doi:10.11887/j.cn.202001012

http://journal. nudt. edu. cn

## 滑翔飞行器多目标弹道优化的进化 – 配点混合求解策略\*

丰志伟1,江增荣2,张青斌1,葛健全1,黄浩1

(1. 国防科技大学 空天科学学院, 湖南 长沙 410073; 2. 中国人民解放军 96901 部队, 北京 100094)

摘 要:针对高超声速滑翔飞行器弹道多目标优化问题,综合考虑计算效率和精度,结合分解进化算法 与配点法提出一种混合求解策略。根据滑翔飞行器动力学模型和弹道设计中需要考虑的约束条件,建立飞 行器多目标弹道优化模型。利用控制量离散化方法将多目标弹道优化问题转化为带约束的多目标参数优化 问题,并采用罚函数法处理约束条件,随后利用分解多目标进化算法进行求解。为了提高弹道优化的精度, 将椭球聚合法与配点法相结合,以多目标进化算法得到的 Pareto 解作为初始解进行迭代求解。通过典型的复 杂约束多目标弹道优化的算例表明,所提出的混合求解策略能够获得满足复杂约束要求的 Pareto 最优解集, 实现有效的多目标弹道优化。

关键词:滑翔飞行器;弹道优化;多目标优化;混合算法 中图分类号:V412.1 文献标志码:A 文章编号:1001-2486(2020)01-084-07

# Evolutionary-collocation hybrid optimization strategy for the multiobjective trajectory design of glider flight vehicle

FENG Zhiwei<sup>1</sup>, JIANG Zengrong<sup>2</sup>, ZHANG Qingbin<sup>1</sup>, GE Jianquan<sup>1</sup>, HUANG Hao<sup>1</sup>

(1. College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China;

2. The PLA Unit 96901, Beijing 100094, China)

Abstract: A hybrid optimization method combining the evolutionary algorithm and the collocation method was presented for solving the MTOP (multiobjective trajectory optimization problem) of the hypersonic glider vehicle, in which the efficiency and accuracy were balanced. According to the flight dynamic equation of the glider vehicle and the constraint condition arising in the design of the glider vehicle trajectory, the multiobjective trajectory optimization model was developed. The MTOP was transformed into the multiobjective parameter optimization problem with constraints by using the control variables discretization method; the constraint condition was dealt with the penalty function method, and the MOEA/D (multiobjective evolutionary algorithm based on decomposition) was employed to solve the problem. In order to improve the accuracy of the result, the ellipsoid aggregation method was integrated into the collocation method, in which the Pareto solution produced by the MOEA/D was the initial solution. Simulation results for MTOP with the complicated constraints demonstrate that the proposed hybrid method can generate a set of Pareto solutions, in which the gliding trajectories satisfy all the complicated constraints.

Keywords: glider flight vehicle; trajectory optimization; multiobjective optimization; hybrid algorithm

高超声速滑翔飞行器(Hypersonic Glider Vehicle, HGV)具有高速度、高机动、长航程等诸 多优势,成为未来飞行器发展的一个重要方向,具 有广阔的军事应用前景<sup>[1]</sup>。

弹道优化技术是高超声速滑翔飞行器的关键 技术之一。随着研究的不断深入,在进行高超声 速滑翔飞行器弹道设计之中,不仅要考虑飞行器 在飞行过程中受到的气动热、动压、过载、控制量、 终端约束等复杂约束条件的限制,还需要考虑面 向具体作战任务的要求,如航路点、禁飞区等。面 对诸多性能指标,设计者往往不能追求单个指标 最优,而是需要同时考虑多个相关的性能指标,利 用多目标优化方法进行求解,获得 Pareto 最优解, 从而对各个指标进行权衡和折中<sup>[2]</sup>。

对于高超声速滑翔飞行器的多目标弹道优化 问题而言,工程上常用的方法是利用偏好(权重) 信息,将多个目标聚合为单个目标,并采用成熟的 单目标优化算法进行求解。主要优化方法包括加 权法、理想点法、物理规划法、主要目标法等<sup>[3]</sup>。雍 恩米等<sup>[4]</sup>应用物理规划法设计再入飞行最优攻角; 谢愈等<sup>[2]</sup>将物理规划法应用于高超声速飞行器多 目标复杂约束滑翔弹道优化设计,结合高斯伪谱法

