基于子协方差阵加权的三星时差定位数据综合*

叶浩欢,柳 征,姜文利

(国防科技大学电子科学与工程学院,湖南长沙 410073)

摘 要:为提高三星时差定位系统的定位精度,需要将系统在不同时间得到的多个定位估计结果进行统计综合。本文提出了一种基于子协方差阵加权的定位数据综合算法。该算法根据单点定位精度分析结果, 先利用定位误差协方差的二维子阵的逆矩阵作为权矩阵,通过加权最小二乘估计目标空间三维坐标位置中 的其中两维,再利用 WGS-84 地球模型求解另一维坐标。仿真实验表明,相比已有算法,所提新算法可以明 显提高定位精度。

关键词:被动定位;三星;时差;多次观测;加权方法;WCS-84 模型 中图分类号:V243.2;TN95 文献标志码:A 文章编号:1001-2486(2012)05-0063-05

Data integration based on sub-covariance weighting for a three-satellite TDOA-based location system

YE Haohuan, LIU Zheng, JIANG Wenli

(College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073, China)

Abstract: To integrate multiple location estimates obtained at different time instants by a three-satellite TDOA-based passive location system, a method based on sub-covariance weighting is proposed. Based on the outcomes of the location precision analysis of a single estimate, the algorithm yields an integrated estimate of the spatial location through a two-step process: firstly, by using the inverse of the sub-covariance as the weighting matrix, it estimated two of the three coordinates through weighted least square (WLS); secondly, it calculated the last one coordinate by solving the WGS-84 ellipsoid model function of the earth. Simulations show that the proposed method, compared with the existing methods, can significantly increase the location precision,.

Key words: passive location; three-satellite; TDOA; multiple observations; weighting method; WGS-84 model

时差定位方法在军事、民用领域都有相当广 泛的应用^[1-4]。其中,三星时差定位体制由于定 位精度高、覆盖范围广等原因而在电子侦察、海洋 监视等方面具有重要价值,其典型应用如美国的 "白云"侦察卫星系统^[5]。

已有的相关理论研究大多侧重于定位算法本身,例如线性化迭代最小二乘算法^[6-7]、基于球面 模型的解析算法^[8]以及基于 WGS - 84 地球椭球 模型的解析算法^[9-10]等。然而,在卫星电子侦察 应用中,通常卫星一次过顶就能对地面的同一目 标进行长达数分钟甚至十几分钟的持续观测,期 间可产生几十甚至数百个定位结果^[11]。这种情 况下,如何对这些定位观测进行统计综合,以尽可 能提高最终的定位精度,是实际应用中面临的一 个问题。以往在工程中通常采用直接求均值的方 法,这种方法虽然简单,但显然不能达到最优的综 合效果,因为不同的定位观测一般误差大小不同, 甚至差异很大,采用相同的权值很不合理。若要 提高综合定位估计效果,必须根据定位误差信息 对不同的定位观测进行加权,文献[12]考虑了无 线通信中移动台的定位综合问题,并提出利用定 位精度几何稀释因子(GDOP)加权。然而,GDOP 虽然可以反映定位误差绝对量的大小,但它不包 含误差在各空间坐标方向上的分量之间的相关信 息,因而这种方式也不是最优的。

针对上述问题,本文将致力于利用更为精确 的定位误差信息,对三星时差定位多次观测数据 进行加权综合。考虑到基于 WGS - 84 地球模型 的解析定位算法具有速度快、精度高等优 点^[9-10],本文以该算法的定位结果作为观测值, 进行加权综合方法研究。

收稿日期:2012-03-02
 基金项目:国家自然科学基金资助项目(61002026)
 作者简介:叶浩欢(1984—),男,江西南康人,博士研究生,E-mail;yhh863911@ yahoo.com.cn;
 姜文利(通信作者),男,教授,博士生导师,E-mail;jiangwl@ nudt.edu.cn

