基于线性频率调制与解调的片上直流电压信号放大器^{*}

马 卓,潘国腾,郭 阳,谢伦国 (国际科技大学计算机学院,湖南长沙 410073)

摘 要: 片内直流电压信号摆幅较小,且受到 CMOS 工艺中被动器件一致性较差、易被高频交流信号干 扰等因素的影响,采用典型的比例放大电路难以放大这类信号。为此提出了一种基于"载频"的"电压→频率 →电压"放大方法,使用载波信号作为片上长距离传输的信号,将易受到干扰的直流信号局部化,利用前馈补 偿技术构建了具有高度线性转换关系的"电压→频率"调制电路,采用具有较高线性度的频率解调电路实现 后级电压信号的解调,有效地放大片内直流电压信号。电路仿真结果表明,所提出的放大器电路能有效地放 大片上电压信号,直流电压增益为2.4。

关键词:片内直流电压信号;放大器;线性;频率调制;解调

中图分类号:TN432 文献标志码:A 文章编号:1001-2486(2012)03-0136-06

An on-chip DC Signal Amplifier based on linear frequency modulation and demodulation

MA Zhuo, PAN Guoteng, GUO Yang, XIE Lunguo

(College of Computer, National University of Defense Technology, Changsha 410073, China)

Abstract: To amplify the DC signal is a discommodious issue, because of the on-chip DC signal has such properties as little swing, less coherence and likeliness to be interfered. In light of this, a "voltage-frequency-voltage" mode DC signal amplifier is proposed, in which the frequency is the carrier signal. This amplifier is highly linear, and is equipped with a high linearity "voltage-frequency" modulator and a "frequency-voltage" de-modulator. The simulation experimental results show that the DC signal amplifier amplifies the input voltage signal efficiently while achieving stable high linearity, and the DC gain is 2.4.

Key words: on-Chip DC signal amplifier; linearity; frequency modulation; demodulation

受到输出路径上的干扰及片内传输路径上的 损耗,片内直流电压信号的放大输出问题一直是 芯片测试中的难点。在典型的直流信号采集电路 中,比例电压放大是一种十分常见的方式,图 1 中给 出了一种典型的利用运算放大器(Operational Amplifier,OPA)进行直流电压放大的电路,利用 OPA 输入端"虚短(imaginary short)"的特性,闭环 系统能够保证 A 点的电压和待放大信号 V_{in} 保持 一致,输出电压与待采样信号 V_{in} 满足确定性的比 例^[1],表达式给出了在基于运放的电压比例电路 中的基本运算规则,其中 V_{in} 为待放大信号, V_{out} 为 放大输出的电压信号, R_0 和 R_1 为比例分压电阻 的阻值。

$$V_{\rm out} = (1 + \frac{R_0}{R_1}) \cdot V_{\rm in}$$
 (1)

但是,Lam、Chen研究了这种结构对于输入电 压信号的动态跟踪能力,指出了这种类LDO(Low

图 1 基于运放的比例电压放大电路结构 Fig. 1 The typical prootional amplifier for DC voltage signal

Dropout Regulator)形式的电压放大器的跟踪能力 十分有限^[9-10]。Mohaned 和 Xu 进一步指出这种 结构对电源噪声的敏感程度^[11-12]。针对这个问 题,本文提出了一种"电压→频率→电压"的放大 模式,并设计了具有极高线性度的"电压 – 频率" 调制与"频率 – 电压"解调电路,实现片内直流电 压信号的有效放大输出。信号放大过程被有效分 解为调制与解调两个步骤,能有效控制信号增益; 将易受干扰的直流信号有效地局部化,长距离传输使用交流信号作为"载波",提高了放大过程的抗干扰能力;"调制"与"解调"过程均具有高线性度的转换关系,极大地提高了整体放大电路的线性化程度。