• 85 ·

获得了满足设计者偏好的满意解。上述基于偏好 的方法每次只能优化得到一个解,无法得到整个 Pareto 前沿(Pareto Front, PF)。为了获得多个 Pareto 最优解(Pareto Set, PS),通常需要采用多目 标优化方法来进行设计。主要优化方法包括各种 多目标进化算法、多目标粒子群算法等<sup>[5]</sup>。例如, 陈刚、王明光等<sup>[6-7]</sup>将多目标遗传算法 NSGA - II 成功应用于可重复使用运载火箭最优再入弹道优 化设计;丰志伟等<sup>[8]</sup>应用分解多目标进化算法 (Multiobjective Optimization Evolutionary Algorithm based on Decomposition, MOEA/D)求解火星再入 飞行器一体化多目标优化设计问题。

滑翔飞行器弹道优化问题是一个带有复杂约 束的最优控制问题,本文综合考虑计算效率和精 度,提出一种结合进化算法和配点法的混合、分层 多目标优化策略。为了获得具有较高精度的全局 最优解,将多目标弹道优化问题的求解分为两步: ①使用较少节点对弹道优化问题进行离散化处 理,采用 MOEA/D 进行多目标优化计算,获得 Pareto 前沿和全局最优解集;②以多目标最优解 作为基于二代小波节点自适应配点法<sup>[9]</sup>的初始 解进行精细优化,获得较高精度的弹道。特别是, 在 MOEA/D 和自适应配点法中采用了椭球聚合 法<sup>[10]</sup>将多个目标函数聚合为单个目标函数。

## 1 滑翔飞行器多目标弹道优化模型

### 1.1 再入动力学方程

以地心距  $r_{\chi}$ 经度  $\lambda$  和纬度  $\phi$  描述飞行器位置,以速度大小  $V_{\chi}$ 速度倾角  $\theta$  和速度偏角  $\sigma$  描述 飞行器速度,建立的滑翔飞行器三自由度运动方 程<sup>[11]</sup>可表示为

$$\begin{cases} \dot{V} = -\frac{X}{m} - g\sin\theta + \\ \omega_e^2 r\cos\phi(\sin\theta\cos\phi - \cos\theta\cos\sigma\sin\phi) \\ \dot{\theta} = \frac{Y\cos\nu}{mV} + \left(\frac{V}{r} - \frac{g}{V}\right)\cos\theta + 2\omega_e\cos\phi\sin\sigma + \\ \frac{\omega_e^2 r\cos\phi}{V}(\cos\theta\cos\phi + \sin\theta\cos\sigma\sin\phi) \\ \dot{\sigma} = \frac{L\sin\nu}{mV\cos\theta} + \frac{V\cos\theta\sin\sigma\tan\phi}{r} + \\ \omega_e^2 r \frac{\sin\sigma\sin\phi\cos\phi}{V\cos\theta} - \\ 2\omega_e(\cos\phi\tan\theta\cos\sigma - \sin\phi) \\ \dot{\phi} = \frac{V\cos\theta\cos\sigma}{r} \\ \dot{\lambda} = \frac{V\cos\theta\sin\sigma}{r\cos\phi} \\ \dot{r} = V\sin\theta \end{cases}$$
(1)

其中:X 为阻力,Y 为升力,L 为侧向力,m 为飞行 器质量,g 为引力加速度;速度倾角 $\theta$  为速度矢量 与当地水平面的夹角,速度偏角 $\sigma$  为速度矢量在 当地水平面投影与正北方向的夹角; $\omega$ 。为地球自 转角速度, $\nu$  为侧倾角。由于滑翔飞行器为面对 称升力体,通常采用倾斜转弯(Bank To Turn, BTT)技术,在上述运动方程中假设侧滑角为零。