1 定位模型与误差分析

1.1 三星时差定位模型

设在地固坐标系中,某次观测时三颗卫星的 三维空间坐标位置分别为 $O_i(x_i, y_i, z_i)$ (其中,*i* = 0,1,2 表示卫星序号,以下若无特别声明,其涵义 不变),辐射源位置为 T(x, y, z),同一辐射源信号 到达三星的到达时间(Time of Arrival, TOA)分别 为 t_i ,由此可得卫星 i(i = 1, 2)与卫星 0 的信号到 达时间差(即两路时差)分别为 $\Delta t_i = t_i - t_0$,于是 可以得到如下定位方程组^[10]:

$$\begin{cases} r_1 - r_0 = c\Delta t_1 \\ r_2 - r_0 = c\Delta t_2 \\ x^2 + y^2 + \frac{z^2}{(1 - e^2)} = a^2 \end{cases}$$
(1)

式中, $r_i \triangleq \sqrt{(x - x_i)^2 + (y - y_i)^2 + (z - z_i)^2}$ 表示目 标与各卫星间的距离,c为光速,a为地球长半轴, e为第一偏心率。方程组第三个等式表示 WGS – 84 地球椭球模型^[10],该模型假设地表上的点都 满足这一等式约束。利用三星位置以及三个 TOA 的测量值,求解上述方程组可解析地求得辐 射源位置^[10],得到单点定位观测结果。

1.2 单点定位误差分析

实际应用中,卫星位置以及 TOA 的测量都含 有误差,因而将测量值代入式(1)进行定位解算 必然引入定位误差。本文假设各测量噪声都是零 均值的高斯噪声,并且只考虑它们带来的定位 误差。

假设某次观测时各卫星的星址测量误差矢量以 及 TOA 测量误差分别为 $\eta_i = (\eta_{ix}, \eta_{iy}, \eta_{iz})^{\mathrm{T}}$ (上标"T" 表示"转置")以及 η_{iz} ,并令 $u_i = (u_{ix}, u_{iy}, u_{iz})^{\mathrm{T}}$ 表示目 标与各卫星连线所在方向上的单位方向余弦矢量 u_i $= \left(\frac{(x - x_i)}{r_i}, \frac{(y - y_i)}{r_i}, \frac{(z - z_i)}{r_i}\right)^{\mathrm{T}}, x = [x, y, z)^{\mathrm{T}}$ 表示目 标的 真实 位置 欠 是 $\hat{x} = [\hat{x}, \hat{z}, \hat{z}]^{\mathrm{T}}$ 表示 明

标的真实位置矢量, $\hat{x} = [\hat{x}, \hat{y}, \hat{z}]^{T}$ 表示此次观测 的定位结果, $dx = \hat{x} - x$ 表示定位误差矢量,则可 得定位误差协方差如下^[13]

$$\boldsymbol{P}_{dx} = \boldsymbol{U}^{-1} \left[c^{2} \mathbf{E} (\boldsymbol{\mu} \boldsymbol{\mu}^{\mathrm{T}}) + \mathbf{E} (\boldsymbol{\nu} \boldsymbol{\nu}^{\mathrm{T}}) \right] (\boldsymbol{U}^{-1})^{\mathrm{T}} (2)$$

$$\vec{x} + \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{U} = \begin{pmatrix} u_{1x} - u_{0x} & u_{1y} - u_{0y} & u_{1z} - u_{0z} \\ u_{2x} - u_{0x} & u_{2y} - u_{0y} & u_{2z} - u_{0z} \\ x & y & \frac{z}{(1 - e^{2})} \end{pmatrix},$$

 $\boldsymbol{u}_{0}^{\mathrm{T}}\boldsymbol{\eta}_{0}, \boldsymbol{u}_{2}^{\mathrm{T}}\boldsymbol{\eta}_{2} - \boldsymbol{u}_{0}^{\mathrm{T}}\boldsymbol{\eta}_{0}, \boldsymbol{0}$

