doi:10.11887/j.cn.201801011

http://journal. nudt. edu. cn

随机振动中晶体振荡器的有源降噪设计。

邓联文¹, 尹芊奕¹, 胡照文¹, 李 璨¹, 胡俊琪¹, 单庆晓²
(1. 中南大学物理与电子学院, 湖南长沙 410083;
2. 长沙学院电子与通信工程系, 湖南长沙 410022)

摘 要:针对晶体振荡器在振动下会发生输出频率漂移的问题,在分析声学有源降噪技术和加速度对晶体振荡器输出相位噪声的影响机理基础上,提出降低随机振动中晶体振荡器噪声的方法。在晶体振荡器外围电路中嵌入加速度传感器、模数转换器、数模转换器和数字处理器,构建对晶体振荡器相位噪声进行实时补偿的有源降噪系统。结果表明:设计的有源降噪系统在 0.03g/Hz 振动幅度、10~850 Hz 频率范围的随机振动条件下,能达到 20 dB 的相位噪声补偿效果。

关键词:有源降噪;晶体振荡器;相位噪声补偿 中图分类号:TN752.2 文献标志码:A 文章编号:1001-2486(2018)01-074-04

Design of active noise control method for crystal oscillator under random vibration

DENG Lianwen¹, YIN Qianyi¹, HU Zhaowen¹, LI Can¹, HU Junqi¹, SHAN Qingxiao²

(1. School of Physics and Electronics, Central South University, Changsha 410083, China;

2. Department of Electronic and Communication Engineering, Changsha University, Changsha 410022, China)

Abstract: Crystal oscillator output frequency often drifts under vibration. Therefore, based on the analysis of the acoustic active noise control technology and the mechanism of acceleration effect on crystal oscillator phase noise, a method of reducing crystal oscillator phase noise under vibration was proposed. The simulation about the acoustic active noise control system obtained that the theory of acoustic noise reduction can be used in crystal oscillator phase noise reduction. By adding acceleration sensor, analog-to-digital converter, digital-to-analog converter and digital processor in the peripheral circuit of crystal oscillator, the phase noise real time compensation active noise control system was constructed. The results show that the active noise control system achieves 20 dB phase noise compensation under the random vibration of 0.03g/Hz amplitude range and $10 \sim 850$ Hz frequency range.

Key words: active noise control; crystal oscillator; phase noise compensation

石英晶体振荡器作为最常用的基准频率源, 在加速度作用的随机振动影响下,输出信号可能 出现频偏,频谱中的相位噪声也可能恶化^[1]。传 统降低晶体振荡器加速度敏感性的方法是采用机 械缓冲措施,该类方法能有效减小 850 Hz 以上高 频振动的幅度,但可能导致低频振动幅度的增大; 文献[2]提出采用一种双谐振器电路来解决这一 问题,但会使整体成本明显提高;文献[3]使用反 馈电路对晶振频率进行实时补偿并获得良好的补 偿效果,但只能在 100 Hz 内实现补偿。在工业生 产领域采用有源降噪技术能大幅度降低大型机械 工作时的高分贝低频噪声,在建筑领域采用有源 降噪技术可以有效抑制建筑物内部或外部噪声, 降噪幅度可达 5~15 dB^[4]。

1 声学有源降噪原理分析

有源降噪方法主要是基于声场空间和时间相 干性,根据声场的线性叠加原理,两列频率相同、 同向传播的声波会在空间产生抵消或者相加的干 涉现象,根据两列声波的相位和幅值,干涉结果会 导致能量增加或减少。假设初级声源为 $P_{\rho} = A\cos(\omega - \varphi)$,人为地加上满足相干条件的次级声 源 $P_{s} = \beta A\cos(\omega - \varphi + a)$,则叠加后总的声场平均 能量密度为:

$$E_{\rm ps} = \frac{(P_{\rm p} + P_{\rm s})^2}{2\rho_{\rm e}^2} = \frac{A^2}{4\rho_{\rm e}^2} (1 + 2\beta\cos a + \beta^2) \quad (1)$$

在空间次级声源作用前后的声级差为:

$$\Delta L_P = 10 \lg (1 + 2\beta \cos a + \beta^2) \tag{2}$$

^{*} 收稿日期:2016-11-14 基金项目:国家自然科学基金资助项目(61136005,11373075);湖南省科技计划资助项目(2015JC3041) 作者简介:邓联文(1969—),男,湖南洞口人,教授,博士,博士生导师,E-mail:denglw@csu.edu.cn

• 75 •

从式(2)可以看出,当β 越接近1时,*a* 越接 近π, $|\Delta L_p|$ 的值越大。在实际中,次级声源的幅 度和相位要与初级声源完全一样是难以达到的。 如采用反馈式自适应系统,能更有效地使次级声 源幅值接近于1,相位接近于π。图1为反馈式自 适应有源降噪系统示意图^[4]。d(n)、y(n)、e(n)分别为初级声源信号、次级声源信号(反噪声信 号)、误差噪声信号,e(n)同时向系统外和 T2F 输 出,T2F 表示时域到频域的变换,F2T 表示频域到 时域的变换, W_k 为控制滤波器系数,UPDATE 表 示控制滤波器系数更新算法,该算法一般采用 FxLMS 以加强系统的稳定性和鲁棒性^[5]。待系 统稳定后,e(n)达到最小值。

