JOURNAL OF NATIONAL UNIVERSITY OF DEFENSE TECHNOLOGY

doi:10.11887/j.cn.201602007

http://journal. nudt. edu. cn

侧壁激波诱导下凹腔燃烧室冷态流场实验观测。

赵延辉,梁剑寒

(国防科技大学 航天科学与工程学院, 湖南 长沙 410073)

摘 要:在单凹腔燃烧室中引入侧壁激波,为研究燃烧室内部流动特性,采用纳米粒子平面激光散射技 术和粒子图像测速技术对全尺寸玻璃燃烧室模型进行流场观测,获得了冷态流场展向和法向的瞬态灰度图 及平均速度场。实验结果表明:在远壁面区域,凹腔内部速度与密度都较低;引入侧壁激波后,近壁面区域凹 腔与主流的质量与动量交换增强,速度与密度升高;受到侧壁激波影响,燃烧室底壁边界层不再均匀,凹腔中 后部产生大规模低速区,具有明显三维特性。

关键词:超声速燃烧室;凹腔;冷态流场;纳米粒子平面激光散射;粒子图像测速 中图分类号:V235 文献标志码:A 文章编号:1001-2486(2016)02-037-06

Experimental observation of non-reaction flow field based on cavity supersonic combustor on condition of side wall shock wave

ZHAO Yanhui, LIANG Jianhan

(College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China)

Abstract: Side wall shock wave was introduced in supersonic combustor based on cavity. In order to study the internal flow characteristics of the combustor, nano-particle planer laser scattering and particle image velocimetry technologies were employed to observe internal flow field of combustor model made by glass. Gray images and average velocity distributions of non-reaction flow field in side view and top view were caught by experimental facilities. Observation results reveal that: speed and density of fluid inside cavity are low in the region far away from the side wall; mass and momentum exchange is enhanced in the region near the side wall on condition of side wall shock wave with high speed and density; boundary layer of combustor bottom wall becomes nonuniform due to side wall shock waves, and large scale of low speed region generates at the rear of cavity with obvious three-dimensional characteristics.

Key words: supersonic combustor; cavity; non-reaction flow field; nano-particle planer laser scattering; particle image velocimetry

凹腔是一种性能良好的火焰稳定装置,广泛 应用于超声速燃烧室中^[1]。对基于凹腔的超声 速燃烧室而言,其流动特性是研究的重要内容。 Ben-Yakar等^[2]总结了基于凹腔火焰稳定器的超 声速燃烧室研究进展。Gruber等^[3]研究了不同 构型凹腔火焰稳定器在冷流状态下的流动特性, 结果表明凹腔后壁面倾角对凹腔剪切层特性有重 要作用,凹腔剪切层对凹腔的流动特性有主导作 用。Wang等^[4]分析了凹腔剪切层振荡模式,并 采用数值计算和实验手段对凹腔燃烧室的冷态流 场和燃烧流场进行了研究^[5],发现凹腔后壁倾斜 角越小,凹腔剪切层进入凹腔内部越深,与后缘碰 撞越强,后缘斜激波也越强。

针对凹腔火焰稳定器燃烧室的冷态流动特性 已有大量研究^[6-7],此外还有许多针对凹腔燃烧 室的燃料分布和燃烧特性^[1,8-9]的研究。Dudley 等^[10]在凹腔燃烧室中添加了圆柱作为被动控制 手段,分析了圆柱尾迹对凹腔流动特性的影响。 本文基于已有研究,设计了全透明燃烧室,引入侧 壁激波作为干扰,对其内部流动特性进行了全方 位观测,以研究引入的侧壁激波对凹腔流动的 影响。

1 实验设备与燃烧室模型

由于受到可压缩性、激波、不稳定性以及湍流 等因素的影响,超声速流动实验研究一直面临较 大的挑战,本文采用超声速静风洞提供高品质来 流,采用纳米粒子平面激光散射(Nano-particle Planer Laser Scattering, NPLS)技术与粒子图像测 速(Particle Image Velocimetry, PIV)技术对燃烧室