## 1.2 约束条件分析

滑翔飞行器多目标弹道设计约束条件<sup>[12]</sup>包括:热流、动压、过载、平衡滑翔、禁飞区、航路点等 过程约束;弹道末端需满足的终端状态约束;对攻 角、侧倾角的控制量约束。

1) 气动热、过载和动压约束:为了保证飞行 器结构安全, 对沿弹道飞行的热流密度、动压、过 载等进行限制。

驻点热流密度约束为

$$\dot{Q} = k_{\rm s} \rho^n V^m < \dot{Q}_{\rm max} \tag{2}$$

其中: $\dot{Q}$  表示热流,单位为 kW/m<sup>2</sup>; $k_s$  为取决于飞 行器头部形状的热流传递系数; $\rho$  为大气密度;m、 n 为常数,对于高超声速再入问题,可取 m = 3 或 m = 3.15, n = 0.5。

过载约束为

$$n_{y} = \frac{Y \cos \alpha + X \sin \alpha}{mg_{0}} < n_{ymax}$$
(3)

式中,α为攻角。

动压约束为

$$q = \frac{1}{2}\rho V^2 < q_{\max} \tag{4}$$

2) 拟平衡滑翔约束:为保证弹道平稳,沿弹 道飞行器可获得的最大升力须能够平衡其他 力,即

$$Y_{\rm max} > mg - m \frac{V^2}{r} \tag{5}$$

3)禁飞区约束:禁飞区指飞行需要规避的区域,包括躲避雷达探测等。为便于计算,假设禁飞 区为无限高圆柱,弹道点与禁飞区中心在地面投 影的最短距离满足如下约束

 $|R_0 \cdot \arccos[\sin\phi\sin\phi_{nfz} +$ 

 $\cos\phi\cos\phi_{nfz}\cos(\lambda - \lambda_{nfz})]$  >  $R_{nfz}$  (6) 其中, $\lambda_{nfz}$ 和 $\phi_{nfz}$ 分别表示禁飞区中心经纬度, $R_{nfz}$ 表示禁飞区半径。

4) 控制量约束:由于受执行机构能力限制, 攻角、侧倾角等物理量的幅值存在约束边界

$$\begin{cases} \alpha \in \lfloor \alpha_{\min}, \alpha_{\max} \rfloor \\ \nu \in [\nu_{\min}, \nu_{\max}] \end{cases}$$
(7)

5)终端约束:本文主要开展最大射程优化, 不约束滑翔段终点的位置和速度。

#### 1.3 性能指标

按照飞行任务的不同,可选择不同的性能指标。常用的优化目标有终端射程最大、飞行时间 最短、总加热量最小等。如取终端射程最大为优 化指标,则

$$J = \min[-L(t_{\rm f})] \tag{8}$$

当选择总加热量最小作为性能指标时,则

$$I = \min \int_{t_0}^{t_f} \dot{Q} dt \tag{9}$$

## 2 多目标优化问题的混合求解策略

多目标弹道优化问题的核心是获得一组较为 精确的 Pareto 全局最优解集。为此,本文提出结 合分解多目标进化算法和配点法的混合求解策 略。为了保证两种多目标优化方法求解问题的一 致性,均采用椭球聚合法<sup>[10]</sup>将多目标优化问题转 化为单目标优化问题。

#### 2.1 混合求解策略

混合求解策略优化流程如图1所示。具体计 算过程如下:

1) 定义多目标弹道优化问题: 定义状态方程,确定控制量、优化目标和约束条件。

2)弹道优化问题的离散:分别采用打靶法
 (仅离散控制量)和配点法(同时离散控制量和状态量)将弹道优化问题转化为多目标优化问题。

3)全局多目标最优解集的构造:采用 MOEA/ D 对控制量离散方法得到的多目标优化问题进行 优化计算。设置合理的优化参数,如种群规模和 迭代步数,获得全局多目标最优解。