图 1 反馈式自适应有源降噪系统 Fig. 1 Feedback adaptive active noise control system

2 晶体振荡器有源降噪系统

2.1 设计原理

由于随机振动可以分解成多个正弦振动的矢 量叠加,因此晶振加速度敏感性矢量可由该方向 单个正弦振动计算得出。考虑一个轴的情况,当 晶振受到加速度大小为 *a*,频率为 *f*。的正弦振动 作用时,由于石英晶体的正压电效应,输出频率会 发生漂移,如果用 *f*(*a*)表示此时晶振的输出频 率,则有:

$$f(a) = f_0 + \Delta f_a = f_0 + \boldsymbol{\Gamma} \cdot a \cdot f_0 \tag{3}$$

$$L_{v} = \left[\frac{\boldsymbol{\Gamma} \cdot \boldsymbol{a} \cdot \boldsymbol{f}_{0}}{2\boldsymbol{f}_{v}}\right]^{2} \tag{4}$$

其中, f_0 为载波频率, Δf_a 为频偏量, Γ 为晶体的加速 度敏感度矢量, L_x 为载波偏离 f_x 的相位噪声^[3,6]。

对压控晶振的晶振压控端(Voltage control of Crystal Oscillator, VCO)施加电压可对谐振频率进行控制和牵引,由控制电压 V_e 的牵引作用产生的频率改变量为:

$$\Delta f_{V} = \frac{V_{c}}{V_{cc}} \cdot k_{v} \cdot f_{0}$$
(5)

式中,V_{cc}是控制电压的最大范围,k_v 表征的是晶

振的压控灵敏度。

在加速度 *a* 和控制电压 *V*_e 的共同作用下,压 控晶振的最终输出频率为:

$$f_{\text{out}} = f_0 + \Delta f = f_0 + (\Delta f_V + \Delta f_a)$$
(6)

由于电场和声场一样具有相干性,向晶振压 控端 VCO 施加实时变化 V。可补偿加速度带来的 晶振频偏,基于这一原理可使用有源降噪技术对 随机振动中晶振的相位噪声进行补偿。但区别于 图 1 的有源降噪系统,随机振动中晶振输出的频 偏是和晶振标频一同调制输出的,可使用自相关 提取误差信号。需要对图 1 所示的系统和文 献[3]中的基本电路进行综合并改进,改进后的 系统如图 2 所示。

图 2 随机振动下晶振有源降噪系统示意图

Fig. 2 Schematic diagram of active noise control system under random vibration

图 2 中通过加速度传感器检测当前晶振环境 的加速度,并通过模数转换器 (Analog-to-Digital Converter, ADC)将数据输入到数字处理器进行算 法处理,再通过数模转换器 (Digital-to-Analog Converter, DAC)将处理后的数据送到晶振压控端 VCO,产生与加速度引起的频偏相反的反向频偏量 Δf_v ,加速度频偏量 Δf_a 和反向频偏量 Δf_v 相加得到 误差频偏 Δf 。由于晶振输出 f_{out} 为 Δf 和标频 f_0 的 调制输出,需要经过自相关滤波后,从晶振输出中 提取 $k |\Delta f|$ 。数字处理器检测 $k |\Delta f|$ 并实时修正 V_e 。待整个系统稳定后, $k |\Delta f|$ 达到最小值,实现晶 振频率 f_{out} 稳定输出。由于采用实时修正 V_e 的技 术,本系统的频率补偿范围可以高达上千赫兹。

2.2 仿真验证

在反馈型有源降噪系统中,系统延迟在晶振系 统中主要是由系统中各部分的数据处理时间、传感 器检测带宽和晶振压控带宽三部分导致^[7-8]。由 于 DAC 输出是一种阶梯状电压, DAC 的精度决定 V。阶梯电压与所需补偿电压的相似度^[9]。

使用图 2 所示的降噪系统,设随机振动频谱 如图 3 所示,ADC 与 DAC 均为十二位,系统延时 为50 µs。仿真结果如图 4 所示,图 4(a)和 图 4(b)分别为时域的初始噪声和补偿后噪声。

由图 4(b)可知,降噪系统作用约 0.8 s 的时间后 就能达到稳定降噪的效果,该时间主要取决于 FxLMS 达到稳定状态所需的运算时间。由于 DAC 输出是一种阶梯状电压,因此补偿频偏 Δf_v 也是阶梯状。图 5 为含有源降噪系统的晶振的各 输出量的时域对比,系统稳定后,加速度带来的频 偏 Δf_a 与阶梯补偿频偏 Δf_v 幅值相同、相位相反, 但是存在一定的相位延迟。

