doi:10.11887/j.cn.201703021

http://journal. nudt. edu. cn

干扰条件下基于空频域二次优化的 MIMO 雷达波形设计方法*

王玉玺1,黄国策1,李 伟1,胡继宽2

(1. 空军工程大学 信息与导航学院,陕西 西安 710077;2. 空军大连通信士官学校,辽宁 大连 116600)

摘 要:针对干扰条件下多输入多输出雷达发射方向图优化问题,提出一种基于空频域二次优化的多输 入多输出雷达波形设计方法。该方法将空域上方向图优化问题转化为关于空时发射序列协方差矩阵的优化 问题,利用多输入多输出雷达发射方向图仅与阵元之间波形相关性有关的特性,进一步降低空域波形设计复 杂度,并通过 p 阶导数约束展宽零陷;针对优化得到的协方差矩阵,利用随机向量法通过最小二乘准则逼近最 优发射方向图来合成具体恒包络波形;在基于空域优化得到的发射波形基础上,根据改变不同时刻信号序列 的初始相位雷达发射方向图不变的特性,通过拟功率方法优化相位变化矩阵,实现雷达波形在频域上的二次 优化以抑制频域上的干扰。仿真实验证明了所提方法在方向图匹配和干扰抑制方面的有效性。

关键词:多输入多输出雷达;波形设计;干扰抑制;恒包络

中图分类号:TN911.7 文献标志码:A 文章编号:1001-2486(2017)03-136-08

MIMO radar waveform design method based on quadratically spatial and spectral optimizations under jamming

WANG Yuxi¹, HUANG Guoce¹, LI Wei¹, HU Jikuan²

(1. Information and Navigation College, Air Force Engineering University, Xi'an 710077, China;

2. Dalian Air Force Communication Noncommissioned Officer Academy, Dalian 116600, China)

Abstract: For the optimization problem of MIMO(multiple input multiple output) radar transmit beampattern under jamming, a new MIMO radar waveform design method based on quadratically spatial and spectral optimization was proposed. Firstly, the proposed method converted the problem of MIMO radar transmit beampattern design into the optimization problem about the covariance matrix of MIMO radar's transmit space-time sequences. Based on the fact that MIMO radar transmit beampattern was only decided by the correlation of each element's transmit waveforms, the computational burden of the spatial optimization of waveforms could be reduced. Furthermore, the nulling towards the jamming direction of the transmit beampattern was broadened by the p-order derivative constraint. With the optimized covariance matrix, the randomization method was used to synthesize the actual constant modular waveforms under the criteria of least square to gain on the optimal beampattern. Finally, with the optimized waveforms through spatial optimizing process, a phase flexible diagonal matrix was optimized with the like-power method to achieve the spectral optimization of MIMO radar waveforms based on the fact that MIMO radar transmit beampattern would not be influenced by the change of the initial phase of transmit sequence at a certain moment. And the spectral jamming could be avoided by the spectral optimization of waveforms. Simulation results prove the effectiveness of the proposed method in matching desired beampattern and anti-jamming.

Key words: multiple input multiple output radar; waveform design; anti-jamming; constant envelop

多输入多输出(Multiple Input Multiple Output, MIMO)雷达凭借每个阵元能够发射不同 波形的优异性能受到广泛关注^[1-9]。根据 MIMO 雷达阵元布置以及信号处理的特点,可将其分为 分布式 MIMO 雷达和集中式 MIMO 雷达。其中分 布式 MIMO 雷达通过空间分集可以有效消除目标 闪烁带来的影响^[1-2];而集中式 MIMO 雷达则利 用波形分集形成较大的虚拟阵列孔径,提高雷达 参数估计、目标识别和干扰抑制等性能^[3],本文 主要研究集中式 MIMO 雷达。

传统集中式 MIMO 雷达,每个阵元通过发射 相互正交信号,发射端发射功率在空间均匀分 布^[3]。为提高雷达发射功率的利用率,利用不同 阵元之间发射波形的相关性设计 MIMO 雷达发射 方向图,实现发射功率在特定空域范围内的聚焦 已成为目前研究的热点^[4-10]。现有关于 MIMO

^{*} 收稿日期:2016-09-18 基金项目:国家自然科学基金资助项目(61302153) 作者简介:王玉玺(1989-),男,山东寿光人,博士研究生,E-mail:WYX10013@163.com; 黄国策(通信作者),男,教授,博士,博士生导师,E-mail:huangguoce@163.com

f₀

雷达发射方向图设计的波形优化方法可分为两 步,首先根据期望发射方向图优化发射波形协方 差矩阵,然后利用优化协方差矩阵匹配设计具体 发射波形。文献[4]首次推导了 MIMO 雷达发射 方向图计算公式,建立了发射方向图优化模型并 利用梯度算法求解发射波形的协方差矩阵:文 献[5]则提出了经典的方向图匹配设计模型和最 小化旁瓣方向图设计模型;文献[6]在文献[4]的 基础上提出了一种关于协方差矩阵的无约束半正 定规划模型;文献[7-8]为避免直接优化协方差 矩阵,分别提出了无约束实相关矩阵综合方法;为 降低协方差矩阵优化计算复杂度,文献[9-10] 分别提出了基于发射加权矩阵优化的 MIMO 雷达 发射方向图优化算法,将 MIMO 雷达波形设计问 题转化为关于正交基波形加权矩阵的优化问题: 文献[11]则在文献[9]基础上进一步研究了优化 波形的模糊函数。文献[12]针对主瓣波动和旁 瓣电平进行了研究;文献[13]在现有方向图匹配 准则的基础上进一步推广,提出一种旁瓣控制方 向图设计方法;通过上述不同方法对发射波形协 方差矩阵进行优化后,接下来则需要根据优化后 的协方差矩阵设计具体的发射波形。由于在实际 应用中天线阵元发射功率放大器具有非线性特 性,因此为保证发射波形不失真并最大化功率利 用率,需要发射波形满足恒包络特性。目前最为 通用的波形设计方法为文献[14]所提基于协方 差矩阵匹配的循环算法,该方法虽然能够以闭合 解的形式给出具体的发射波形,但是算法为高度 非凸非线性优化问题对初始迭代点非常敏感,而 且该方法在波形合成时没有考虑干扰情况下雷达 发射方向图的置零约束,因此优化后的波形不能 保证雷达发射方向图在干扰方向上形成满足要求 的零陷。

