14)式 作解析分析并借助数值分析方法可以证明,对任 意环路带宽 B_L , σ_0 和 σ_{-2} 关于中频积累时间 T的 导数均大于0,因此 σ_0 和 σ_{-2} 均随 T增大而增大。 另一方面,对任意中频积累时间 T, σ_0 和 σ_{-2} 均随 B_L 的增大先减小后增大。

若 $B_L T$ 接近于 0,(13)、(14) 式可分别简化为 $\sigma_{0,a}^2 = 3\pi^2 h_0 \gamma^2 f_T^2 / (8B_L)$ 和 $\sigma_{-2,a}^2 = 27\pi^4 h_{-2} \gamma^2 f_T^2$ /(64 B_L^3),它们与文献[5]中的模拟域分析结果一 致。定义 $\alpha_0 = \sigma_0 / \sigma_{0,a} \cdot \alpha_{-2} = \sigma_{-2} / \sigma_{-2,a}$ 来表示离 散域和模拟域相位抖动公式的差别,易知 $\alpha_0 \cdot \alpha_{-2}$ 均是 $B_L T$ 的函数,二者随 $B_L T$ 的变化关系曲线如 图 5 所示,可见在环路稳定的前提下, $\alpha_0 \cdot \alpha_{-2}$ 均随 $B_L T$ 的增大而增大。

当 $B_LT < 0.1$ 时, $1 < \alpha_0 < 1.185$, $1 < \alpha_{-2} < 1.075$,模拟域和离散域的相位抖动公式差别很小,此时可借用模拟域公式来描述数字锁相环相位抖动。当 $B_LT > 0.1$ 并逐渐增大时,模拟域相位 抖动公式的应用局限性将凸显出来。

图 5 数字和模拟锁相环相位抖动差别

Fig. 5 Phase jitter difference between APLL and DPLL

图 6 是 B_L 分别为 5、10、15、20Hz 时,频率白 噪声和频率游走噪声在不同 T 值下引起的数字 二阶跟踪环相位抖动与 T = 1ms 时相位抖动的比 值曲线。可以看出, B_L 越大,相位抖动随 T 递增 越快,且在相同 B_L 下,频率白噪声引起的相位抖 动随 T 递增的速度比频率游走噪声大。

图 7 是 T 分别为 5、10、20、40ms 时,频率白噪 声和频率游走噪声在不同 B_L 值下引起的数字二 阶跟踪环相位抖动与 B_L = 1Hz 时相位抖动的比 值曲线。可以看出,频率白噪声引起的相位抖动 在随 B_L 递减到最小值后,有显著的递增过程,且 T 越大,前段递减速度越小,同时后段递增速度越 大。频率游走噪声引起的相位抖动随 B_L 的增大 迅速递减到某一水平,之后变化缓慢,直至 B_L 增

图 7 数字二阶跟踪环相位抖动与环路带宽的关系 Fig. 7 2^{nd} order DPLL phase jitter versus loop bandwidth 大到接近于最大允许值时,相位抖动也未出现显 著的递增过程,而且不同 *T* 值下相位抖动随 B_L 变 化的速度差别不大。

4 结论与展望

本文研究振荡器相位噪声对 GNSS 接收机数 字载波跟踪锁相环的影响,推导了频率白噪声和 频率游走噪声引起的数字二阶载波跟踪环相位抖 动公式,并进行了仿真验证。研究结果表明:频率 白噪声和频率游走噪声引起的数字二阶载波跟踪 环相位抖动,均随中频积累时间单调递增,随环路 带宽先递减后递增。因此高灵敏度和高精度载波 跟踪环的设计,需要同时兼顾热噪声和振荡器相 位噪声引起的跟踪抖动与中频积累时间和环路带 宽的关系。

本文的研究方法同样适用于数字三阶载波跟

踪锁相环。在下一步的研究中,我们将给出振荡 器相位噪声引起的数字三阶锁相环相位抖动公 式,并结合热噪声相位抖动的相关结论,进行最佳 环路带宽和中频积累时间的具体设计。

参考文献(References)

- Van Dierendonck A J. GPS receivers, in global positioning system: theory and applications [M]. Vol. I, Parkinson B W, Spilker J J, Jr., eds. Washington: AIAA, 1996.
- [2] Kaplan E D. Understanding GPS principles and applications[M]. 2nd ed. Artech House, Inc., 2006.
- [3] Spilker J J, Jr. Digital communications by satellite [M].
 Prentice-Hall, Englewood Cliffs, NJ, 1977:347 357.
- [4] Barnes J A, et al. Characterization of frequency stability [J]. IEEE Trans. Instrum. Meas., 1971, IM – 20(2):105 – 120.
- [5] Irsigler M, Eissfeller B. PLL tracking performance in the presence of oscillator phase noise[J]. GPS Solutions, 2002,5 (4):45-57.
- [6] Alireza R, Demoz G E, Akos D M. Carrier loop architectures for tracking weak GPS signals [J]. IEEE Trans. on AES, 2008, 44(2): 697-710.
- [7] Rebeyrol E, Macabiau C, Ries L, et al. Phase noise in GNSS transmission/reception system [C]//ION NTM 2006, Monterey, CA, 18 20 January 2006: 698 708.
- [8] 朱祥维. 卫星导航系统时间同步关键技术研究[D]. 长沙: 国防科技大学,2007.
 ZHU Xiangwei. The stduy of key techniques in satellite navigation system time sychnronization [D]. Changsha; National University of Defense Technology, 2007. (in Chinese)
- [9] Kazemi P L, O'Driscoll C. Comparison of assisted and standalone methods for increasing coherent integration time for weak GPS signal tracking [C]//ION GNSS 21st International Technical Meeting of the Satellite Division, Savannah, GA, 16 - 19, September 2008: 1730 - 1740.
- [10] Tsui J B Y . Fundamentals of global positioning system receivers A software approach [M]. 2nd ed. Hoboken: John Wiley&Sons, Inc., 2005.
- [11] Jury E I. Theory and application of the z-transform method [M]. New York: Wiley, 1964: 297 - 299.
- Kasdin N J. Discrete simulation of colored noise and stochastic process and 1/f^a power law noise generation [J].
 Proceedings of the IEEE, May, 1995: 802 - 827.
- [13] 胡寿松. 自动控制原理[M]. 4 版. 北京:科学出版 社,2001.

HU Shousong. Principles of automatic control [M]. 4th ed. Beijing: Science Press, 2001. (in Chinese)