doi:10.11887/j.cn.201704016

http://journal. nudt. edu. cn

结合景象匹配与惯导信息的 SAR 平台定位方法*

陈圣义^{1,2},刘晓春^{1,2},雷志辉^{1,2},于起峰^{1,2},崔 文³ (1. 国防科技大学航天科学与工程学院,湖南长沙 410073; 2. 国防科技大学图像测量与视觉导航湖南省重点实验室,湖南长沙 410073; 3. 中国人民解放军96656部队,北京 102208)

摘 要:利用高度传感器提供高度信息,结合高精度异源图像匹配技术与惯导系统漂移修正方法实现 SAR 平台定位。根据成像中间时刻 SAR 平台与 SAR 图像中心线上物点在水平面的投影共线的特性,在单帧 图像中心线上均匀选取若干点与光学基准图进行高精度景象匹配;计算平台在水平面上投影位置,并利用高 度信息确定其空间位置;使用序列图像定位结果估计惯导系统漂移参数,对惯导系统输出的位置数据进行修 正,实现高精度的 SAR 平台定位。对各误差因素的影响进行分析,推导了精度估计公式。仿真和实际序列图 像实验结果表明,方法正确可行,具有较高的平台定位精度,具备一定工程实用价值。

关键词:合成孔径雷达;平台定位;景象匹配;惯导漂移;误差传递

中图分类号: TP391.4 文献标志码:A 文章编号:1001-2486(2017)04-105-05

SAR platform location method based on scene matching and inertial navigation system information

CHEN Shengyi^{1,2}, LIU Xiaochun^{1,2}, LEI Zhihui^{1,2}, YU Qifeng^{1,2}, CUI Wen³

(1. College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China;

2. Hunan Key Laboratory of Videometrics and Vision Navigation, National University of Defense Technology, Changsha 410073, China;

3. The PLA Unit 96656, Beijing 102208, China)

Abstract: Aided by elevation information provided by height sensor, SAR (synthetic aperture radar) platform geo-location was realized by combining the high-precision image matching technology and the INS (inertial navigation system) drift correction method. According to the fact that the platform is on the centerline of SAR image at the middle imaging time, some points on the centerline of a single image were equably selected to conduct the high precision matching with the optical reference image. The projection position of SAR platform on the horizontal plane was calculated and the spatial position was positioned by making use of the elevation information. By use of the position results of sequence images, the drifting parameters of INS were estimated and then the outputting position data were corrected to achieve the high-accuracy platform geo-location. The impacts of different errors on location precision were analyzed and the precision estimation formulas were derived. Both simulation and real data test results show high precision and practical value for engineering of the proposed method.

Key words: synthetic aperture radar; platform geo-location; scene matching; inertial sensor drift; error propagation

合成孔径雷达(Synthetic Aperture Radar, SAR)具有全天时、全天候成像的优点,随其成像 技术的发展^[1],图像分辨率越来越高,其在景象 匹配等视觉导航系统中应用广泛^[2-3]。利用 SAR 图像与基准图进行匹配,并与惯导系统(Inertial Navigation System, INS)^[4]构成组合导航系统,可 用于 SAR 平台长航时导航。

李亚超等^[5]提出了一种比较简单的方法,利 用某方位门(距离向)上的两个点进行高精度匹 配,进而解算 SAR 平台位置。该方法计算量较小 但要求匹配精度高,否则在飞行方向(方位向)容 易产生较大误差,对于此,文献[6]提出利用 SAR 图像中心线上若干点进行匹配定位,有了很大的 改善。此外,文献[7]中将 SAR 平台运动轨迹用 参数化多项式来描述,并利用若干控制点和最小 二乘方法解算运动参数。类似地,程华等^[8]使用 最小二乘支持向量机(Least Squares Support Vector Machines, LSSVM)来估计这些运动参数。

 ^{*} 收稿日期:2016-11-18
 基金项目:国家重点基础研究发展计划资助项目(2013CB733100)
 作者简介:陈圣义(1989—),男,江西萍乡人,博士研究生,E-mail:chensy8904@sina.com;