文献[13]给出的上述定位误差分析结果不 含噪声方差的显式表示。考虑到各卫星的观测是 独立的,因此,本文假设三星的 TOA 测量误差互 不相关,且方差同为 σ_i^2 ,即 E[η_{ii}^2] = σ_i^2 ;另外假设 各卫星之间的星址测量误差互不相关,同一卫星 位置各坐标方向的测量误差互不相关,且方差同 为 σ_s^2 (即 E[$\eta_i \eta_i^T$] = $\sigma_s^2 I$)。这样,通过简单分析, 可得在式(2)中

$$\begin{cases} \mathbf{E}(\boldsymbol{\mu}\boldsymbol{\mu}^{\mathrm{T}}) = \boldsymbol{\sigma}_{\iota}^{2}\boldsymbol{K} \\ \mathbf{E}(\boldsymbol{\nu}\boldsymbol{\nu}^{\mathrm{T}}) = \boldsymbol{\sigma}_{s}^{2}\boldsymbol{K} \end{cases}$$
(3)

其中, $K = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ 。于是,可将式(2)进一步表

示成

$$\boldsymbol{P}_{dx} = \mathrm{E}(\,\mathrm{d}x\mathrm{d}x^{\mathrm{T}}) = \boldsymbol{U}^{-1}\boldsymbol{K}(\,\boldsymbol{U}^{-1}\,)^{\mathrm{T}}(\,c^{2}\boldsymbol{\sigma}_{t}^{2} + \boldsymbol{\sigma}_{s}^{2}) \triangleq \boldsymbol{A}\boldsymbol{\sigma}^{2}$$

$$\tag{4}$$

式中, $\sigma^2 \triangleq c^2 \sigma_t^2 + \sigma_s^2$ 为测时噪声方差与星址测量 误差的线性组合,矩阵因子 $A \triangleq U^{-1} K (U^{-1})^T$,它 只与卫星以及目标位置有关。于是将 P_{dx} 分解成 了"位置项" A 与"噪声项" σ^2 ,这两项相对独立, 意味着当测量噪声不变时, $A 与 P_{dx}$ 等价。

当三星以一定轨道飞行时,卫星位置不断变 化,导致式(4)中的因子 A 也不断变化,意味着不 同定位观测的误差也将不同,因而定位误差具有 时变特性。这种情况下,对不同时刻的多次定位 观测进行统计综合时,以往工程中常用的直接求 均值的方式不是最优的,而应根据定位误差分别 加权,以下将给出本文的加权综合方法。

2 加权综合方法

2.1 最小二乘加权综合

假设第 $j(j = 1, 2, \dots, m)$ 次观测的定位结果 以及误差分别为 \hat{x}_j 以及 d x_j ,则 $\hat{x}_j = x + dx_j$,于是, m 次观测对应的观测矢量可以表示成

$$\ddot{X} = Hx + V \tag{5}$$

式中 \hat{X} 与V同为3m维的矢量, $\hat{X} = [\hat{x}_{1}^{T}, \dots, \hat{x}_{m}^{T}]^{T}$, $V = [dx_{1}^{T}, \dots, dx_{m}^{T}]^{T}$; $H = [I_{1}, \dots, I_{m}]^{T}$, I_{j} 为3×3 的单位矩阵。假设 $C = E(VV^{T})$ 为m次观测误差 的协方差,则根据式(5)的观测模型,对目标位置 进行加权最小二乘估计^[14],易得

$$\hat{\boldsymbol{x}}_{WLS} = (\boldsymbol{H}^{\mathrm{T}}\boldsymbol{C}^{-1}\boldsymbol{H})^{-1}\boldsymbol{H}^{\mathrm{T}}\boldsymbol{C}^{-1}\hat{\boldsymbol{X}}$$
(6)

其中

$$\boldsymbol{C} = \begin{bmatrix} \mathrm{E}(\mathrm{d}\boldsymbol{x}_{1}\mathrm{d}\boldsymbol{x}_{1}^{\mathrm{T}}) & \mathrm{E}(\mathrm{d}\boldsymbol{x}_{1}\mathrm{d}\boldsymbol{x}_{2}^{\mathrm{T}}) & \cdots & \mathrm{E}(\mathrm{d}\boldsymbol{x}_{1}\mathrm{d}\boldsymbol{x}_{m}^{\mathrm{T}}) \\ & \mathrm{E}(\mathrm{d}\boldsymbol{x}_{2}\mathrm{d}\boldsymbol{x}_{2}^{\mathrm{T}}) & \cdots & \mathrm{E}(\mathrm{d}\boldsymbol{x}_{2}\mathrm{d}\boldsymbol{x}_{m}^{\mathrm{T}}) \\ & & \ddots & \vdots \\ & & & \mathrm{E}(\mathrm{d}\boldsymbol{x}_{m}\mathrm{d}\boldsymbol{x}_{m}^{\mathrm{T}}) \end{bmatrix}$$