现有文献大都针对理想情况下 MIMO 雷达 发射方向图及波形优化设计进行研究,而没有 考虑实际应用中特别是在复杂电磁环境下, MIMO 雷达不仅可能面临来自空域特定方向的 干扰,而且还有可能在频域上面临来自敌方甚 至是己方与雷达具有重叠频带的其他无线电设 备的干扰。本文针对上述问题,提出一种干扰 条件下基于空频域二次优化的 MIMO 雷达波形 设计方法。

1 MIMO 雷达信号模型

设集中式 MIMO 雷达发射阵列为一均匀线

阵,阵元数目为 M 且阵元间距为 $d = \frac{f_0}{2c}, f_0$ 为发射 信号载频, c 为光速。设在 n 时刻 M 个阵元发射 基带离散信号序列为:

 $s(n) = [s_1(n), s_2(n), \dots, s_M(n)]^T \in C^M$ (1) 则 MIMO 雷达在一次相干处理间隔内发射基带离 散信号矩阵可表示为:

$$\boldsymbol{S} = [\boldsymbol{s}(0), \boldsymbol{s}(1), \cdots, \boldsymbol{s}(N-1)] = [\boldsymbol{s}_1, \boldsymbol{s}_2, \cdots, \boldsymbol{s}_M]^{\mathrm{T}} \in C^{M \times N}$$
(2)

其中, $s_m = [s_m(0), s_m(1), \dots, s_m(N-1)]^T \in C^N$ 表示第 m 个阵元发射的信号序列, N 为一次相干 处理时间内信号取样次数即信号码长, 由信号带 宽和发射脉冲宽度决定。假设各个阵元发射的波 形均为窄带信号, 则在 n 时刻, 远场 θ 方向接收到 的信号为:

$$r(n,\theta) = \boldsymbol{a}^{\mathrm{H}}(\theta)\boldsymbol{s}(n) \tag{3}$$

其中, $a(\theta) = [1, e^{-j\pi \sin(\theta)}, \dots, e^{-j(M-1)\pi \sin(\theta)}]^T$ 为 发射阵列导向矢量。因此在*n*时刻 MIMO 雷达发 射波形在空间的能量分布为:

$$P(n,\theta) = \boldsymbol{a}^{\mathrm{H}}(\theta) E\{\boldsymbol{s}(n)\boldsymbol{s}^{\mathrm{H}}(n)\}\boldsymbol{a}(\theta) = \boldsymbol{a}^{\mathrm{H}}(\theta)\overline{\boldsymbol{R}}\boldsymbol{a}(\theta)$$
(4)

其中, $\bar{R} = E\{s(n)s^{H}(n)\}$ 表示 n 时刻雷达发射信号的协方差矩阵。由于 \bar{R} 为雷达发射信号协方差矩阵的理论值,在统计理论上满足如下关系式:

$$\overline{\boldsymbol{R}} = \frac{1}{N} \sum_{n=1}^{N} \boldsymbol{s}(n) \boldsymbol{s}^{\mathrm{H}}(n) = \frac{1}{N} \boldsymbol{S} \boldsymbol{S}^{\mathrm{H}} = \frac{1}{N} \boldsymbol{R} \quad (5)$$

其中 $R = SS^{H}$ 。在相干处理时间内, MIMO 雷达发 射方向图可表示为:

$$P(\theta) = \sum_{n=0}^{N-1} a^{\mathrm{H}}(\theta) E\{s(n)s^{\mathrm{H}}(n)\}a(\theta)$$
$$= a^{\mathrm{H}}(\theta) Ra(\theta) = a^{\mathrm{H}}(\theta) SS^{\mathrm{H}}a(\theta)$$
(6)

将整个空域 $\Theta = \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ 划分为 *L* 个离散

点,雷达期望发射方向图为 $P_d(\theta_l), \theta_l \in \Theta$ 。假设 在空域 θ_c 方向存在一干扰,则为了抑制该干扰需 要使雷达发射方向图在 θ_c 方向上形成零陷,即:

$$\boldsymbol{a}^{\mathrm{H}}(\boldsymbol{\theta}_{c})\boldsymbol{s}(n) = \boldsymbol{0}, n = 1, 2, \cdots, N$$
 (7)

利用方向图匹配准则^[5]可以得到带有零陷 约束的协方差矩阵优化模型为:

$$\begin{cases} \min_{R,r} \sum_{l=1}^{L} |rP_d(\theta_l) - \boldsymbol{a}^{\mathrm{H}}(\theta_l) \boldsymbol{R} \boldsymbol{a}(\theta_l)|^2 \\ \text{s. t.} \quad \boldsymbol{R}(m,m) = \frac{E}{M}, m = 1, 2, \cdots, M \\ \boldsymbol{a}^{\mathrm{H}}(\theta_c) \boldsymbol{R} \boldsymbol{a}(\theta_c) = 0 \\ \boldsymbol{R} \ge \boldsymbol{0} \end{cases}$$
(8)