基于频率调制与解调的电压信号放大 模型

对于直流电压信号放大而言,所实现的目的 就是将待放大信号乘以一定的系数,并驱动相应 的负载,这个关系如式(2)所示,其中k为比例系 数, V_{in} 和 V_{out} 分别为待放大电压和放大后的电压 信号。对应图1中的结构,式(1)中该比例系数 由分压电阻 R_0 和 R_1 的阻值确定。

$$V_{\rm out} = k \cdot V_{\rm in} \tag{2}$$

令比例系数 k = k₁ · k₂ · ··· · k_n,则式(2)可 改写为式(3)的形式。

$$V_{out} = k_1 \cdot k_2 \cdots k_n \cdot V_{in} \tag{3}$$

考虑式(3)的可实现性,定义如图 2 的传输 系统,将比例系数 k 分解为三级比例系数,其中 k_1,k_2,k_3 为各级的比例系数。三级开环传递函数 如式(4)或(5)所示。

$$u_o = k_3 \cdot u_e = k_3 \cdot k_2 \cdot u_c = k_3 \cdot k_2 \cdot k_1 \cdot u_i \quad (4)$$
$$u_o = k_3 \cdot t_e = k_3 \cdot k_2 \cdot u_c = k_3 \cdot k_2 \cdot k_1 \cdot u_i \quad (5)$$

第一种方式为信号传播方式不变的放大过程,即图 2 中第二级 k₂ 的输出保持 u_e 的形式和物理信号载体,在这种方式下,三级开环传输系统中信号的物理形式保持不变。另一种方式是在中间级的传输过程中使用其他信号物理形式,如图 2 中第二级 k₂ 的输出使用了 t_e 的形式,这正是一种应用"调制 – 解调"技术的传输模型。

图 2 用于比例放大的三级开环传输系统 Fig. 2 Triple stages transform system for proportional amplify

对于第一种方式而言,由于信号的物理形式在 传输过程中没有发生改变,因此该模型适合高电压 增益的比例信号放大。但是在复杂系统芯片 (System-on-Chip,SoC)中,供电电压十分有限,并且 信号传递路径上可能存在复杂的电磁环境,信号传 递路径较长,在信号放大的中间级使用适合的信号 物理形式显得十分重要,第二种方式更为有效。

2 压控频率调制

应用于电压信号和频率信号之间的信号调制 问题是一个典型的电压控制产生振荡的问题,可 以采用压控振荡器来实现。图 3(a)是典型的电 压控制振荡模型,图 3(b)是一种常见的压控环形 振荡器(Voltage Controlled Oscillator, VCO)结构, 能够将控制电压调制成为交流振荡信号^[2]。相 对于差分结构的 VCO 而言,图 3 这种单端结构的 VCO 结构更为简单,并且具有更宽范围的输出频 率^[3-4],适合载波调制领域的应用。

Fig. 3 A typical model, structure and $K_{\rm VCO}$

curve of voltage controlled oscillator

但是,图 3 中的典型 VCO 结构却不适合电压 信号测量领域,式(16)给出了这种环形振荡器中 单元延迟与控制电压的关系^[5],从式(16)中可见 环路的振荡频率 ω 与环形振荡器的输入电压 V_s 之间存在非线性的对应关系,其中 C_{load} 为延迟单 元的负载电容, λ 为晶体管的沟长调制系数, t_a 为 单级延迟单元的延迟。同时,用于提供 V_s 的调整 管 MP 也是一种非线性元件,因此环路的振荡频 率 ω 与 VCO 的控制电压 u_c 表现为复杂的高阶非 线性特性,这种高阶的非线性如图 3(c)中频率与 电压的关系曲线,其中 VCO-1 ~ VCO-5 分别为图 3(b)中的 VCO 采用不同电路参数的实现结果。

$$\frac{1}{\omega} = n \cdot t_d = n \cdot (-0.4 \cdot C_{\text{load}} \cdot \lambda \cdot V_s^2 + 0.5 \cdot \frac{C_{\text{load}}}{I_D} \cdot V_s)$$
(6)