雷志辉(通信作者),男,副教授,硕士,E-mail:zhihuilei@hotmail.com

此类方法充分利用了控制点信息,但其易受各采 样时刻平台定位误差影响,而且参数化运动方程 往往不能用来描述长航时平台运动。INS/SAR 组合导航技术中主要利用了卡尔曼滤波方法^[9], 实现 INS 与视觉导航数据的融合。这类方法需要 合理配置参数初值,且需要一定观测时间实现参 数收敛。景象匹配只能提供平台在水平面的位置 信息,利用高度传感器可以获得较高精度的高度 信息^[10]。

1 SAR 平台定位方法

图 1 表示了 SAR 成像几何关系。在世界坐标系 XYH 中, XOY 平面为成像区域的当地水平面,OH 为高度方向,SAR 平台以速度 v 运动并成像,V 是 v 在水面上的投影;S 是平台在成像中心时刻的位置, $S_0 \in S$ 在水平面上的投影,平台高度为 H,即 H = \overline{SS}_0 ; S_0L 在 XOY 平面上,是图像中心线在 XOY 平面的投影; $X_i \in S_0L$ 上的点,对应于图像中心线上的一系列点的匹配结果,其斜距为 D_i ,地距为 L_i 。图中 X_1 对应于图像的中心点。

图 1 SAR 成像几何关系 Fig. 1 Geometric relation of SAR imaging

1.1 利用单帧图像确定 SAR 平台位置

单帧 SAR 图像确定平台位置主要参考了文 献[6]中的方法,利用图像中心线上均匀选取的 若干点进行高精度景象匹配,再根据各点的斜距 和成像中心时刻的高度数据来解算该时刻 SAR 平台的空间位置。

目前景象匹配主要使用光学基准图,实现 SAR 图像与光学图像这两类异源图像的高精度 匹配是高精度解算平台位置的重要基础。由于成 像原理的差异,这两类图像在灰度域上没有严格 对应关系,需进行适当变换,抽取稳定信息进行匹 配^[11]。本文利用局部频率信息^[12]进行异源图像 匹配。在匹配之前,还可以利用已知成像信息粗 略地对匹配区域图像进行几何校正,从而提高景 象匹配精度。

如图 2 所示,在 SAR 图像中心线上均匀地选取 n 个点进行景象匹配,它们在当地水平面的对

应点 X_i 应位于中心线在 XOY 平面上的投影 S_0L 上。

图 2 控制点拟合投影直线

Fig. 2 Fitting the projection line with control points

用齐次坐标 $X_i = \begin{bmatrix} x_i & y_i & 1 \end{bmatrix}^T$ 表示 XOY 平 面上的匹配点,并用向量 $l = \begin{bmatrix} a & b & 1 \end{bmatrix}^T$ 表示直 线 S_0L ,则直线上的点应满足 ax + by + 1 = 0,即 $X_i^T l = 0$ 。利用以上 n 个点估计 $\hat{l} = \begin{bmatrix} \hat{a} & \hat{b} & 1 \end{bmatrix}$,且 令 $\varepsilon_i = X_i^T \hat{l}$,可通过如下最优化问题来估计直线:

$$\begin{bmatrix} \hat{a} & \hat{b} \end{bmatrix} = \arg \min \left(\sum_{i=1}^{n} \varepsilon_{i}^{2} \right)$$
 (1)

根据高度传感器提供的平台海拔高程 h_s 和 高程模型给出的各匹配点的高程 h_i , 令 $H_i = h_s - h_i$,则各点斜距为 $D_i^2 = H_i^2 + L_i^2$ 。没有高程模型时, 也可用当地平均海拔代替各点高程。设 $\hat{S}_0 = (\hat{x}_s, \hat{y}_s)$ 为 S_0 的估计位置,则位置估计问题转化为如 式(2)所示的优化问题:

$$\begin{cases} \begin{bmatrix} \hat{x}_s & \hat{y}_s \end{bmatrix} = \arg \min \Big(\sum_{i=1}^n d_i^2 \Big) \\ \text{s. t. } \hat{a}\hat{x}_s + \hat{b}\hat{y}_s + 1 = 0 \end{cases}$$
(2)

其中, $d_i = D_i - \hat{D}_i$, $\hat{D}_i^2 = H_i^2 + \hat{L}_i^2$, \hat{L}_i 为 \hat{S}_0 到 X_i 的距离。