 ^{*} 收稿日期:2015-05-23
 基金项目:国家自然科学基金资助项目(11472304)
 作者简介:赵延辉(1987—),男,山东东营人,博士研究生,E-mail:mj311840@126.com;
 梁剑寒(通信作者),男,教授,博士,博士生导师,E-mail:jhleon@vip.sina.com

流场进行高空间分辨率观测^[11]。

1.1 超声速静风洞

超声速静风洞由阀门、稳定段、一体化喷管实 验段、扩压段以及下游真空罐系统等组成。为了 减少风洞壁面散射光对图像采集造成的不良影 响,各部件都进行了阳极氧化处理。实验段壁面 安装大尺寸的观测窗口,燃烧室模型均在上下观 察窗的可观测范围之内,可以进行全方位的观测。 风洞运行不需要复杂的高压储罐以及相应管路设 施,来流有很好的均匀性和低湍流度,经过风洞稳 定段后,来流品质得到显著提高,能够保证喷管出 口为层流化流动^[12]。

风洞来流条件如表1所示,其中静压、静温根据等熵关系式计算而得。风洞来流总压为1个大 气压,总温为300 K。在实验展开之前,通过 PIV 对风洞的马赫数及流场均匀性进行了简单校测, 根据理想气体斜激波关系式可换算得到实际来流 马赫数为 Ma = 2.68。

表1 超声速静风洞来流物理参数

Tab. 1 Physical parameters of supersonic quiet wind tunnel incoming flow

总压	静压	总温	静温	马赫数
101 325 Pa	3111 Pa	300 K	110 K	2.68

1.2 NPLS 技术与 PIV 技术

NPLS 技术采用纳米二氧化钛(TiO₂)作为示 踪粒子来对流场进行层析观测,实验观测系统的 组成部分包括计算机、同步控制器、电荷耦合器件 (Charge Coupled Device, CCD)相机、脉冲激光光 源以及纳米粒子发生器,详细资料请参考文 献[13]。纳米粒子发生器可以通过风洞阀门向 观测区域内撒播粒子,连通高压气源,通过调整气 源压强可以控制粒子浓度的变化^[14]。PIV 技术 则采用跨帧技术和双曝光相机对实验流场进行观 测,对跨帧前后两幅图像进行傅里叶变换和互相 关处理,可以计算两幅图像中对应粒子的位移,从 而获得其速度场。CCD 相机为行间传输型 CCD, 最短跨帧时间200 ns,像素阵列为4000 × 2672,每 个像素可分辨的灰度等级为4096,配有微距镜 头;脉冲激光光源为双腔 Nd:YAG 激光器,输出 激光波长532 nm,脉冲持续时间6 ns,单脉冲最 高能量 350 mJ。

1.3 超声速燃烧室模型

由于超声速静风洞实验段空间充裕,为了获

得燃烧室内部流动,在实验段内部设计安装了全 尺寸的单凹腔燃烧室。为了保证透光性,燃烧室 模型全部采用玻璃加工制作,从而有利于对燃烧 室内部流场进行全方位观测。

Huang 等对凹腔构型进行了研究^[15],结果表 明,凹腔长深比越大,后壁面倾角越小,凹腔阻力 越大。依据其结论,实验所用单凹腔燃烧室整体 构型如图1所示,凹腔深度为15mm,凹腔长深比 为7,后壁面倾角为45°。为了避免燃烧室底壁前 缘激波对流场造成影响,底壁前缘距凹腔前缘 200mm;燃烧室侧壁也会产生前缘激波,为避免 燃烧室壁面引入激波之间的相互耦合,同时保证 风洞正常启动,燃烧室侧壁前缘距凹腔前缘 50mm;没有安装燃烧上壁面,从而消除了上壁面 前缘激波对燃烧室内部流动的影响。层析观测的 位置由片光平面决定,建立图1所示坐标系,片光 平面位置用垂直于该平面的坐标值表示。