(7)

矩阵 C 是一个 $3m \times 3m$ 的高维矩阵,直接求 逆运算的计算量大。定义 $C_{ij} \triangleq E(d\mathbf{x}_i d\mathbf{x}_j^T)(i, j = 1, 2, \dots, m)$,用以表示第 i, j 两次观测误差的互协 方差,则 $C \triangleq (C_{ij})_{m \times m}$ 。由于不同的定位观测是 在不同时刻独立进行的,因此,可以认为它们之间 的相关性为 0,即 $C_{ij} = 0$ $(i \neq j)$,将其代入式 (6),有

$$\hat{\boldsymbol{x}}_{WLS} = \left(\sum_{j=1}^{m} \boldsymbol{C}_{jj}^{-1}\right)^{-1} \sum_{j=1}^{m} \boldsymbol{C}_{jj}^{-1} \hat{\boldsymbol{x}}_{j} \qquad (8)$$

式中,*C_i*即是第*j*次观测的定位误差协方差,可以 参考式(4)得到,它是一个3×3的矩阵。需要说 明的是,式(4)的*P*_d泛指单次观测的定位误差协 方差。

以上结果似乎表明,可以利用定位误差协方 差的逆矩阵作为加权矩阵,对多次定位观测结果 进行加权综合。然而,实际上协方差矩阵 $C_{j}(j = 1, ..., m)$ 都是奇异矩阵,它们的秩为2,都不可逆。 这一点由单点定位误差协方差的表示式(4)可以 看出,该式中, U^{-1} 满秩,K的秩为2,从而使得 rank(P_{dx}) = 2(rank(·)表示求秩运算)。因此, 直接利用定位误差协方差加权是不可行的,本文 以下将针对性地解决这一问题。

2.2 子协方差阵加权综合

(1)加权方法

如前所述,单次定位观测即是解方程组(1) 的过程,因而定位结果都须满足该式中的WGS-84 地球椭球方程,意味着只要已知目标三维坐标 中的任意两维,就可以通过解方程得到另一维的 坐标。因此,只要对两个坐标方向上的观测进行 统计综合,使它们对应的误差减小,即可使最终的 估计误差减小。本文考虑X、Y两个方向,这两个 方向上的单次观测误差协方差对应于 *C_{ij}*左上角 四个元素构成的子阵,这里将其表示成*C_{ij}*。理 论上,只要*C_{ij}*可逆,利用*C_{ij}*进行加权最小二乘 统计综合,可使*X*、Y方向的误差最小。

为说明 *C_{j,s}*可逆,假设该次定位三个坐标方向的误差分别为 dx、dy、dz,则

$$(x + dx)^{2} + (y + dy)^{2} + \frac{(z + dz)^{2}}{(1 - e^{2})} = a^{2} \quad (9)$$

而目标真实位置 $\mathbf{x} = (x, y, z)^T$ 同样满足 x^2 +

 $y^{2} + \frac{z^{2}}{(1 - e^{2})} = a^{2}$,将其代人上式,并忽略误差的 平方项,有

$$xdx + ydy + \frac{zdz}{(1 - e^2)} = 0$$
 (10)

上式意味着 dy 与 dx 线性无关。这可以通过 反证法说明:假设 dy 与 dx 线性相关(即 dx = ρ dy, ρ 为常数),则由式(10)可得,dz = (1 - e²) ($x\rho$ + y)dy,即 dz 也与 dy 线性相关。dx、dy 与 dz 两两线性相关使得 rank(C_{ij}) = 1,与"rank(C_{ij}) = 2"的事实不符,因而假设不成立。由于 dy 与 dx 线性无关,使得 $C_{ji,s}$ = E((dx, dy)(dx, dy)^T)是非 奇异矩阵,因而可逆。