根据 S_0 的估计结果,可得 SAR 平台在世界 坐标系中的坐标为 $\hat{S} = (\hat{x}_s, \hat{y}_s, h_s)$,即利用单帧 图像解算得到的成像中心成像时刻平台空间 位置。

1.2 利用序列图像与惯导信息实现平台定位

利用 SAR 测速技术中认为惯导系统在一段 时间内速度漂移量(即惯导速度与实际速度的 差)为恒定值的假设^[13],本文在平台定位时对速 度进行积分,惯导器件的位置误差累积表示为1 阶模型:

$$\boldsymbol{X}_{\rm INS} = \boldsymbol{X} - \Delta \boldsymbol{X}_0 - \boldsymbol{v}_{\Delta \boldsymbol{X}} t \tag{3}$$

式中, X_{INS} 为 INS 输出的位置信息,X 为真实位置, ΔX_0 为零时刻惯导器件的位置漂移误差, $v_{\Delta x}$ 为惯 性器件的速度漂移量,t 为零时刻到当前时刻的 时间。

假设第一帧图像的中间时刻为零时刻,各帧 图像中心时刻之间相差时间为 Δt,则第 j 帧图像 的中间时刻为 $t_j = (j-1)\Delta t$,用 X_s 表示利用单帧 图像解算得到的该时刻 SAR 平台位置, X_{INS}^j 表示 该时刻惯导给出的平台位置,根据误差模型(3) 得到方程组:

$$\begin{cases} \boldsymbol{X}_{\mathrm{S}}^{\mathrm{I}} = \boldsymbol{X}_{\mathrm{INS}}^{\mathrm{I}} + \Delta \boldsymbol{X}_{0} + \boldsymbol{\nu}_{\Delta X} \boldsymbol{t}_{1} \\ \vdots \\ \boldsymbol{X}_{\mathrm{S}}^{N} = \boldsymbol{X}_{\mathrm{INS}}^{N} + \Delta \boldsymbol{X}_{0} + \boldsymbol{\nu}_{\Delta X} \boldsymbol{t}_{N} \end{cases}$$
(4)

式中,N表示图像帧数。

整理成矩阵形式为:

$$\Delta Y = A \Delta X \tag{5}$$

式中
$$\Delta Y = \begin{bmatrix} X_{\rm s}^{\rm i} - X_{\rm INS}^{\rm i} \\ \vdots \\ X_{\rm s}^{\rm N} - X_{\rm INS}^{\rm N} \end{bmatrix}, A = \begin{bmatrix} 1 & 0 \\ \vdots & \vdots \\ 1 & (N-1)\Delta t \end{bmatrix}, \Delta X =$$

 $[\Delta X_0 \quad v_{\Delta x}]^{\mathrm{T}}$ 。利用最小二乘方法可以计算得到 惯性器件漂移模型的参数为:

$$\Delta \hat{\boldsymbol{X}} = (\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A})^{-1}\boldsymbol{A}^{\mathrm{T}}\Delta\boldsymbol{Y}$$
(6)

用计算得到的误差模型参数修正 INS 输出的 位置信息,并以此作为每时刻的 SAR 平台位置:

$$\boldsymbol{X}_{\text{out}}^{j} = \boldsymbol{X}_{\text{INS}}^{j} + \Delta \hat{\boldsymbol{X}}_{0} + \hat{\boldsymbol{v}}_{\Delta X}(j-1) \Delta t \qquad (7)$$

2 误差分析

2.1 单帧图像解算定位误差分析

2.1.1 方位向误差分析

在图 2 中,通过匹配得到的 n 个控制点拟合 直线 S_0L ,进而确定直线与 OX 轴的夹角 β ,其精 度受各点匹配误差影响^[13]。

实际匹配过程中, n 个点是在中心线上均匀 选取的, 假设这些点相邻间距为 ΔL, 根据文 献[6]中的推导, β 的误差与各点匹配精度 σ_x 的 关系可表示为:

$$\sigma_{\beta} = \sqrt{\frac{12}{n(n+1)(n-1)}} \frac{\sigma_{\chi}}{\Delta L}$$
(8)