4) 最优解集的精细优化:采用非线性规划算



图 1 混合求解策略流程图 Fig. 1 Flow chart of hybrid optimization strategy

法对配点法得到的优化问题进行求解,以 MOEA/ D 得到的控制量和状态量作为初始解进行优化迭 代,采用自适应配点法进行网格自适应加密以提 高求解精度。

需要说明的是:①为了求得全局最优解,首先 采用进化算法求解,考虑计算效率问题,采用打靶 法仅离散控制量,以降低设计变量的个数;②为了 获得较精细的弹道,利用配点法和椭球聚合法将 多目标弹道优化问题转化为单目标的非线性规划 问题,利用非线性规划算法进行求解,并进行节点 自适应加密。

#### 2.2 椭球聚合法

在上述混合求解策略中,利用非线性规划求 解多目标问题时,需要用聚合公式将多目标优化 问题转化为一组单目标优化问题。为了保持目标 函数的连续性,本文采用椭球聚合公式<sup>[10]</sup>。该方 法使用具有特定方向和较大偏心率的椭球(椭 圆)与可达目标区域 Ω的最优边界相切,并寻找 边界上的切点,从而在一定条件下给出 PF 的 近似。

对于极小化问题而言,在大多数情况下,PF 是可达目标区域左下边界∂*Q*的一部分。椭球聚 合公式使用 *N* 个椭球(椭圆)与上述边界∂*Q* 相 切。通过位于边界∂*Q* 上的切点给出 PF 的近似。 该方法要求椭球具有一个较大的长轴和若干个较 小的短轴。椭球的中心一般位于可达目标区域的 左下侧,通过控制椭球长轴的方向来获得不同的 边界点,如图 2 所示。在一般情况下,当长轴方向 均匀分布时,椭球聚合法可以产生近似均匀分布 的 PF。具体的做法是:将长轴方向与一组均匀分 布的权重矢量相关联。



图 2 旋转椭球方法 Fig. 2 Rotated ellipsoid method

根据上述思想,将多目标优化问题处理为 N 个单目标优化问题。令 λ 表示权重矢量, **R**(λ) 表示将第一个目标函数  $F_1$  的坐标轴旋转到权重 矢量  $\lambda$  方向的坐标变换矩阵。椭球与边界 $\partial \Omega$  的 切点是式(10)所示单目标优化问题的全局最 优解。

$$\min g^{\text{RE}}(\boldsymbol{x} | \boldsymbol{a}, \boldsymbol{R}(\boldsymbol{\lambda}), \boldsymbol{z}^*) = \frac{\tilde{F}_1^2}{a^2} + \sum_{i=2}^m \tilde{F}_i^2$$
  
s.t.  $\boldsymbol{x} \in \Omega$  (10)

其中,

$$\tilde{\boldsymbol{F}} = \boldsymbol{R}(\boldsymbol{\lambda}) \left( \boldsymbol{F} - \boldsymbol{z}^* \right)$$
(11)

 $z^* = (z_1^*, \dots, z_m^*)^T$  是椭球的中心, *a* 是半长轴与 半短轴之比。

## 2.3 分解多目标进化算法

分解多目标进化算法 MOEA/D 由 Zhang 和 Li 于 2007 年提出<sup>[13]</sup>,该算法将多目标优化问题 转化为多个单目标优化子问题,对子问题采用进 化算法以合作的方式同时进行优化。因此,其具 有进化机制简单、收敛速度快、PF 近似均匀等 优点。

以椭球聚合公式为例,将原始多目标优化问题分解成 N 个标量优化问题。令  $\lambda^1$ ,…,  $\lambda^N$  为均匀分布的一组权重矢量, $z^*$  为参考点,则第j 个子问题的目标函数为

$$g^{\text{RE}}(\boldsymbol{x} \mid a, \boldsymbol{R}(\boldsymbol{\lambda}), \boldsymbol{z}^*) = \frac{\tilde{F}_1^2}{a^2} + \sum_{i=2}^m \tilde{F}_i^2 \quad (12)$$

因为 $g^{\text{RE}}$ 关于 $\lambda$ 连续,所以当权重矢量 $\lambda^{i}$ 和  $\lambda^{i}$ 相互接近时,子问题 $g^{\text{RE}}(x|a,R(\lambda^{i}),z^{*})$ 的优 化解应该接近 $g^{\text{RE}}(x|a,R(\lambda^{i}),z^{*})$ 的优化解。 因此与权重矢量 $\lambda^{i}$ 相邻的关于 $g^{\text{RE}}$ 的信息能够对 子问题 $g^{\text{RE}}(x|a,R(\lambda^{i}),z^{*})$ 的优化起到辅助作 用。MOEA/D包括初始化、更新和停止三个过 程,具体步骤见文献[13]。