其中,r为尺度因子,E表示雷达总的发射功率。

式(8)为关于 R 的半正定规划问题,可以利用 CVX 工具箱高效求解。在求得最优协方差矩阵 R 后,需要根据 R = SS^H 合成具体的发射波形,利 用文献[14]所提循环优化方法可以得到具体的 发射波形,即:

$$\begin{cases} \min_{S} \|\boldsymbol{S} - \boldsymbol{R}^{1/2} \boldsymbol{U}\| \\ \text{s. t. } \|\boldsymbol{S}(m,n)\|^2 = \frac{E}{MN} \quad m = 1, \cdots, M \quad n = 1, \cdots, N \end{cases}$$
(9)

其中, $\mathbf{R}^{1/2}$ 表示协方差矩阵的 Hermite 均方根, $U \in$ $C^{M \times N}$ 为半正交矩阵,约束条件表示雷达发射波形 为具有恒包络特性。利用式(8)和式(9)虽然能 够解决 MIMO 雷达发射波形设计问题,但是仍然 存在几点不足:①在考虑发射波形恒包络或低峰 均值比(Peak-to-Average-power Ratio, PAR)等实 际约束条件下,基于协方差矩阵匹配的波形设计 是一个高度非凸非线性优化问题,而且循环算法 对初始迭代点非常敏感;②由于循环算法在合成 雷达波形矩阵S时,仅以最小二乘准则逼近矩阵 $R^{1/2}U$,而没有考虑零陷约束,因此不能保证优化 波形在方向 θ_c 处形成满足条件的零陷;③在实际 应用中特别是复杂电磁环境下, MIMO 雷达不仅 面临来自空域的具有特定方向的杂波干扰,而且 还可能面临来自敌方特定频谱上的干扰,甚至是 己方与雷达工作频段相重叠的其他无线电设备频 域上的干扰,而现有关于 MIMO 雷达波形设计方 法仅从空域对雷达波形进行优化,无法同时抑制 来自空域和频域上的干扰。

2 基于空频域二次优化的 MIMO 雷达波形 设计

针对复杂电磁环境下 MIMO 雷达有可能同时 面临来自空域和频域干扰的情况,设计一种基于 空频域二次优化的 MIMO 雷达波形设计方法,通 过分别在空域和频域内对雷达波形进行优化,在 匹配期望发射方向图的条件下,同时抑制来自空 域和频域的干扰。

2.1 基于空域的 MIMO 雷达波形设计

虽然式(7)可以保证 MIMO 雷达最优发射方 向图在干扰 θ_c 方向上形成一零陷,但是所得零陷 较窄,无法保证雷达与干扰源相对移动时干扰始 终处于零陷内,为提高雷达干扰抑制的有效性,可 利用 p 阶导数约束方法对干扰零陷展宽,即:

$$\frac{\partial^{r}(\boldsymbol{a}^{\mathrm{H}}(\boldsymbol{\theta})\boldsymbol{s}(n))}{\partial\xi^{r}}\Big|_{\boldsymbol{\theta}=\boldsymbol{\theta}_{C}} = c_{r}(\boldsymbol{D}^{r}\boldsymbol{a}(\boldsymbol{\theta}_{C}))^{\mathrm{H}}\boldsymbol{s}(n) = 0$$

其中: $n = 1, \dots, N; r = 1, \dots; p, \xi = \pi \sin(\theta); c_r =$ $j'(\sum_{m=1}^{M} z_m^{2r})^{1/2}; D' = (\sum_{m=1}^{M} z_m^{2r})^{-1/2} \operatorname{diag}([z_1', z_2', \dots, z_M']); z_m = m - 1, m = 1, \dots, M_{\circ} \Leftrightarrow \mathbf{x} = \operatorname{vec}(\mathbf{S}),$ $\mathbf{X} = \mathbf{x}\mathbf{x}^{\mathrm{H}}, \oplus \operatorname{dl}(6)$ 可知: $P(\theta) = \mathbf{a}^{\mathrm{H}}(\theta) \mathbf{S}\mathbf{S}^{\mathrm{H}}\mathbf{a}(\theta)$ $= (\mathbf{I}_N \otimes \mathbf{a}^{\mathrm{H}}(\theta) \operatorname{vec}(\mathbf{S}))^{\mathrm{H}}(\mathbf{I}_N \otimes \mathbf{a}^{\mathrm{H}}(\theta) \operatorname{vec}(\mathbf{S}))$ $= \operatorname{vec}(\mathbf{S})^{\mathrm{H}}\mathbf{I}_N \otimes \mathbf{a}(\theta)\mathbf{I}_N \otimes \mathbf{a}^{\mathrm{H}}(\theta) \operatorname{vec}(\mathbf{S})$ $= \operatorname{tr}(\mathbf{I}_N \otimes \mathbf{a}^{\mathrm{H}}(\theta) \operatorname{vec}(\mathbf{S}) \operatorname{vec}(\mathbf{S})^{\mathrm{H}}\mathbf{I}_N \otimes \mathbf{a}(\theta))$ $= \operatorname{tr}(\mathbf{I}_N \otimes \mathbf{a}^{\mathrm{H}}(\theta) \mathbf{X}\mathbf{I}_N \otimes \mathbf{a}(\theta))$ $= \operatorname{tr}(\mathbf{I}_N \otimes \mathbf{A}^{\mathrm{H}}(\theta) \mathbf{X}\mathbf{I}(\theta))$ $= \operatorname{tr}(\mathbf{V}(\theta)\mathbf{X})$ (11)

其中,"⊗"表示 Kronecker 乘积运算, $A(\theta) = I_N \otimes a(\theta), V(\theta) = A(\theta)A^{H}(\theta)$ 。式(11)推导中利用 了矩阵向量化和 Kronecker 乘积运算特性以及矩 阵迹运算特性。同理,零陷展宽约束式(10)可表 示为:

 $(D^{r}a(\theta_{c}))^{H}SS^{H}D^{r}a(\theta_{c})$ = vec($(D^{r}a(\theta_{c}))^{H}S$)^Hvec($(D^{r}a(\theta_{c}))^{H}S$) = vec(S)^H I_{N} \otimes ($(D^{r}a(\theta_{c}))(D^{r}a(\theta_{c}))^{H}$)vec(S) = $x^{H}H(\theta_{c})x$ = tr($H(\theta_{c})X$) (12) 其中 $H(\theta_{c}) = I_{N} \otimes$ ($(D^{r}a(\theta_{c}))(D^{r}a(\theta_{c}))^{H}$)。 因此带有展宽零陷的 MIMO 雷达发射方向图设计 问题可转化为关于协方差矩阵 X 的优化问题 P_{1} ,即:

$$\begin{cases} \min_{\alpha, X} \sum_{l=1}^{L} |\alpha P_{d}(\theta_{l}) - \operatorname{tr}(V(\theta_{l})X)|^{2} \\ \text{s. t.} \quad \operatorname{tr}(H(\theta_{c})X) \leq \varepsilon \\ \text{diag}(X) = \frac{E}{MN} \\ \operatorname{rank}(X) = 1, X \geq 0 \end{cases}$$
(13)

其中,*ε* 表示零陷深度,α 表示尺度因子用于更好 地匹配期望方向图,第二个约束条件表示每个阵 元发射波形为恒包络的。优化问题 *P*₁ 可以通过 半正定松弛忽略阶为1 的约束条件,将非凸问题 转化为凸的半正定规划问题并求得最优协方差矩 阵*X*。但是直接通过 *P*₁ 求解协方差矩阵 *X* 计算 复杂度为 *O*((*MN*)^{3.5}),特别是当发射波形码元 数目 *N* 较大时,不能满足雷达发射波形优化的实 时性要求。为降低计算复杂度,根据式(6)可知:

$$a^{\mathrm{n}}(\theta) SS^{\mathrm{n}} a(\theta)$$

= $Na^{\mathrm{H}}(\theta) \overline{R} a(\theta)$
= $\operatorname{tr}(I_{N} \otimes a^{\mathrm{H}}(\theta) I_{N} \otimes \overline{R} I_{N} \otimes a(\theta))$ (14)
= $\operatorname{tr}(A^{\mathrm{H}}(\theta) I_{N} \otimes \overline{R} A(\theta))$

由式(11)和式(14)对比可知,在空域上通过

优化 MIMO 雷达空时序列协方差矩阵 X 设计 MIMO 雷达发射方向图等效于对矩阵 $I_N \otimes \overline{R}$ 的优 化。由于 MIMO 雷达发射方向图仅由各阵元发射 波形之间的相关性决定,而与码元序列之间的相 位差无关,在空域上优化雷达空时序列协方差矩 阵 X 等价于对 n 时刻雷达发射信号的协方差矩 阵 $\overline{R} = E\{s(n)s^{H}(n)\}$ 的优化。因此基于空域的 MIMO 雷达发射方向图优化模型 P_2 可表示为:

$$\begin{cases} \min_{\boldsymbol{R},r} \sum_{l=1}^{\infty} |rP_d(\theta_l) - \boldsymbol{a}^{\mathsf{H}}(\theta_l) \overline{\boldsymbol{R}} \boldsymbol{a}(\theta_l)|^2 \\ \text{s. t.} \quad \operatorname{diag}(\overline{\boldsymbol{R}}) \leq \gamma \frac{E}{MN} \\ (\boldsymbol{D}^r \boldsymbol{a}(\theta_c))^{\mathsf{H}} \overline{\boldsymbol{R}} \boldsymbol{D}^r \boldsymbol{a}(\theta_c) \leq \varepsilon \quad (15) \\ \operatorname{tr}(\overline{\boldsymbol{R}}) = \frac{E}{N} \\ \operatorname{rank}(\overline{\boldsymbol{R}}) = 1 \\ \overline{\boldsymbol{R}} \geq \boldsymbol{0} \end{cases}$$

需要注意的是问题 P_2 为对 n 时刻发射波形 协方差矩阵 $\bar{R} = E \{s(n)s^{H}(n)\}$ 的优化,而非 式(8)中的 $R = SS^{H}$,因此在 P_2 中波形功率约束 为tr(\bar{R}) = $\frac{E}{N}$ 且 rank(\bar{R}) = 1。此外, P_2 中第一个 约束条件表示对 n 时刻每个阵元的发射功率进行 约束,其中 $\gamma \in [1,M]$ 。由于矩阵 \bar{R} 的阶 1 约束 条件, P_2 为非凸的,因此可利用半正定松弛方法 省略矩阵 \bar{R} 的阶 1 约束条件,将 P_2 松弛变换为 P_3 ,即:

$$\begin{cases} \min_{\boldsymbol{R},r} \sum_{l=1}^{L} |rP_{d}(\theta_{l}) - \boldsymbol{a}^{\mathsf{H}}(\theta_{l}) \overline{\boldsymbol{R}} \boldsymbol{a}(\theta_{l})|^{2} \\ \text{s. t.} \quad \operatorname{diag}(\overline{\boldsymbol{R}}) \leq \gamma \frac{E}{MN} \\ (\boldsymbol{D}^{r} \boldsymbol{a}(\theta_{c}))^{\mathsf{H}} \overline{\boldsymbol{R}} \boldsymbol{D}^{r} \boldsymbol{a}(\theta_{c}) \leq \rho \\ \operatorname{tr}(\overline{\boldsymbol{R}}) = \frac{E}{N}, \overline{\boldsymbol{R}} \geq \boldsymbol{0} \end{cases}$$
(16)