于是,先对X、Y两个方向的定位结果进行加 权最小二乘综合。设 $\hat{x}_{j,s} = (\hat{x}_j, \hat{y}_j)^{T}$ 为目标第j次 定位观测对应的X、Y坐标,则统计综合结果为

$$\hat{\boldsymbol{x}}_{s} = \left(\sum_{j=1}^{m} \boldsymbol{C}_{jj,s}^{-1}\right)^{-1} \sum_{j=1}^{m} \boldsymbol{C}_{jj,s}^{-1} \hat{\boldsymbol{x}}_{j,s}$$
(11)

其中 $\hat{\boldsymbol{x}}_{s} = [\hat{x}, \hat{y}]^{\mathrm{T}}$ 。在此基础上,把 \hat{x}, \hat{y} 代入地球 椭球方程,即可求解出 \hat{z} ,最终得到目标位置的综 合估计结果为 $\hat{\boldsymbol{x}} = [\hat{x}, \hat{y}, \hat{z}]^{\mathrm{T}}$ 。

根据式(4), C_{ji} 与真实的目标以及卫星位置 有关,而实际只能得到这两者的含噪观测,因而只 能利用它们对作为 C_{ji} 子阵的 $C_{ji,s}$ 进行估计。实际 中,卫星位置一般通过导航或测控得到,其误差可 控制百米以内;目标位置的观测值即是各单次定 位结果,三星时差定位体制的定位精度本来就较 高(例如当卫星轨道高度 1000km 左右时,定位误 差可控制在 km 量级^[5]),通过对所有观测点进行 统计平均,可使精度进一步提高。另一方面,由式 (4)可知, $C_{ji,s}$ 主要取决于单位方向余弦矢量 $u_i = \left(\frac{(x-x_i)}{r_i}, \frac{(y-y_i)}{r_i}, \frac{(z-z_i)}{r_i}\right)^{\mathrm{T}}$ 。一般目标与卫星 距离 r_i 可达上千 km,其量级远大于卫星及目标位 置的观测误差。因此,可以直接将卫星位置观测 以及目标定位观测的统计均值代入式(4)对 $C_{ji,s}$ 进行估计,这样产生的偏差很小,可以忽略。

另外, $C_{j,s}$ 还与测量噪声 σ^2 有关。实际应用时,在较短时间内,可以认为测量噪声不变,于是 在权矩阵计算时可无需噪声方差大小的先验信息,只需计算式(4)中的"位置项",这也是本文方 法的优势之一。

由于以上综合处理方法采用以误差协方差的 子阵构成权矩阵,因此,本文将其称为"子协方差 阵加权综合"方法,以下分析其理论精度。

(2)理论精度

设综合结果 **x** 的估计误差协方差为

$$\boldsymbol{P}_{\hat{x}} = \begin{bmatrix} \boldsymbol{\sigma}_{x}^{2} & \boldsymbol{\sigma}_{xy} & \boldsymbol{\sigma}_{xz} \\ \boldsymbol{\sigma}_{xy} & \boldsymbol{\sigma}_{y}^{2} & \boldsymbol{\sigma}_{yz} \\ \boldsymbol{\sigma}_{xz} & \boldsymbol{\sigma}_{yz} & \boldsymbol{\sigma}_{z}^{2} \end{bmatrix}$$
(12)

其中, $P_{\hat{x}}$ 左上四个元素构成的子阵即为 \hat{x}_{s} 的估计 误差协方差,若将其表示成 $P_{\hat{x}_{s}}$,则根据估计式 (11)可得

$$\boldsymbol{P}_{\hat{x}_{s}} = \Big(\sum_{j=1}^{m} \boldsymbol{C}_{jj,s}^{-1}\Big)^{-1}$$
(13)