在 MOEA/D 中,通常采用欧式距离测量两个 权重矢量之间的邻近性,并用于确定矢量  $\lambda^i$  的邻 居。获得较为精确的参考点  $z^*$  通常需要求解多 个单目标优化问题,比较耗时,因此该算法首先进 行初始化,然后在迭代过程中进行更新。这样可 以使得理想点的更新随着迭代优化而进行,节省 了计算时间。

### 2.4 自适应配点法

针对轨迹优化问题中精度和效率之间的矛 盾,丰志伟等曾提出基于二代小波的节点自适应 加密方法<sup>[9]</sup>。该方法采用 Runge-Kutta 方法将原 轨迹优化问题转化为非线性规划问题,并采用非 线性规划算法求解;根据控制或状态函数的小波 系数幅值确定自适应加密的节点,并进行序列 优化。

基于二代小波的节点自适应算法输入参数包括:初始分辨率水平  $J_0$ (控制初始节点个数);最大分辨率水平  $J_{max}$ (控制背景节点个数,即最小节 点间隔);小波系数幅值的阈值  $\varepsilon$ 。终止条件:前 后两次节点位置相同或达到预定的迭代次数。计 算流程如下:

1)根据初始分辨率  $J_0$  生成均匀节点  $G^{J_0}$  (或  $\{\tau_i\}$ )以及该均匀节点上的状态函数 x 和控制函数 u 的初始猜测;

2)利用非线性规划算法优化由原轨迹优化 问题转化得到的非线性规划问题,得到状态函数 x 和最优控制函数 u;

3)根据节点自适应算法确定下一步优化的 自适应节点,若存在多个控制函数,则将这些控制 函数分别得到的自适应节点进行合并;

4)利用前一次优化计算的解 x 和 u,利用小 波插值计算新的自适应节点上的初始猜测,并进 行循环迭代,直到满足终止条件。

需要说明的是,小波系数幅值的阈值通常 可取为 $\varepsilon = \gamma(u_{max} - u_{min})$ 。对于间断函数, $\gamma$ 可 取 0.005 ~ 0.01;对于连续函数, $\gamma$ 可取 0.001 ~ 0.005。

### 3 仿真分析

#### 3.1 仿真条件和参数

以通用航空飞行器<sup>[14]</sup> (Common Aero Vehicle, CAV) 气动性能为例进行多目标弹道优 化,通过拟合可得到 CAV – H 模型的气动系数  $\begin{cases} C_{\rm L} = (0.0509 - 0.0006Ma)\alpha\\ C_{\rm D} = (0.1345 - 0.0121Ma + 3.7155 \times 10^{-4}Ma^{2}) + \\ (0.0011 - 5.6815 \times 10^{-5}Ma + 1.6309 \times 10^{-6}Ma^{2})\alpha^{2} \end{cases}$ 

(13)

优化指标包括射程最大和总加热量最小。考虑的约束条件包括驻点热流密度、动压、过载以及 禁飞区约束,仿真参数设置如表1所示。

利用本文提出的混合优化算法,将攻角和侧 倾角离散为15个点,加上终端时间共31个设计 变量。

在 MOEA/D 优化过程中采用旋转椭球聚合 公式,种群规模(子问题个数)为300,迭代步数为 1000,邻居规模为20。采用300个均匀分布的权 重矢量,每个权重矢量的分量为正值,和为1。节

| Tah 1 | Constrained | condition | of | trajectory | ontimization |
|-------|-------------|-----------|----|------------|--------------|