从而得到 SAR 平台在方位向上的定位误 差为:

$$\sigma_{XV} = \sigma_{\beta} L_1 = \sqrt{\frac{12}{n(n+1)(n-1)}} \frac{\sigma_X L_1}{\Delta L} \quad (9)$$

2.1.2 距离向误差分析

假设各匹配点对应的斜距为 $D_i^2 = L_i^2 + H_i^2$, 而 $L_i = L_{so} - L_{so}$, L_{so} 和 L_{ao} 分别为 S_0 和第 i 个点在 L 轴 上的位置,则有 $L_{so} = L_{ao} - \sqrt{D_i^2 - H_i^2}$ 。如文献[6] 中所分析,利用式(2)进行优化求解的实质是对 各点算得的 L_{so} 进行平均,故在距离向上的定位精 度可表示为:

$$\sigma_{XL} = \sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_D^2}{n} + \frac{\sigma_D^2 + \sigma_h^2}{n^2} \sum_{i=1}^n \frac{H_i^2}{D_i^2 - H_i^2}}$$
(10)

式中, σ_x 为各点匹配精度, σ_h 为各点高程精度, σ_D 为 SAR 成像时斜距精度。

2.2 修正惯导漂移后平台定位误差分析

先就方位向进行误差分析。用 σ_{INS} 表示惯性 器件输出的随机误差,则式(5)中 ΔY 的协方差矩 阵为 $\Sigma_{\Delta Y} = \sigma_{\Delta Y}^2 I_N$,其中 $\sigma_{\Delta Y}^2 = \sigma_{XV}^2 + \sigma_{INS}^2$, $I_N \in N$ 维 单位矩阵。令 $B = (A^T A)^{-1} A^T$,则 $\Delta \hat{X}$ 的协方差 矩阵为 $\Sigma_{\Delta \hat{X}} = B \Sigma_{\Delta Y} B^T$,展开得:

$$\boldsymbol{\Sigma}_{\Delta \hat{X}} = \sigma_{\Delta Y}^{2} \begin{bmatrix} \frac{2(2N-1)}{N(N+1)} & -\frac{6}{N(N+1)\Delta t} \\ -\frac{6}{N(N+1)\Delta t} & \frac{12}{N(N+1)(N-1)\Delta t^{2}} \end{bmatrix}$$
(11)

从而有 $\sigma_{\Delta \hat{x}_0}^2 = 2(2N-1)\sigma_{\Delta Y}^2 / [N(N+1)], \sigma_{\hat{t}_{\Delta X}}^2 = 12\sigma_{\Delta Y}^2 / [N(N+1)(N-1)\Delta t^2], Cov(\Delta \hat{X}_0, \hat{v}_{\Delta X}) = -6\sigma_{\Delta Y}^2 / [N(N+1)\Delta t]$ 。根据误差传递原理,第 j 帧图像中心时刻,修正惯导漂移后输出平台位置的误差方差为:

$$\sigma_{\chi_{\text{out}}^2}^2 = \sigma_{\chi_{\text{INS}}}^2 + \sigma_{\Delta \hat{\chi}_0}^2 + \sigma_{\hat{v}_{\Delta \chi}}^2 (j-1)^2 \Delta t^2 + 2Cov(\Delta \hat{X}_0, \hat{v}_{\Lambda \chi}) (j-1) \Delta t$$
(12)

化简得到该时刻在方位向上的定位精度为: σ_{x} =

$$\sqrt{\sigma_{\rm INS}^2 + \frac{2(2N-1) - 12(j-1)}{N(N+1)}} \sigma_{\Delta Y}^2 + \frac{12(j-1)^2}{N(N+1)(N-1)} \sigma_{\Delta Y}^2$$
(13)

类似地,可以推导距离向定位精度公式。

3 实验结果

3.1 仿真数据实验

仿真实验中, 假定 SAR 平台飞行高度 $h_s =$ 7000 m, 其误差满足均值为 0、标准差为 σ_h 的高 斯分布;图像中心的观测距离 $L_1 = 20\ 000\ m$;图像 中心线上均匀取 n = 12 个匹配点, 相邻点距离 $\Delta L = 500\ m$, 假设景象匹配获得各点位置时的匹 配精度为 σ_x ;各斜距 D_i 通过平台与各匹配点位 置的真值计算获得, 并添加均值为 0、标准差为 σ_D 的高斯噪声。