对于信号测量而言,非线性的负面影响是显 而易见的。VCO环振中连接两级反相延迟单元 的电路节点的电压变化可以等效为 RC 电路的充 放电过程,因此用图解的方法能够非常清晰地展 现出这种非线性的形成过程。图 4 中给出了这 种非线性的关系,其中曲线 $V_{s1} \sim V_{s10}$ 表示在不同 V_s 时前述节点电压随时间的变化曲线。对图 4 (a)中所有节点电压达到对应 V_s 的 90% 的点拟 合曲线 Cur,即为电压与周期的曲线。进一步地, 可以推演出图 4(b)中频率(1/t)与电压 V 的关系 曲线,显然这条曲线具有复杂的非线性关系。换 言之,如果用上述这种环形振荡器,仅可能在一个 很小的控制电压范围内实现"近似的"线性。

事实上,图 4(b)中的这种复杂的非线性关系 可以通过一种前馈修正技术来解决^[6-7]。以图 5 中的延迟链为例, $D_0 \sim D_9$ 组成了一个由 10 级反 相延迟单元构成的延迟链,同时传输门结构的延 迟单元 T*和 T**分别对节点 C 施加来自节点 A 和节点 B 的前馈信号。节点 C 的电平翻转过程 受到节点 A 和节点 B 的修正作用,使得时间常数 τ 与充电电流的关系趋于线性化。

图 4 典型环振的"频率 – 电压"响应关系

Fig. 4 The relation curve between the frequency and voltage of the typical VCO

图 5 单环前馈结构中的信号通路 Fig. 5 The signal path in A single ring

图 6 节点 C 的 V-t 关系的线性化过程 Fig. 6 Linearity on the V-t curve at the node C

进一步地,图 6 展示了上述的线性化过程。 图 6(b)中 C_{load} 为前述节点的等效负载电容, I_c 为 该过程中对 C_{load} 充电的电流。很显然,图 5 中节 点 A、B、C 的相位具有一定的顺序关系。对于图 5 中的主延迟链 D_1 、 D_2 … D_9 而言,在没有前馈 T* 和 T**通路的情况下,A、B、C 节点均只受本级延 迟单元的控制,且相位关系如图 6(a)所示,其中 节点 A 与节点 B 的相位差为 t_0 ,节点 B 与节点 C 的相位差为 t_1 ,各个节点均按照相似的充电/放电 过程完成信号翻转。当考虑 T*和 T**前馈通路 后,如图 6(b)所示,节点 A 和节点 B 分别通过与 各自相连的传输门向节点 C 补充电流,使得节点 C 的电压处于一种超指数关系上升的状态,图 6 (c)给出了这个过程。因此,可以作出在具有前 馈电流补充的情况下的节点电压曲线如图 7(a) 所示。与图 4(a)中的 Cur 曲线对比,图 7(a)中 的 Cur 曲线具有更接近于双曲率曲线的关系,因 而"频率 - 电压"具有趋近于线性的对应关系。 这种对应关系与线性关系的逼近程度受到具体的 电路参数的影响。对于节点 C 的放电阶段,也可 以有类似的线性化过程。

图 7 节点电压的变化"频率 - 电压"响应关系 Fig. 7 The relation curve between the frequency and voltage with feedforwarding

由于"电压→频率"调制过程具有接近线性的转换关系,因此该类型的压控振荡器可以完成 图 2 中 k₂ 增益级的调制与信号放大功能,其增益 表现为 VCO 的增益 K_{vco}。

3 电压信号解调

相对于"电压→频率"的调制过程,将信号还 原的"频率→电压"解调也需要满足线性转换的 要求,以满足信号测量的易用性要求。常见的,基 于电容的电流积分方法可以实现频率到电压的转 换。Hung 给出了一种利用电容电荷充分配原理 的"频率→电压"转换电路,其转换电路模型如图 8 所示^[8]。不妨假设开关 S₀ 和 S₁ 工作互斥,且输 入时钟的正半周开关 S₀ 闭合,负半周开关 S₁ 闭 合,则当第一次时钟正半周出现的时候,电容 C_{o} 和 C₁ 均被充电,其后随着时钟负半周到来,电容 C_0 的电量会被下拉电流源 I_p 释放一部分(释放 的电量与 S₁ 的闭合时间相关),当随后的时钟正 半周出现时,电流源 Ic 给电容充电的同时,电容 C₀ 和 C₁ 还会通过闭合的开关 S₀ 进行电荷充分 配,经过多次迭代之后,电容 C₁ 非接地端的电位 将保持稳定。