另外,根据式(10)所示的 dz 与 dx、dy 的关系,可得

$$\begin{cases} \sigma_{xz} = -(x\sigma_x^2 + y\sigma_{xy})\frac{(1 - e^2)}{z} \\ \sigma_{yz} = -(y\sigma_y^2 + x\sigma_{xy})\frac{(1 - e^2)}{z} \\ \sigma_z^2 = -(x^2\sigma_x^2 + 2xy\sigma_{xy} + y^2\sigma_y^2)\frac{(1 - e^2)}{z} \end{cases}$$
(14)

这样,综合式(13)、(14),可以得到 **P**_s。于 是,若用精度几何稀释因子(GDOP)表示定位误 差,则可得综合处理后目标位置的理论估计误 差为

GDOP = trace
$$(\boldsymbol{P}_{\hat{x}}) = \sqrt{\boldsymbol{\sigma}_{x}^{2} + \boldsymbol{\sigma}_{y}^{2} + \boldsymbol{\sigma}_{z}^{2}}$$
 (15)

3 仿真结果

3.1 仿真场景

为了验证本文算法,采用图1所示的场景进 行仿真实验。由于不便在三维空间中表示卫星与 目标之间的相对位置关系,图中仅给出了其中一 颗卫星(A星)的星下点(即卫星和球心连线与

地面的交点)轨迹以及4个待观测目标的经纬度,用以示意目标距离星下点轨迹的相对远近。 实际上,三星轨道数据由STK软件生成,卫星高度约1100km,星间距保持在100km左右,飞行时间500s,每隔5s对各目标进行一次定位,使各目标具有100次单点定位观测。4个待观测目标在 大致垂直于 A 星星下点轨迹的方向上设置,其 中,E1 位于轨迹中心。各目标与轨迹的最近距离 分别为:E1(0km),E2(490km),E3(980km),E4 (1460km)。单点定位时,星址测量误差标准差为 150m,TOA 测时误差标准差为 80ns。

另外,在图 2 中给出了各单点观测的理论 GDOP,以便后续进行综合效果对比。图中显示 目标距卫星越远,定位精度越低;另外,从 E1 到 E4,相应的100个定位点的定位误差变化范围依 次增大。

图 2 各定位点的 GDOP Fig. 2 GDOP of each position observation

3.2 实验结果

为验证本文算法性能,将其与工程中常用的 平均权值法(即统计所有单点定位结果的均值) 以及 GDOP 加权法(即以各定位点的 GDOP 的倒 数作为权值)作对比。依次取各目标的前N(N =20,21,…,100)个定位观测点进行综合统计,通 过1000次蒙特卡罗仿真,统计各种方法处理后的 圆概率误差(CEP)^[15],结果如图 3(a)~(d) 所 示。对比图3与图2可知,通过综合处理,所有方 法均能大幅提高目标的定位精度,综合定位精度 即使比最优的单点定位精度都要高数倍以上。从 图 3(a) ~ (d) 中还可以发现, 子协方差阵加权的 效果最好,而且,它相对于其他两种方法的优势随 着定位点误差变化范围的增大而越加明显,特别 是对 E4 的综合定位精度比其他两种方法有大幅 提高。实际上,平均权值法的理想条件要求各定 位点误差相等,而 GDOP 加权法则要求误差各坐 标分量之间无相关性,当各定位点的误差变化很 大时,实际情况就大大偏离了它们的理想条件,从 而降低了它们的效果;本文方法由于能充分利用 定位误差分布的信息,因而在各种情况下均能达 到很好的处理效果。

另外,本文方法需要利用含噪的卫星及目标 位置观测值对权矩阵进行估计。为了分析由位置 观测噪声导致的权矩阵估计偏差带来的影响,分

with (a) ~ (d) for targets E1 ~ E4 respectively

别以精确位置以及含噪位置观测计算权矩阵,对 4个目标的100个定位点进行综合处理,其精度 分别如表1中的第1、2行所示。可以看出,子协 方差阵的估计偏差对最终的综合定位影响甚微。 另外,为了定量对比几种加权方法的效果,表1的 第3、4 行还给出了另外两种方法的处理效果。对 比几种方法对 E4 的综合定位精度可以看出,利 用子协方差阵加权比平均权值的效果好一倍以 上,比 GDOP 加权好 30%,充分显示了本文方法 在定位点误差变化范围较大时的优势。