图 5 正压电效应引起的频偏 $\Delta f_a \, V_e$ 控制的反向 频偏 Δf_v 和晶振输出频率 f_{out} 的时域波形对比 Fig. 5 Comparison of the time domain waveform of piezoelectric effect frequency offset Δf_a , V_e controlled reverse frequency offset Δf_v and crystal oscillator output frequency f_{out}

图 6 为有源降噪系统相位噪声补偿效果对 比。可以明显看出,振动对晶振的相位噪声造成 15~20 dB 的恶化影响,经有源降噪系统补偿后, 相位噪声基本恢复至静态水平。

图 6 仿真相位噪声补偿效果对比

2.3 实验分析

搭建的晶振有源降噪实验测试系统如图 7 所示。晶振有源降噪系统参数如下:晶振标称频率 为10 MHz,加速度敏感 x 系数为 6.75 × 10⁻⁷ Hz/g, 压控系数为 1 × 10⁻⁵;加速度传感器检测带宽为 22 kHz, ADC 与 DAC 均为十二位。实验系统主要 构成为:采用 81150A 函数发生器对小型振动台 进行控制,振动频谱如图 3 所示;采用 E5052A 进 行相位噪声测量。实验外界条件为:室温 20℃, 标准大气压。

系统的补偿相位噪声效果如图 8 所示。可见 使用有源降噪系统后,输出相位噪声得到显著改 善。由于晶振在振动过程中存在不同程度的缓冲, 高频振动幅度相比于仿真中要小,而且实际有源降 噪系统的延迟要大于仿真所设延迟,因此补偿效果 不如仿真所示。在 45 Hz 处达到了最高约 20 dB 的补偿,基本实现有源降噪系统的降噪功能。

图 7 实验测试系统

Fig. 7 Experimental test system

Fig. 8 Comparison of phase noise compensation in the experiment

3 结论

仿真分析结果证明基于声学降噪原理的有源 降噪技术,可以应用于随机振动中晶体振荡器的 降噪设计,解决因加速度效应引起的晶振振荡器 相位噪声恶化问题;通过在晶体振荡器外围电路 中嵌入加速度传感器、模数转换器、数模转换器和 数字处理器等模块,能构建对晶体振荡器相位噪 声进行实时补偿的有源降噪系统;在 0.03g/Hz 随机振动条件下能实现对晶体振荡器相位噪声高 达 20 dB 的补偿效果。

参考文献(References)

- Filler R L. The acceleration sensitivity of quartz crystal oscillators: a review [J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 1988, 35 (3): 297 305.
- [2] Fry S J, Burnett G A. Reducing the acceleration sensitivity of AT-strip quartz crystal oscillators [C]//Proceedings of IEEE International Frequency Control Symposium, 2010: 25 – 30.
- [3] 陈亮朋,单庆晓.振动对 BiSAR 频率基准源影响及其补偿 技术研究 [J]. 压电与声光, 2013, 35 (6): 858-861.
 CHEN Liangpeng, SHAN Qingxiao. Study on the impact compensation technology of crystal oscillator on BiSAR [J].
 Piezoelectrics & Acoustooptics, 2013, 35 (6): 858-861. (in Chinese)
- [4] Wisler A, Panahi I. Design of a three-channel feedback ANC system to cancel HVAC noise in a 3-dimentional enclosure[C]//Proceedings of the 41st International Congress and Exposition on Noise Control Engineering, 2012: 3179 – 3190.
- [5] 赵洪亮,李晓东,田静.单频反馈 ANC 系统的一种新算法[J].声学技术,2003,22 (z2):328-330.
 ZHAO Hongliang, LI Xiaodong, TIAN Jing. A new algorithm for tonal feedback ANC system [J]. Technical Acoustics, 2003,22 (z2):328-330. (in Chinese)
- [6] 刘中艳,单庆晓,耿云玲.基于81150A的晶体振荡器振动 测试平台设计[J].测试技术学报,2014,28(5): 396-399.

LIU Zhongyan, SHAN Qingxiao, GENG Yunling. Design of crystal oscillator vibration test platform based on 81150A [J]. Journal of Test and Measurement Technology, 2014, 28 (5): 396 - 399. (in Chinese)

- [7] Ji L Z, Shan Q X, Tang Q. A quantitative testing method of quartz resonators' acceleration sensitivity based on a MEMS sensor [C]//Proceedings of China Satellite Navigation Conference, 2012, 160: 571-581.
- [8] Ji L Z, Shan Q X, Yang J. Experimental research on the acceleration sensitivity of quartz crystal oscillators [J]. Applied Mechanics and Materials, 2012, 241/242/243/244: 869-875.
- [9] Shan Q X, Yang J, Chen J Y. Real-time digital compensation to reduce acceleration's sensitivity in quartz resonator [J]. Review of Scientific Instruments, 2012, 83 (6): 064706.