其中 P_3 为关于 \bar{R} 的半正定规划问题,可以通过 CVX 工具箱高效求解。在求得优化矩阵 \bar{R}^* 后, 相应的 $I_N \otimes \bar{R}^*$ 可直接作为 MIMO 雷达空时序列 的最优协方差矩阵 X^* 。由于 $X^* = I_N \otimes \bar{R}^*$,因此 在优化 \bar{R} 时,若 $\gamma = 1$,则 MIMO 雷达各个阵元发 射功率相同而且每个阵元发射波形满足恒包络; 若 $1 < \gamma \leq M$,则 MIMO 雷达不同阵元之间发射功 率具有一定变化范围,但是每个阵元发射波形仍 然满足恒包络。

通过优化问题 P_3 求得 $\overline{\mathbf{R}}^*$ 并根据 $I_N \otimes \overline{\mathbf{R}}^*$ 获 得最优协方差矩阵 X^* 后,接下来则需要根据 X^* 设计具体的发射波形。若优化后的协方差矩阵 X^* 满足 rank(X^*) = 1,经过特征值分解后,其非 零特征值所对应的特征向量即为期望的恒包络发 射波形;但是由于优化问题 P_3 经过松弛变化,实 际所得优化矩阵 X^* 的阶往往大于 1,此时可以利 用随机向量合成方法^[15]得到满足约束条件的恒包 络发射波形,其具体求解过程为:当rank(X^*) ≥ 2 时,任意选取 Q 个随机向量 x_q ,且 x_q 服从均值为 0 方差为 X^* 的复高斯正态分布,即 $x_q \sim N_c$ (0, X^*), $q = 1, 2, \dots, Q$,其中 Q 为随机化实验次数。

计算 $\mathbf{y}_q = \sqrt{\frac{E}{MN}} \exp(\operatorname{jarg} \mathbf{x}_q), \operatorname{arg}(\mathbf{x}_q)$ 表示向量 x_q 中每一元素的角度,并对于每一个向量 \mathbf{y}_q ,计算 代价函数,即:

 $\beta_{q} = \|X^{\star} - y_{q}y_{q}^{H}\|^{2}, q = 1, 2, \dots, Q$ (17) 则序列{ β_{q} }中的最小值所对应的 y_{q} 即为满足约 束条件的恒包络发射波形。

2.2 基于频域的 MIMO 雷达波形二次优化

在得到满足空域发射方向图匹配以及置零约 束等条件的 MIMO 雷达恒包络发射波形后,对发 射波形在频域上进行二次优化,实现在空域雷达 发射方向图不变的条件下优化波形频谱,从而避 免频域干扰提高雷达工作性能。

由式(6)可知,MIMO 雷达发射方向图仅与不同阵元之间发射波形的相关性有关,而与不同码元之间信号相位无关,因此改变每一码元时刻对应信号序列s(n)的初始相位,不会对雷达发射方向图造成影响。设基于空域优化后得到的波形矩阵为 $S \in C^{M \times N}$,通过改变不同时刻信号序列的初始相位,得到新的波形矩阵为:

 $\tilde{\boldsymbol{S}} = \boldsymbol{S}\boldsymbol{\Lambda} = \left[e^{j\varphi_0} \boldsymbol{s}(0), e^{j\varphi_1} \boldsymbol{s}(1), \cdots, e^{j\varphi_{N-1}} \boldsymbol{s}(N-1) \right]$ (18)

其中, $\Lambda = \text{diag}([e^{j\varphi_0}, e^{j\varphi_1}, \dots, e^{j\varphi_{N-1}}])为相位变化$ 对角矩阵,则有:

$$\tilde{\boldsymbol{S}}\tilde{\boldsymbol{S}}^{\mathrm{H}} = \boldsymbol{S}\boldsymbol{\Lambda}\boldsymbol{\Lambda}^{\mathrm{H}}\boldsymbol{S}^{\mathrm{H}} = \boldsymbol{S}\boldsymbol{S}^{\mathrm{H}}$$
(19)

由此可知,相位变化后的波形相关矩阵不会发 生任何变化,即方向图不变。因此在不影响雷达发 射方向图的基础上可以通过优化对角矩阵 Λ ,实现 波形在频域上的进一步优化。相位变化后阵元m发射信号序列 \hat{s}_m 在归一化信号频带内的功率谱密 度(Power Spectral Density, PSD)为^[16]:

$$\begin{split} \tilde{S}_{m}(f) &= \Big| \sum_{n=0}^{N-1} \boldsymbol{s}_{m}(n) e^{j\varphi_{n}} e^{-j2\pi f n} \Big|^{2} \\ &= |\boldsymbol{v}^{H} \boldsymbol{s}_{m} \odot \boldsymbol{F}(f)|^{2} \\ &= \boldsymbol{v}^{H} (\boldsymbol{s}_{m} \odot \boldsymbol{F}(f)) (\boldsymbol{s}_{m} \odot \boldsymbol{F}(f))^{H} \boldsymbol{v} \quad (20) \\ \\ \bar{\Xi} \boldsymbol{\Phi}, \boldsymbol{v} &= \Big[e^{-j\varphi_{0}}, e^{-j\varphi_{1}}, \cdots, e^{-j\varphi_{N-1}} \Big]^{T}, \boldsymbol{F}(f) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \end{split}$$