表1 综合100个定位点的精度对比

Tab. 1 Comparisons of precisions after combining 100 observations

	E1	E2	E3	E4
精确子协方差加权(m)	155.5	163.2	199.7	266.0
估计子协方差加权(m)	155.7	163.1	199.9	266.3
GDOP 加权(m)	160.2	170.7	235.1	351.5
平均权值(m)	204.2	226.5	327.3	558.7

4 结 论

在一次航过观测时间内,卫星对同一地面辐 射源进行被动侦察定位时会产生多个定位观测结 果,有必要对这些结果进行统计综合处理,以提高 最终的定位精度。本文重点研究了三星时差定位 多次观测的加权综合方法。首先,为了利用更为 精确的定位误差信息进行加权,通过单点定位精 度分析,得到了误差协方差的解析表示;然后,将 定位观测表示成线性模型,推导了目标位置的加 权最小二乘估计式,但该估计式由于误差协方差 阵是奇异矩阵而实际不可用。针对这一问题,提 出了一种基于子协方差阵加权的综合算法,该算 法先利用定位误差协方差的二维子阵的逆作为权 矩阵,通过加权最小二乘估计目标三维坐标位置 中的两维,再利用 WGS-84 地球模型求解另一维 坐标。另外,本文还对算法的合理性及其理论精 度进行了分析。仿真结果表明,本文算法的综合 定位估计效果相比以往算法有很大提高,尤其是 在定位观测点误差变化较大的情况下。本文提出 的相关方法可以推广应用到其他定位体制的定位 观测数据综合问题中。

参考文献(References)

- Wang G, Chen H. An importance sampling method for TDOAbased source localization [J]. IEEE Transactions on Wireless Communications. ,2011, 10(5): 1560 – 1568.
- Martin R K, Yan C, Fan H H, et al. Algorithms and bounds for distributed TDOA-based positioning using OFDM signals
 [J]. IEEE Transactions on Signal Processing, 2011, 59(3): 1255 - 1268.
- [3] Martin-Escalona I, Barcelo-Arroyo F, Ciurana M. Passive TDOA location in mobile ad-hoc networks [C] //Proceedings. of IEEE International Congress on Ultra Modern Telecommunications and Control Systems, 2010: 1218 – 1225.

J eds. Eurocrypt 1999, LNCS, Springer, Heidelberg, 1999, 1592: 12 - 23.

- [2] Knudsen L. DEAL—a 128 bit block cipher[R]. Technical Report 151, Department of Informatics, University of Bergen, Bergen, Norway, 1998.
- [3] Wu W, Zhang L, Zhang W. Improved impossible differential cryptanalysis of reduced – round camellia [C]//Avanzi R, Keliher L, Sica F eds. SAC 2008, LNCS, Springer, Heidelberg, 2009, 5381: 442 – 456.
- [4] Zhang W, Wu W, Feng D. New results on impossible differential cryptanalysis of reduced AES [C]//ICISC 2007, LNCS, Springer, Heidelberg, 2007, 4817: 239 – 250.
- [5] MalaH, Shakiba M, Dakhilalian M, et al. New results on impossible differential cryptanalysis of reduced – round camellia
 [C]//SAC 2009, LNCS, Springer, Heidelberg, 2009, 5867: 281 – 294.
- [6] Wang W, Wang X. Impossible differential cryptanalysis of CLEFIA - 128/192/256 [J]. Journal of Software, 2009, 20 (9): 2587 - 2596.
- [7] Lee C, Jun K, Jung M, et al. Zodiac version 1.0 (revised) architecture and specification [R]. Standardization Workshop on Information Security Technology. Korean Contribution on

(上接第67页)