2 结果与讨论

2.1 单凹腔燃烧室 XOZ 截面层析流场观测

实验中粒子通过风洞阀门进入稳定段,稳定 段中安装有整流装置,可以使粒子在来流中均匀 分布。由于湍流边界层中密度有差异,粒子浓度 也有差异,粒子散射成像的灰度值会有所不同,因 此可以由灰度图评估来流边界层厚度。

图 2(a)为燃烧室中央截面灰度图,通过灰度 值的差异可以识别出来流边界层,由图例可测量 凹腔前缘处的来流边界层厚度约为 5 mm。凹腔 剪切层的抬升对来流有阻碍作用,形成了凹腔前 缘激波,其激波角为 26.1°。安装激波是由上壁 面观察窗引入的,强度较弱,没有对观测区域流场 造成影响,而反射激波是由燃烧室底壁前缘斜激 波经上壁面反射导致的,由于加工工艺的问题,燃 烧室前缘不能无限薄,因此引入的前缘激波较强, 反射激波与凹腔前缘激波相交,也没有对观测区 域的凹腔剪切层产生影响。凹腔前缘来流边界层 厚度为5 mm,凹腔剪切层撞击凹腔后缘并抬升, 凹腔后缘剪切层厚度增加到20 mm。图2(b)为 近壁面灰度图,在凹腔前缘处来流边界层厚度为 20 mm,在凹腔后缘剪切层厚度增长为30 mm,说 明引入侧壁激波后,近壁面边界层厚度大大提高, 改变了来流条件。

(a) Y=37.5 mm 截面
(a) Y=37.5 mm cross section

(b) Y=5 mm 截面(b) Y=5 mm cross section

图 2 单凹腔燃烧室 XOZ 截面瞬态流场灰度图 Fig. 2 Gray image of XOZ cross sections in single cavity combustor

凹腔内流体滞留时间在毫秒量级^[16],在实验 过程中凹腔内流体与主流进行质量交换,示踪粒 子可以有效显示流场结构,在图2展示的单凹腔 燃烧室 *XOZ* 截面瞬态流场中,凹腔流体的灰度值 极低,来流边界层的灰度值也较低^[17],但来流边 界层的灰度值高于凹腔内部流体,表明凹腔内流 体密度低于边界层流体。对应图2中的瞬态流场 图,图3给出了流道中央和近壁面的平均速度场 (图中 *U* 为当地速度,*U*_e 为主流速度),结合瞬态流 场可以发现,*Y* = 37.5 mm 截面凹腔内部速度很低, 而在 *Y* = 5 mm 截面中,凹腔内流体速度很高。由 于观察窗有损坏,在图3(b)的速度场中出现坏点。

为了更好地对比远壁面与近壁面速度差异, 图4提取了两个截面不同流向位置速度标量轮廓

Fig. 4 Scalar velocity profiles at mutiple streamwise positions

线,以主流速度作为基准,取无量纲速度 U/U_e 为 X 轴变量, Y 轴为 Z 坐标值,其中 X = 0 mm 为凹 腔前缘, X 为 27.5 mm, 55 mm 和 82.5 mm 的速度 轮廓线延伸到凹腔内部, X = 110 mm 和 X = 140 mm 在凹腔后方,通过对比发现,远壁面区域凹腔内部 速度极低,近壁面区域凹腔内部流体速度高于远 壁面区域,这在凹腔中后部尤为明显。

为了研究凹腔与主流的动量和质量交换特性,图 5 提取了远壁面与近壁面平均速度场 Y方向速度分量轮廓线,同样以主流速度为基准进行无量纲化,X轴变量为 $U_Y/U_e(U_Y \to Y f)$ 方向速度分量),Y轴变量为 Z 坐标。通过对比发现,X = 0 mm 处,近壁面和远壁面 U_Y/U_e 相差不大;X = 27.5 mm 处,也就是在凹腔前部,远壁面凹腔剪切层 U_Y/U_e 几乎为0,而近壁面凹腔剪切层 U_Y/U_e 几乎为0,而近壁面凹腔剪切层 近壁面凹腔内部,但速度较低,说明此时近壁面凹腔与主流的质量交换是主流流体进入凹腔;X = 55 mm 处,远壁面与近壁面凹腔剪切