根据 Hung 的分析,如果令充电电流 I_c 与放 电电流 I_D 相等,在经过足够长的充放电迭代之 后,图 8 中电路的输出电压 V_O 将满足式(7)给出 的关系,其中 N 为迭代次数,t 为时钟周期。随着 迭代次数的不断增加,输出电压将固定为式(8) 给出的结果,很显然这也是一种线性的转换关系。

$$V_0 = \frac{I_c \cdot t}{C_1} \cdot \sum_{i=1}^{N} \left(\frac{C_1}{C_1 + C_0} \right)^i$$
(7)

$$V_o = \frac{I_c \cdot t}{C_1} \tag{8}$$

4 电路与仿真结果

图9是本文提出的直流电压信号放大电路

图8 基于电荷充分配的"频率→电压"转换模型 Fig.8 A "Frequency → Voltage" transformative model 整体结构。该电路由前置放大模块(PreAmplify, PA)、"电压→频率"调制模块(Interleaved Poly-Loop VCO, IPL-VCO)和"频率→电压"解调模块 (Frequency-Voltage Demodulator, F2V)组成。根 据第2节给出的技术思路,这3个模块分别完成 k_1 、 k_2 、 k_3 3 个阶段的信号放大。

基于第3节的方法,为了满足电压信号测量 应用中对于VCO线性度的需要,同时降低对被检 测信号预处理的要求,可以构建一种利用环间前 馈耦合技术的多环自交叉VCO(IPL-VCO)。图9 (b)部分是IPL-VCO的具体结构形式,16级反相 延迟单元(D_0 、 D_1 、 D_2 … D_{15})首尾相连构成环形结 构,而其中的任意9级延迟链通过常导通传输门 结构的延迟单元(T_0 、 T_1 、 T_2 … T_{15})构成子环路,即 在整个结构中存在1个由16级反相延迟单元构 成的主环形链和16个由9级反相延迟单元和1 级传输门结构的延迟单元构成的子环形链。

在 IPL-VCO 中,任何一个连接两个反相延迟 单元的电路节点除了受到本级反相延迟单元 D* 的作用外,还受到两路来自传输门结构延迟单元 的作用,也就构成了与图 5 中延迟链相同的结 构。根据第 3 节的分析, IPL-VCO 的"频率 - 电 压"线性度很高。图 10(a)是 65nm 工艺下实现 的 IPL-VCO 的 *K_{vco}*曲线,在 0.8 ~ 2.0V 的电压范 围内, IPL-VCO 的"频率 - 电压"响应具有很高的 线性度。

所示。

 $(a) K_{VCO}$ curve

Fig. 10 K_{VCO} of the IPL-VCO and the output of F2V

图 9(c)部分是根据第4节 Hung 提出的方法 实现的"频率→电压"解调电路 F2V。MOS 管 M5 ~ M8 构成的对称电流镜结构保证了充放电电流 的均衡。图 10(b)是该电路在3个典型输出频率 下的输出电压曲线,在经历足够长的时间之后,输 出电压可以达到稳定值,且稳定输出电压与输入 频率之间存在较为线性的对应关系。

此外,一般情况下,由于被检测的电压信号缺 乏足够的驱动能力,必须使用预放大模块 PA 进 行电压跟踪,完成前级放大,并供给 IPL-VCO 所 需的工作电流,PA 的电路结构如图 9(a)部分 图 10 中整体电路的输入输出电压情况如图 11 中曲线所示,其中纵坐标为电压值,横坐标为 测试样本,"□"为输入电压 V_{in},"Δ"为输出电压 V_{out}。对输出电压 V_{out}的拟合曲线表明,本文给出 的直流电压信号放大器能有效地实现直流电压信 号的线性放大,放大倍数可达 2.4。