 $e^{-j2\pi f}, \dots, e^{-j2\pi f(N-1)}$]^T表示在归一化频点 *f* 处的 傅里叶变化向量,"①"表示 Hadamard 乘积,信号 序列 \tilde{s}_m 在干扰频带 $\Omega = [f_1^j, f_2^j]$ 内的发射功 率为:

$$\int_{\hat{f_i}}^{\hat{f_2}} \widetilde{S}_m(f) \, \mathrm{d}f$$

= $\boldsymbol{v}^{\mathrm{H}} \int_{\hat{f_i}}^{\hat{f_2}} (\boldsymbol{s}_m \odot \boldsymbol{F}(f)) (\boldsymbol{s}_m \odot \boldsymbol{F}(f))^{\mathrm{H}} \mathrm{d}f \boldsymbol{v} = \boldsymbol{v}^{\mathrm{H}} \boldsymbol{R}_J^m \boldsymbol{v}$
(21)

其中: $\mathbf{R}_{J}^{m} = \int_{A}^{b} (\mathbf{s}_{m} \odot \mathbf{F}(f)) (\mathbf{s}_{m} \odot \mathbf{F}(f))^{H} df, f_{1}^{j}$ 表示干扰频带下边界,即最小干扰频点; f_{2}^{j} 则表示干扰频带上边界,即最大干扰频点。为避免频域上的干扰,MIMO 雷达发射波形在频域上的优化方程 P_{4} 可表示为:

$$\begin{cases} \min_{\boldsymbol{\nu}} \boldsymbol{\nu}^{\mathrm{H}} \sum_{m=1}^{M} \boldsymbol{R}_{J}^{m} \boldsymbol{\nu} \\ \mathrm{s. t.} \quad |\boldsymbol{V}(n)| = 1, \ n = 1, 2, \cdots, N \end{cases}$$
(22)

为求解该非凸优化问题,首先将矩阵 $\sum_{m=1}^{M} R_{J}^{m}$ 进行 特征值分解,得到最大特征值 λ ,令 $\overline{R} = \lambda I_{N} - \sum_{m=1}^{M} R_{J}^{m}$,利用辅助变量 \overline{R} 将 P_{4} 等效转化为 P_{5} ,即: $\begin{cases} \max_{\nu} \nu^{H} \overline{R} \nu \\ \text{s.t.} |\nu(n)| = 1, n = 1, 2, \dots, N \end{cases}$ (23)

由于 \overline{R} 为 Hermitian 半正定矩阵,且向量 V的取值范围为 $\Delta = \{v \in C^{N} \mid |V(n)| = 1, n = 0, 1, \dots, N-1\}$,因此优化问题 P_5 为关于 v 的非凸单 位 二 次 规 划 问 题 (Unimodular Quadratic Programming, UQP),可利用拟功率迭代算法^[17] 进行有效求解。假设经过 k 次迭代后优化得到 $v^{(k)}$,则第 k + 1 次迭代优化方程等价为:

$$\min_{(k+1) \in \Delta} \| \boldsymbol{\nu}^{(k+1)} - \overline{\boldsymbol{R}} \boldsymbol{\nu}^{(k)} \|_2^2$$
(24)

利用拟功率算法可直接求得第 *k* +1 次迭代的最优解,即:

$$\boldsymbol{v}^{(k+1)} = \mathrm{e}^{\mathrm{jarg}(\boldsymbol{R}\boldsymbol{v}^{(k)})} \tag{25}$$

由于
$$\|\boldsymbol{v}^{(k+1)} - \overline{\boldsymbol{R}}\boldsymbol{v}^{(k)}\|_{2}^{2} = \operatorname{const} - 2\mathfrak{R}\{\boldsymbol{v}^{(k+1)^{H}}\overline{\boldsymbol{R}}\boldsymbol{v}^{(k)}\}$$
(26)

则 $v^{(k+1)}$ 应满足 $\Re \{v^{(k+1)^{H}} \overline{R} v^{(k)}\}$ 最大化。若 $v^{(k+1)} \neq v^{(k)}$,因为 \overline{R} 为 Hermitian 半正定矩阵,则有:

$$(v^{(k+1)} - v^{(k)})^{H} \overline{R}(v^{(k+1)} - v^{(k)}) > 0$$
 (27)
其中 $\Re\{v^{(k+1)^{H}} \overline{R}v^{(k)}\}$ 表示复数 $v^{(k)^{H}} \overline{R}v^{(k)}$ 的实部,
因此由式(27)可进一步得知:

$$\boldsymbol{v}^{(k+1)^{\mathrm{H}}} \boldsymbol{\bar{R}} \boldsymbol{v}^{(k+1)} > 2 \Re \left\{ \boldsymbol{v}^{(k+1)^{\mathrm{H}}} \boldsymbol{\bar{R}} \boldsymbol{v}^{(k)} \right\} - \boldsymbol{v}^{(k)^{\mathrm{H}}} \boldsymbol{\bar{R}} \boldsymbol{v}^{(k)} > \boldsymbol{v}^{(k)^{\mathrm{H}}} \boldsymbol{\bar{R}} \boldsymbol{v}^{(k)}$$
(28)

拟功率迭代算法的收敛性得到证明。重复上述迭 代优化过程直到 $v^{H} \overline{R} v \leq E_{I}, E_{I}$ 为干扰频带内雷达 允许最大发射功率,停止迭代输出v。最终经过 空频域二次优化的 MIMO 雷达发射波形矩阵为:

 $\tilde{S}^{\star} = SDiag(v^{*}) \tag{29}$

其中 $Diag(v^*)$ 表示以向量 v^* 构造的对角矩阵。

2.3 算法性能分析

针对干扰条件下 MIMO 雷达发射方向图优化 问题,本文提出一种基于空频域二次优化的 MIMO 雷达波形设计方法,即首先在空域上设计 与期望方向图匹配而且能够形成较宽零陷的 MIMO 雷达发射波形,在此基础上利用阵列信号 s(n)每个码元改变相同相位对应方向图不变的 特性,通过优化相位变化矩阵实现波形在频域上 的优化。与文献[14]所提波形设计方法相比,本 文在利用向量方法合成具体波形时,采用最小二 乘准则使合成信号方向图逼近优化发射方向图, 从而保证了合成后的发射波形能够在空域上形成 较宽的零陷:在频域上通过优化相位变化矩阵 Λ , 实现在不影响雷达发射方向图的条件下优化波形 频谱,从而抑制频域上的干扰。本文所提算法主 要分为三部分,基于协方差矩阵的发射方向图设 计、信号合成和频谱优化,其计算复杂度分别为 $O(((M)^{3.5}), O(Q(MN)^{2}), O(N_{iter}(N)^{2}), \ddagger +$ Niter为拟功率算法迭代次数,相比式(13)直接对 MIMO 雷达空时序列协方差矩阵 X 优化,所提算 法计算复杂度大大降低,因此能够更好地满足雷 达波形设计实时性应用的要求。

3 实验仿真

设 MIMO 雷达发射阵列为均匀线阵, 阵元间 距为半波长, 阵元数目 M = 10, 每个阵元发射信号 中心载频和信号带宽相同, 分别为 $f_0 = 10$ GHz、 B = 10 MHz, 雷达发射脉冲宽度 $T_p = 6.4 \ \mu s$, 发射 总功率 E = M, 每个阵元发射基带信号码长为 N = $T_p B = 64$ 。设整个空域为 $\Theta = [-90^\circ, 90^\circ]$, 其中 感兴趣的目标空域为 $\Theta_T = [-30^\circ, 30^\circ]$, 旁瓣空 域为 $\Theta_S = [-90^\circ, -30^\circ] \cup [30^\circ, 90^\circ]$, 空域离散 点间隔为 0.5° 。设在方向 $\theta_c = 57^\circ$ 处存在一快速 移动干扰, 令导数约束 p = 2, 空域零陷深度 $\varepsilon =$ -40 dB, 随机化实验次数 Q = 1000。

设阵元功率变化参数 $\gamma = 1, \gamma = 1.5, \gamma = 2, 将$ 本文所提通过优化协方差矩阵 $X = I_N \otimes \overline{R}^*$ 形成带有宽零陷的 MIMO 雷达发射方向图与式(8)形

成的发射方向图进行对比,如图1所示。相比于 式(8)形成的干扰条件下 MIMO 雷达发射方向 图,本文所提方法能够通过 *p* 阶导数约束展宽零 陷,可以较好地抵抗快速移动干扰。而且由图1 可知,阵元功率变化参数 γ 越大,优化矩阵 *X* 所 对应的发射方向图旁瓣越低,这是因为不同阵元 功率变化越大,发射波形自由度越高,因此合成方 向图质量越好。此外,为进一步验证本文所提方 法与直接求解式(13)所得优化方向图一致,将两 者所得优化方向图进行对比,如图2所示。两者 所得方向图完全一致,具有相同的方向图匹配误

图 1 MIMO 雷达最优发射方向图

- 图 2 所提方法与式(13)所得优化方向图
- Fig. 2 Transmit beampatterns by the proposed method and equation (13)

差,但是直接求解式(13)计算复杂度为 $O((MN)^{3.5})$,而本文所提方法求解 P_3 计算复杂度仅为 $O(M^{3.5})$,在发射信号码长较大时,本文所提在空域上的波形优化方法比直接求解式(13)计算效率大幅提升。

为更好地分析基于随机向量合成方法和文 献[15]所提循环算法(Cyclic Algorithm, CA)在 干扰条件下合成波形的质量,令γ=1,基于两种

恒包络波形设计方法所得 MIMO 雷达发射方向图 如图3所示。由图3可以直观看出,CA方法所得 波形不能保证雷达发射方向图在干扰方向上形成 满足条件的零陷,这是因为该循环算法在合成信 号矩阵 S 时,仅以最小二乘准则逼近矩阵 $R^{1/2}U$, 而没有考虑零陷约束。相比于 CA 算法,基于随 机向量合成的波形设计方法以最小二乘准则逼近 最优协方差矩阵,因此合成的波形不仅能够较好 地匹配最优协方差矩阵X所对应的发射方向图, 而且能够保证在干扰方向形成满足一定宽度和深 度的零陷。图4则表示了在不同功率变化参数γ 优化情况下,本文所提方法合成的信号矩阵 S 所 对应的每个阵元的发射功率分配情况。虽然优化 后的发射波形每个阵元发射功率不同,但是由于 优化过程中定义发射空时序列协方差矩阵 X = $I_N \otimes R$,因此每个阵元发射波形仍然保持恒包络 特性。

图 3 不同波形设计方法形成的 MIMO 雷达发射方向图 Fig. 3 MIMO radar transmit beampatterns synthesized by different waveform design methods

本文所提基于空频域联合优化 MIMO 雷达波 形设计方法中,在利用随机向量合成方法对优化 协方差矩阵分解得到具体发射波形时,随机化向 量实验次数直接决定所得波形质量。定义所得波 形协方差矩阵 \hat{X} 与优化矩阵 X^{\star} 之间均方误差 (Mean-Squared Error, MSE)为:

$$MSE = \|\hat{\boldsymbol{X}} - \boldsymbol{X}^{\star}\|_{2}^{2} \tag{30}$$

在 γ = 1、蒙特卡洛次数为 100 的条件下,波 形合成均方误差随随机化实验次数的变化情况如 图 5 所示。由图 5 可知,随着实验次数的增加波 形合成误差变小,当 Q≥800 时,合成波形误差几 乎不变,因此当实验次数足够大时,合成波形能够 较好地匹配优化协方差矩阵,从而保证发射方向 图的质量。