at mutiple X positions

层 U_Y/U_e 都偏向凹腔内部,但近壁面速度值约 为远壁面速度值的 4 倍,说明凹腔中部的质量 交换是主流流体进入凹腔; X = 82.5 mm 处,远 壁面凹腔剪切层 U_Y/U_e 偏向主流,且速度较高, 而近壁面凹腔剪切层 U_Y/U_e 偏向凹腔内部,速 度较低,表明在凹腔后部,远壁面凹腔剪切层与 凹腔后壁碰撞,迅速抬升,但近壁面凹腔剪切层 仍偏向凹腔底壁; X = 110 mm 和 X = 140 mm 速 度轮廓线表明,在凹腔下游,远壁面凹腔剪切层 出现再附,但近壁面凹腔剪切层没有再附,反而 逐渐抬升。

通过燃烧室流道中央和近壁面的实验观测结 果可以发现,凹腔内部流动在两种条件下差异明 显。为了进一步研究燃烧室内部流动特性,以及 侧壁对凹腔流动的影响,对燃烧室 XOY 截面也进 行了层析观测。

2.2 单凹腔燃烧室 XOY 截面层析流场观测

通过调整片光和 CCD 相机位置可以实现燃 烧室内部流场的层析观测,由于片光在观测区域 中的光强不均匀,用 CCD 对流场进行观测时,不 同位置的灰度值也会有差异,图6中图像下半部 分灰度值偏高,上半部分偏低,这就是片光强度不 均匀造成的,但这并不会对流场结构的观测造成 干扰。

图 6(a) ~ (d) 分别给出了 Z 为 5 mm, 10 mm, 15 mm 和 20 mm 时的瞬态流场灰度图,在图中用 白色虑线标出了凹腔前缘和后缘的位置,来流边 界层厚度大于5 mm,因此图 6(a)的观测截面在 来流边界层内,图中可以看到清晰的边界层湍流 结构。将图6中各幅图分成R1和R2两个区域, R1 表示流道中央区域, R2 则为近壁面区域。 图 6(b) 中可以观测到的底壁 R1 区域中央产生了 流向涡,并向下游逐渐发展,在R1区域其他部分则 是均匀主流,由此可知底壁边界层厚度并不均匀。 图 6(d) 中可以清楚地看到侧壁产生的斜激波, 对 照斜激波位置可以得出结论:两侧壁斜激波在流 道中央交汇,底壁边界层在斜激波的作用下增厚 并产生流向涡,来流条件不再是均匀边界层。 图 6(a) ~ (c) 中在凹腔中后部都出现低灰度值 流体,图6(d)中在侧壁附近出现间歇性脱落涡, 这是底壁边界层与侧壁前缘碰撞后产生的。

对照图 7 的平均速度场可以发现,这些流体的速度较低,且观测平面距离底壁越远,低速区面积越小,由此可知,受到侧壁影响,近壁面 R2 区域的凹腔流体没有进入主流,而凹腔中部 R1 区域内凹腔内部流体随凹腔剪切层进入主流,剪切

(a) Z=5 mm 截面 (a) Z = 5 mm cross section

(b) Z = 10 mm cross section

(c) Z=15 mm 截面

(c) Z = 15 mm cross section

(d) Z = 20 mm 截面 (d) Z = 20 mm cross section

区为金字塔形,距离底壁越远,低速区在 XOY 截 面内的范围越小,具有明显三维特性。

结论

对单凹腔燃烧室进行了层析观测,获得了燃 烧室内部不同观测截面的瞬态流场灰度图以及平 均速度分布,主要结论如下:

1)引入侧壁激波后,流道中央的来流边界层 厚度提高,来流边界层不再均匀,凹腔内流动速度 低,凹腔流动主要由剪切层特性驱动;