弹道优化约束条件

表 1

| 约束条件 | 约束大小                                                                                                                                                                                                                                                                                            |  |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 过程约束 | $q_{max} = 65 \text{ kPa}, \dot{Q}_{ymax} = 20\ 000 \text{ kW/m}^2, n_{ymax} = 3g$<br>控制量: $\alpha \in [0, 20^\circ], \nu \in [-85^\circ, 85^\circ]$<br>禁飞区(圆柱形):中心点坐标 $\lambda_1 = 50^\circ$ ,<br>$\phi_1 = 2^\circ$ ;半径 500 km                                                                |  |  |
| 端点约束 | 起始点: $V_0 = 6500 \text{ m/s}, \theta_0 = 0^\circ, \sigma_0 = 90^\circ,$<br>$\phi_0 = \lambda_0 = 0^\circ, h_0 = 80 \text{ km}$<br>终端点: $V_f = 1500 \text{ m/s}, \theta_f \in [-2^\circ, 2^\circ], \sigma_f \in [80^\circ, 100^\circ], \lambda_f \in [-2^\circ, 2^\circ], h_f \ge 25 \text{ km}$ |  |  |

点自适应算法中,为了节省时间,将优化子问题数 目取为21,小波系数幅值的阈值取 $\varepsilon_i = 0.001 \cdot (u_{imax} - u_{imin})$ 。针对每个子问题,取 MOEA/D 优 化结果中相应权重系数对应的子问题的解(控制 量和飞行时间)进行积分得到状态变量,并作为 配点法中的初始解。采用序列二次规划算法 SNOPT<sup>[15]</sup>求解非线性规划问题。

#### 3.2 弹道约束条件处理

由于 MOEA/D 无法直接处理多目标弹道优 化问题中存在的复杂非线性约束,需要对约束进 行处理。对于不等式约束,在聚合目标 g<sup>te</sup>(**x** | **λ**) 中引入惩罚项, MOEA/D 算法更新新解时不仅考 虑了解的聚合目标,而且还融合了约束违约程度。 采用罚函数的 MOEA/D 在求解控制 – 结构一体 化设计中得到了成功应用<sup>[16]</sup>。

假设第*i*个约束  $g_i(\mathbf{x}) \leq 0, i = 1, \dots, n_c$ 的违 约度<sup>[17]</sup>定义为

 $W_i(x) = \max[0, g_i(x)], i = 1, \dots, n_c$  (14) 如果  $W_i(x) = 0,$ 则 x 可行, 否则不可行。将 目标函数修改为

$$\boldsymbol{F}'(\boldsymbol{x}) = [f_1(\boldsymbol{x}) + aW, \cdots, f_m(\boldsymbol{x}) + aW]^{\mathrm{T}}$$
$$= [f_1'(\boldsymbol{x}), \cdots, f_m'(\boldsymbol{x})]^{\mathrm{T}}$$
(15)

其中

 $W = \max[W_1, \dots, W_{n_c}]$ (16) n<sub>c</sub> 是约束的个数,参数  $a > 0_{\circ}$ 

## 3.3 优化结果分析

利用进化算法得到的近似 PF 如图 3 所示,从 图中可以看出,最大射程解在图中以"▽"标示,此 时射程为13 799 km,总加热量为18 173 MJ/m<sup>2</sup>;最 小总加热量解以"△"标示,此时总加热量为 10 745 MJ/m<sup>2</sup>,射程为 10 930 km。两个目标具有 明显的冲突性,即射程最大时,总加热量也最大,反 之亦然。为了进一步对比分析,图4给出了三条多 目标优化典型弹道(两条单目标最优弹道;一条典 型折中解,图3中以"□"标示)对应的控制量以及 主要弹道参数。从图4曲线可以看出,最大射程弹 道的攻角为最大升阻比攻角;最小总加热量弹道攻 角较大,且高度在纵平面大幅跳跃。



(b) Velocity dip angle









(d) 攻角 (d) Attack angle



(e) Bank angle



采用自适应配点法优化得到的近似 PF 如 图 5所示,与进化算法 MOEA/D 优化得到的近似 PF 相比,近似 PF 得到较好的改善。在最大射程 解附近, MOEA/D 较接近配点法获得的解, 而在 最小总加热量解附近其偏差较大。由此说明采用 15 个点近似攻角和侧倾角来优化最大射程是足 够的, 但是为了优化最小总加热量弹道, 需要增加 设计变量的个数。