- [4] Carevic D. Automatic estimation of multiple target positions and velocities using passive TDOA measurements of transients
 [J]. IEEE Transactions on Signal Processing, 2007, 55(2): 424-436.
- [5] Obozreniye V. The U.S. navyś "white cloud" space borne ELINT system[J]. Foreign Military Review, 1993(7): 57-60.
- [6] Foy W H. Position-location solutions by Taylor-series estimation [J]. IEEE Transactions on Aerospace and Electronic Systems, 1976, 12(2): 187-194.
- [7] Torrieri J D. Statistical theory of passive location systems [J]. IEEE Transactions on Aerospace and Electronic Systems, 1984, 20(2): 183 - 198.
- [8] Mellen G, Pachter M, Raquet J. Closed-form solution for determining emitter location using time difference of arrival measurements [J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3): 1056 – 1058.
- [9] Ho K C, Chan Y T. Solution and performance analysis of geolocation by TDOA [J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 26(5): 748-753.
- [10] 谢恺,钟丹星,邓新蒲,等. 一种空间时差定位的新算法
 [J]. 信号处理,2006,22(2):129-135.
 XIE Kai, ZHONG Danxing, DENG Xinpu, et al. A new algorithm for the time difference location in aerospace [J]. Signal Processing, 2006, 22(2):129-135. (in Chinese)
- [11] 刘海军,叶浩欢,柳征,等.基于星载干涉仪测向的辐射

MP18033, ISO/IEC JTC1/SC27 N2563. http://www.Kiss. or.kr/seed/index.html.

- [8] Hong D, Sung J, Moriai S, et al. Impossible differential cryptanalysis of Zodiac [C]//FSE 2001, LNCS,. Springer, Heidelberg, 2002, 2355: 300-311.
- [9] 孙兵,张鹏,李超. Zodiac 算法的不可能差分和积分攻击
 [J]. 软件学报,2011,22(8):1911-1917.
 SUN Bing, ZHANG Peng, LI Chao. Impossible differential and integral cyptanalysis of Zodiac [J]. Journal of Software. 2011, 22(8):1911-1917. (in Chinese)
- [10] Shakiba M, Dakhilalian M, Mala H. An improved impossible differential cryptanalysis of Zodiac[J]. Journal of Systems and Software. 2010, 83: 702 – 709.
- [11] Ji W, Hu L. Square attack on reduced-round Zodiac cipher [C]//ISPEC 2008, LNCS, Springer, Heidelberg, 2008, 4991: 377 - 391.
- [12] 张鹏,李瑞林,李超. Zodiac 算法新的 Square 攻击[J]. 电子与信息学报,2010,32(11):2790-2794.
 ZHANG Peng, LI Ruilin, LI Chao. New square attack on Zodiac[J]. Journal of Electronics & Information Technology, 2010,32(11):2790-2794. (in Chinese)

源定位综合算法[J]. 国防科技大学学报,2009,31(6): 110-114.

LIU Haijun, YE Haohuan, LIU Zheng, et al. Integration algorithm of emitter location based on satellite-borne interferometer[J]. Journal of National University of Defense Technology, 2009, 31(6): 110 - 114. (in Chinese)

 [12] 刘林,范平志,邓平.基于 GDOP 加权的 GSM 移动台位 置估计数据融合[J].电波科学学报,2007,22(3):486-490.

LIU Lin, FAN Pingzhi, DENG Ping. Data fusion based on GDOP weighting for GSM mobile position estimation [J]. Chinese Journal of Radio Science, 2007, 22(3): 486 - 490. (in Chinese)

[13] 钟丹星,邓新蒲,周一宇.基于WGS-84 椭球模型的卫星测时差定位精度分析[J].电子对抗技术,2002,17
 (5):18-21.

ZHONG Danxing, DENG Xinpu, ZHOU Yiyu. Precision analysis of satellites DTOA location based on WGS-84 ellipsoid model [J]. Chinese Journal of Electronic Countermeasure Technology, 2002, 17(5): 18–21. (in Chinese)

- [14] Kay S M. Fundamentals of statistical signal processing: estimation theory[M]. New Jersey: Prentice Hall PTR, 1993.
- [15] Zhang D Q, Chang S F. Detecting image near-duplicate by stochastic attributed relational graph matching with learning [C] //Proceedings of ACM Multimedia, 2004: 877 - 884.