2)远壁面凹腔内密度低、流动速度低,近壁 面凹腔内密度高、流动速度高,侧壁提高了凹腔与 主流的质量和动量交换;

3) 凹腔剪切层与后缘碰撞而产生低速区, 在 XOY 截面内近似为椭圆形,从立体上看分离区呈 现金字塔式的三维特性,距离底壁越远,分离区在 XOY 截面内的范围越小。

参考文献(References)

- [1] Wang Z G, Wang H B, Sun M B. Review of cavity-stabilized combustion for scramjet applications [J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2014, 228(14): 2718 – 2735.
- [2] Ben-Yakar A, Hanson R K. Cavity flame-holders for ignition and flame stabilization in scramjets: an overview [J]. Journal of Propulsion and Power, 2001, 17(4): 869 – 877.
- [3] Gruber M R, Baurle R A, Mathur T, et al. Fundamental studies of cavity-based flameholder concepts for supersonic combustors [J]. Journal of Propulsion and Power, 2001, 17(1): 146-153.
- [4] Wang H B, Sun M B, Qin N, et al. Characteristics of oscillations in supersonic open cavity flows [J]. Flow Turbulence and Combustion, 2013, 90(1): 121 – 142.
- [5] Wang H B, Wang Z G, Sun M B, et al. Experimental and numerical investigation of cavity-based supersonic flow and combustion [J]. Proceedings of the Institution of Mechanical Engineers, Part G; Journal of Aerospace Engineering, 2014, 228(5): 781-798.
- [6] Morgenstern A Jr, Chokani N. Hypersonic flow past open cavities [J]. AIAA Journal, 1994, 32(12): 2387-2393.
- [7] Rowley C W, Williams D R. Dynamics and control of highreynolds-number flow over open cavities [J]. Annual Review of Fluid Mechanics, 2006, 38: 251 – 276.
- [8] Wang H B, Wang Z G, Sun M B, et al. Large eddy simulation based studies of jet-cavity interactions in a supersonic flow [J]. Acta Astronautica, 2014, 93: 182-192.
- [9] Ukai T, Zare-Behtash H, Erdem E, et al. Effectiveness of jet location on mixing characteristics inside a cavity in supersonic

flow [J]. Experimental Thermal and Fluid Science, 2014, 52: 59-67.

- [10] Dudley J G, Ukeiley L. Passively controlled supersonic cavity flow using a spanwise cylinder [J]. Experiments in Fluids, 2014, 55(9): 1810.
- [11] Yi S H, Tian L F, Zhao Y X, et al. Aero-optical aberration measuring method based on NPLS and its application [J]. Chinese Science Bulletin, 2010, 55(31): 3545 - 3549.
- Wang D, Zhao Y, Xia Z, et al. Multi-resolution analysis of density fluctuation of coherent structures about supersonic flow over VG [J]. Chinese Journal of Aeronautics, 2012, 25(2): 173 - 181.
- [13] Zhao Y X, Yi S H, Tian L F, et al. Supersonic flow imaging via nanoparticles [J]. Science in China Series E: Technological Sciences, 2009, 52(12): 3640-3648.
- [14] Yi S H, He L, Zhao Y X, et al. A flow control study of a supersonic mixing layer via NPLS [J]. Science in China Series G: Physics, Mechanics & Astronomy, 2009, 52(12): 2001-2006.
- [15] Huang W, Liu J, Yan L, et al. Multiobjective design optimization of the performance for the cavity flameholder in supersonic flows [J]. Aerospace Science and Technology, 2013, 30(1): 246-254.
- [16] Wang H B, Sun M B, Wu H Y, et al. Hybrid RANS/LES simulation of mass exchange characteristics of cavity for supersonic combustion [J]. Journal of Aerospace Power, 2010, 25(1): 41-46.
- [17] Wang B, Liu W D, Zhao Y X, et al. Experimental investigation of the micro-ramp based shock wave and turbulent boundary layer interaction control [J]. Physics of Fluids, 2012, 24(5): 055110-055110-14.