从逻辑功能的角度分析,图 9 中的 3 个模块 共同实现了直流电压信号放大,逻辑上 3 个模块 具有紧密的承接关系。但从芯片内部电路的拓扑 结构来看,由于载波信号不易被干扰,因此用于 "频率(电压"解调的 F2V 模块可以远离被检测信 号,而只是将 PA、IPL-VCO 模块与被检测信号局 部化,甚至将 F2V 模块置于片外,利用片外的高 电源电压实现更大的放大倍数,并有效解决放大 过程中的噪声问题。

5 结 论

直流信号的放大问题是集成电路测试中的一 个难点,传统的比例放大方法不能有效消除信号 传播路径上的干扰。本文提出了一种具有极高线 性度的直流电压信号放大电路,基于"电压→频 率→电压"的分阶段放大技术,利用频率作为信 号的载体,实现对直流电压信号的有效放大,并且 由于"电压→频率"调制过程和"频率→电压"解 调过程均具有极高的线性度,被放大的信号具有 良好的可观测性。

参考文献(References)

- Shao Y L, Wang Y, Ning Z H, et al. Analysis and design of high power supply rejection LDO[C]// 8th IEEE International Conference on ASIC, ASICON 2009, October 20 - 23, 2009, Changsha, China: IEEE Computer Society, 2009: 324 - 327.
- [2] Wismar U, Wisland D, Andreani P. Linearity of bulkcontrolled inverter ring VCO in weak and strong inversion [C]// NORCHIP Conference, 2005: 145-148.
- [3] 赵振宇,郭斌,张民选,等. 一款 0.18µm CMOS 辐射加固差 分压控振荡器[J]. 国防科技大学学报, 2009, 31(6):12 -17.

ZHAO Zhenyu, GUO Bin, ZHANG Minxuan, et al. A radiation-hardened-by-design differential voltage-controlled oscillator implemented in 0.18 µm CMOS process [J]. Journal of National University of Defense Technology, 2009, 31(6): 12 – 17. (in Chinese)

- [4] 赵振宇,蒋仁杰,张民选,等. 差分压控振荡器中单粒子瞬变的研究[J]. 国防科技大学学报,2009,31(2):81-85.
 ZHAO Zhenyu, JIANG Renjie, ZHANG Minxuan, et al. Research on single-event transients in differential voltagecontrolled oscillators [J]. Journal of National University of Defense Technology, 2009, 31(2):81-85. (in Chinese)
- [5] Jan M R, Borivoje N. Digital integrated circuits—A design perspective[M]. Prentice Hall, 2003.
- [6] Sun L Z, Kwasniewsk T A, A 1. 25GHz 0. 35µm monolithic CMOS PLL based on a multiphase ring oscillator[J]. Solid-

State Circuits, IEEE Journal, 2001, 36(6): 910 – 916.

- [7] Sun L Z, Kwasniewsk T A. A quadrature output voltage controlled ring oscillator based on three-stage sub-feedback loops [C]// Circuits and Systems, 1999. ISCAS'99. Proceedings of the 1999 IEEE International Symposium on, 1999,172; 176-179.
- [8] Hung T B, Yvon S. Design of a high-speed differential frequency-to-voltage converter and its application in a 5GHz frequency-locked loop[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2008, 55(3): 766-774.
- [9] Lam Y H, Ki W H. A 0.9v 0.35m adaptively biased CMOS IDO regulator with fast transient response [J]// Proceedings of 2008 IEEE International Solid State Circuits Conference, ISSCC, Feb 3 – 7 2008, San Francisco, CA, United States, 2008: 442 – 443.
- [10] Chen H, Leung K N, A fast-transient LDO based on buffered flipped voltage follower [C]// Electron Devices and Solid-State Circuits (EDSSC), 2010 IEEE International Conference, 2010: 1-4.
- [11] Mohaned E N, Ahmed A. A 25mA 0. 13µm CMOS LDO regulator with power-supply rejection better than -56dB up to 10MHz using a feedforward ripple-cancellation technique
 [C]// IEEE International Solid-State Circuits Conference. ISSCC 2009. 2009: 330 331,331a.
- [12] Xu G, Jiang J G, Wang J K. A wide range high power supply rejection ratio and transient enhanced low drop-out regulator [C]// 6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM), 2010: 1-4.