首先在典型误差条件下,考察本文方法的定 位精度。其中,图像帧数 N = 45,景象匹配精度 $\sigma_x = 5 \text{ m}$,平台高度误差 $\sigma_h = 5 \text{ m}$,斜距误差 $\sigma_D =$ 1 m,惯导系统方位向初始位置漂移 $\Delta X_{0V} =$ 1000 m、速度漂移量 $v_{\Delta XV} = 1.0$ m/s,距离向初始 位置漂移 $\Delta X_{0L} = 1000$ m、速度漂移量 $v_{\Delta XL} =$ 1.2 m/s,惯导定位随机误差 $\sigma_{INS} = 0.5$ m。经过 500 次仿真实验,取各帧定位误差的均方根值作 为实验值,并根据精度估计公式计算理论值进行 对比,结果如图 3 所示。

(b) Location accuracy in range direction

图 3 典型误差条件下定位误差

Fig. 3 Location error under typical error conditions

从图 3 的实验结果可以看出,各帧图像时刻平 台定位精度的理论值与实验值基本一致,表明本文 方法给出的定位精度公式正确。同时还可以看到, 利用序列图像的定位结果对惯导漂移进行修正后, 中间帧时刻的位置输出精度最高。

在文献[8]的误差条件下,根据精度估计公式 计算了本文方法所能达到的精度,与其提出的 LSSVM 方法的精度进行了对比,结果如表1所示, 可以看到,本文方法的定位精度较其有一定提升。

Tab. 1 Results of LSSVM and the proposed method		
方法	方位向	距离向
	定位精度/m	定位精度/m
LSSVM 方法	0.377	0.214
本文方法	0.199	0.101

取中间帧作为参考,图4给出了定位精度随 景象匹配精度、SAR平台高度误差、惯导定位随 机误差以及图像帧数变化的情况。

从实验结果可以看出,图像匹配精度对定位 精度影响较大;增加图像帧数有利于提高定位精 度。在上述典型仿真条件下,中间帧定位精度都 能优于5m,完全可以满足工程实际要求。

3.2 实际图像实验

使用实际挂飞的 SAR 序列图像进行验证实

验,该序列图像共有 26 帧。进行单帧图像匹配时,在 SAR 图像中心线上均匀地选取 13 个点进行景象匹配。基准图像从 Google Map 下载得到, 经过经纬度校正^[14]后精度可以达到 10 m,可以 认为图像匹配精度为 10 m。

图 5 给出了其中 4 帧图像中心时刻 INS 和全 球定位系统(Global Positioning System, GPS)输出 的 SAR 平台位置,以及由单帧定位和序列解算得 到的位置。图中各项数据的经度和纬度数值进行 了脱密处理,均减去了一个常数,另外,INS 数据 偏差较大也是人为进行平移造成的。可以看到, 单帧匹配定位结果在方位向上波动较大,利用惯 导信息进行序列解算后,结果得到了很大的改善。 以 GPS 输出作为真值,单帧解算的位置误差均值 为 88. 85 m,序列解算位置误差均值为 19. 81 m。

4 结论

利用序列图像匹配实现了 SAR 平台定位,并 以此结果对惯导漂移进行修正,获得高精度的 SAR 平台位置信息。主要结论如下:

1) 对定位误差进行了分析,并给出了精度估 计公式,通过典型误差条件及不同误差对定位精 度影响的仿真实验结果可以看出,定位精度与分 析结果基本一致,表明本文方法正确可行;

2)在已有文献的误差条件下进行了实验对 比,结果表明本文方法可以提高定位精度,实际图 像实验结果也表明利用序列图像修正惯导漂移可 以改善平台定位精度;

3)本文方法解算得到的结果既可以作为传 统滤波组合导航系统的初始值,也可以直接作为 定位结果使用,具备一定的工程实用价值。

参考文献(References)

 Wang W, Liao G S, Li D, et al. Focus improvement of squint bistatic SAR data using azimuth nonlinear chirp scaling[J]. IEEE Geoscience & Remote Sensing Letters, 2014, 11(1): 229-233.