图 5 均方误差随实验次数变化情况

Fig. 5 MSE versus the number of experiments

设在频域上干扰信号归一化带宽为 Ω = [0.4,0.5],雷达发射信号在干扰频带内允许的最大发射功率为 E_I = -40 dB。在 γ = 1 条件下,将本文所提空频域二次优化方法与式(13)仅在空域进行优化所得波形的功率谱密度进行对比,后者得到的优化波形功率谱在频域上任意分布,无法有效抵抗频域上的干扰,如图 6 所示。而本文所提基于频域二次优化后的 MIMO 雷达发射波形功率谱如图 7 所示。在保证 MIMO 雷达空域发射方向图不变的情况下,通过优化发射波形初始

相位矩阵 A,可以较好地控制波形频谱在干扰频 带内总的发射功率,从而将雷达发射波形规避干 扰带宽,实现频域上的干扰抑制。

Fig. 7 PSD of optimized waveforms via the second spectral optimization

4 结论

本文针对一般 MIMO 雷达波形设计方法不能 在匹配期望发射方向图的同时抑制来自空域和频 域的干扰问题,提出一种干扰条件下基于空频域 二次优化的 MIMO 雷达波形设计方法。该方法首 先利用 MIMO 雷达发射方向图表达式,将空域上 方向图优化问题转化为关于雷达空时序列协方差 矩阵 X 的优化问题,并利用 MIMO 雷达发射方向 图仅与不同阵元之间发射波形相关性有关这一特 性,进一步降低空域上波形优化计算复杂度,针对 空域上快速移动的干扰,通过 p 阶导数约束实现 零陷展宽;通过优化得到最优协方差矩阵 X^* 后, 利用随机向量方法通过最小二乘准则逼近最优发 射方向图来合成恒包络发射波形,不仅能够较好 地匹配最优协方差矩阵 X* 所对应的发射方向 图,而目能够保证在干扰方向形成满足一定宽度 和深度的零陷;最后在空域优化得到的发射波形 基础上,利用改变不同时刻信号序列的初始相位 雷达发射方向图不变的特性,通过拟功率算法对 相位变化矩阵 Λ 进行优化,从而实现 MIMO 雷达 发射波形在频域上的二次优化。实验仿真证明了 所提方法在方向图设计和空频域干扰抑制方面的 有效性。

参考文献(References)

- Haimovich A M, Blum R S, Cimini L J. MIMO radar with widely separated antennas [J]. IEEE Signal Processing Magazine, 2008, 25(1): 116-129.
- [2] 许红波, 王怀军, 陆珉, 等. 一种新的 MIMO 雷达 DOA 估 计方法[J]. 国防科技大学学报, 2009, 31(3): 92-96.

XU Hongbo, WANG Huaijun, LU Min, et al. A new algorithm on estimation of DOA using MIMO radar [J]. Journal of National University of Defense Technology, 2009, 31(3): 92-96. (in Chinese)

- [3] Li J, Stocia P. MIMO radar with collocated antennas [J].
 IEEE Signal Processing Magazine, 2007, 24(5): 106 114.
- [4] Fuhrmann D R, Antonio G S. Transmit beamforming for MIMO radar systems using signal cross-correlation [J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(1): 171-186.
- [5] Stocia P, Li J, Yao X. On probing signal design for MIMO radar[J]. IEEE Transactions on Signal Processing, 2007, 55(8): 4151-4161.
- [6] Pandey N, Roy L P. Convex optimization based transmit beampattern synthesis for MIMO radar [J]. Electronic Letters, 2016, 52(9): 761-763.
- [7] Ahmed S, Alouini M S. MIMO radar transmit beampattern design without synthesising the covariance matrix [J]. IEEE Transactions on Signal Processing, 2014, 62 (9): 2278 – 2289.
- [8] Imani S, Ghorashi S A, Bolhasani M. SINR maximization on colocated MIMO radars using transmit covariance matrix [J]. Signal Processing, 2016, 119: 128 – 135.
- [9] Khabbazibasmenj A, Hassanien A, Vorobyov S, et al. Efficient transmit beamspace design for search-free based DOA estimation in MIMO radar[J]. IEEE Transactions on Signal Processing, 2014, 62(6): 1490 - 1500.
- $[\,10\,] \quad \mbox{Friedlander B. On transmit beamforming for MIMO radar}[\,J\,].$

IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3376-3388.

- [11] Li Y Z, Vorobyov S A, Koivunen V. Ambiguity function of the transmit beampace-based MIMO radar [J]. IEEE Transactions on Signal Processing, 2015, 63 (17): 4445 – 4457.
- [12] Hua G, Abeysekera S S. MIMO radar transmit beampattern design with ripple and transition band control [J]. IEEE Transactions on Signal Processing, 2013, 61 (11): 2963 – 2974.
- [13] Gong P C, Shao Z H, Tu G P, et al. Transmit beampattern design based on convex optimization for MIMO radar systems[J]. Signal Processing, 2014, 94: 195 – 201.
- [14] Stocia P, Li J, Zhu X M. Waveform synthesis for diversitybased transmit beampattern design [J]. IEEE Transactions on Signal Processing, 2008, 56(6): 2593 – 2598.
- [15] Tang B, Tang J. Joint design of transmit waveforms and receive filters for MIMO radar space time adaptive processing [J]. IEEE Transactions on Signal Processing, 2016, 64(18): 4707 – 4722.
- [16] Aubry A, De Maio A, Huang Y, et al. A new radar waveform design algorithm with improved feasibility for spectral coexistence [J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 1029 – 1038.
- [17] Soltanalian M, Stoica P. Designing unimodular codes via quadratic optimization [J]. IEEE Transactions on Signal Processing, 2014, 62(5): 1221-1234.