- [2] Tang Y, Zhang B, Xing M D, et al. The space-variant phaseerror matching map-drift algorithm for highly squinted SAR[J]. IEEE Geoscience & Remote Sensing Letters, 2013, 10(4): 845 – 849.
- [3] Fan B, Huo C L, Pan C H, et al. Registration of optical and SAR satellite images by exploring the spatial relationship of the improved SIFT[J]. IEEE Geoscience & Remote Sensing Letters, 2013, 10(4): 657-661.
- [4] Ding Z J, Cai H, Yang H B. An improved multi-position calibration method for low cost micro-electro mechanical systems inertial measurement units [J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2015, 229(10): 1919-1930.
- [5] 李亚超,吕孝雷,王虹现,等.高精度景象匹配下的高速 SAR 平台定位和测速[J].系统工程与电子技术,2007, 29(11):1851-1855.
 LI Yachao, LYU Xiaolei, WANG Hongxian, et al. Research on positioning and measuring speed in the high speed SAR system based on high precision map matching[J]. Systems Engineering and Electronic, 2007, 29(11): 1851-1855. (in Chinese)
- [6] 陈圣义,刘晓春,滕锡超,等.基于高精度景象匹配的SAR平台定位方法[J].国防科技大学学报,2016,38(5):121-126.
 CHEN Shengyi, LIU Xiaochun, TENG Xichao, et al. SAR positioning method based on high-precision scene matching[J]. Journal of National University of Defense Technology, 2016,38(5):121-126. (in Chinese)
- [7] 李天池,周荫清,马海英,等.基于参数估计的 SAR 定位 方法[J].系统工程与电子技术,2007,29(3):372-374.
 LI Tianchi, ZHOU Yinqing, MA Haiying, et al. SAR position method based on parameter estimation[J]. Systems Engineering and Electronic, 2007, 29(3):372-374. (in Chinese)
- [8] 程华,陆微微,田金文.基于最小二乘支持向量机的 SAR 平台定位[J]. 宇航学报,2010,31(2):489-494.
 CHENG Hua, LU Weiwei, TIAN Jinwen. SAR platform geolocation based on least squares support vector machines[J].
 Journal of Astronautics, 2010, 31(2):489-494. (in Chinese)
- [9] Chen F, Xu Y X. High-speed and robust scene matching algorithm based on ORB for SAR/INS integrated navigation system [J]. Applied Mechanics & Materials, 2013, 241/ 242/243/244: 439-443.
- [10] 茹滨超,鲜斌,宋英麟,等.基于气压传感器的无人机高度测量系统[J].中南大学学报:自然科学版,2013,44(s2):94-97.
 RU Binchao, XIAN Bin, SONG Yinglin, et al. An altitude measurement unit for micro unmanned aerial vehicles based on barometer[J]. Journal of Central South University: Science and Technology, 2013, 44(s2):94-97. (in Chinese)
- [11] 李想,朱遵尚,尚洋,等.方向矩异源图像匹配算法[J]. 国防科技大学学报,2015,37(1):153-158.
 LI Xiang, ZHU Zunshang, SHANG Yang, et al. Multimodal image registration based on orientation-moment[J]. Journal of National University of Defense Technology, 2015, 37(1): 153-158. (in Chinese)
- [12] Liu X C, Lei Z H, Yu Q F, et al. Multi-modal image matching based on local frequency information[J]. EURASIP Journal on Advances in Signal Processing, 2013, 3: 1-11.
- [13] 李鑫. SAR 图像导航定位测速技术研究[D]. 长沙: 国防 科技大学, 2010.
 LI Xin. Research on SAR image navigation position and speed measuring technology[D]. Changsha: National University of Defense Technology, 2010. (in Chinese)
 [14] 陈圣义. 空地导弹景象匹配制导关键技术研究[D]. 长 动,同时到井大学。2012

沙: 国防科技大学, 2012. CHEN Shengyi. Study on key technology of scene matching guidance for air-to-ground-missile[D]. Changsha: National University of Defense Technology, 2012. (in Chinese)