自适应配点法优化得到的攻角和侧倾角曲线 如图 6 所示。整体规律与进化算法得到的解一 致,但是最小总加热量解攻角曲线更复杂。





## 4 结论

针对滑翔飞行器多目标弹道优化设计问题, 综合考虑计算效率和精度,结合分解多目标进化 算法和自适应配点法提出一种分层、混合优化方 法。以美国 CAV – H 为例进行仿真分析,计算结 果验证了所提混合优化方法的有效性,不论是 MOEA/D 还是配点法,均能够得到较均匀分布的 Pareto 前沿。

## 参考文献(References)

- [1] 叶友达. 近空间高速飞行器气动特性研究与布局设计优化[J]. 力学进展, 2009, 39(6):683-694.
  YE Youda. Study on aerodynamic characteristics and design optimization for high speed near space vehicles [J]. Advances in Mechanics, 2009, 39(6):683-694. (in Chinese)
- [2] 谢愈,潘亮,谷学强,等.高超声速飞行器多目标复杂约 束滑翔弹道优化 [J].国防科技大学学报,2017,39(2): 9-17.

XIE Yu, PAN Liang, GU Xueqiang, et al. Gliding trajectory optimization with multiple objectives and complicated constraints for hypersonic vehicles [J]. Journal of National University of Defense Technology, 2017, 39(2): 9-17. (in Chinese)

- [3] Messac A. Physical programming: effective optimization for computational design [J]. AIAA Journal, 1996, 34(1): 149-158.
- [4] 雍恩米,陈磊,唐国金.基于物理规划的高超声速飞行器 滑翔式再入轨迹优化 [J].航空学报,2008,29(5): 1091-1097.

YONG Enmi, CHEN Lei, TANG Guojin. Trajectory optimization of hypersonic gliding reentry vehicle based on the physical programming [J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(5): 1091 – 1097. (in Chinese)

- [5] 范培蕾. 多目标优化方法及其在高超声速试飞器系统中的应用研究 [D]. 长沙:国防科技大学,2009.
   FAN Peilei. Research on multi-objective optimization methods and their application to hypersonic test vehicle [D]. Changsha: National University of Defense Technology, 2009. (in Chinese)
- [6] 陈刚,胡莹,徐敏,等. 基于 NSGA II 算法的 RLV 多目标再入轨迹优化设计 [J].西北工业大学学报,2006,24(2):133-137.
   CHEN Gang, HU Ying, XU Min, et al. Implementing a

multi-objective optimization of RLV reentry trajectory [J]. Journal of Northwestern Polytechnical University, 2006, 24(2): 133 - 137. (in Chinese)

[7] 王明光,袁建平,罗建军. RLV 再入轨迹机载快速优化[J]. 宇航学报,2005,26(3):253-256.
 WANG Mingguang, YUAN Jianping, LUO Jianjun. Onboard

optimization of reentry trajectory for RLV [J]. Journal of Astronautics, 2005, 26(3): 253-256. (in Chinese)

- [8] 丰志伟,张青斌,高兴龙,等.火星探测器气动外形/弹 道一体化多目标优化 [J]. 航空学报,2014,35(9): 2461-2471.
  FENG Zhiwei, ZHANG Qingbin, GAO Xinglong, et al. Aerodynamic shape and trajectory integrated multiobjective optimization for Mars explorer [J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9): 2461 - 2471. (in Chinese)
- [9] 丰志伟,张青斌,唐乾刚,等.基于二代小波的轨迹优化
   节点自适应加密 [J].航空动力学报,2013,28(7):
   1659-1665.
   FENG Zhiwei, ZHANG Qingbin, TANG Qiangang, et al.

Node adaptive refinement for trajectory optimization based on second-generation wavelets[D]. Journal of Aerospace Power, 2013, 28(7): 1659 – 1665. (in Chinese)

- [10] 丰志伟. 多目标进化算法研究及在飞行器动力学系统中的应用[D]. 长沙:国防科技大学, 2014.
   FENG Zhiwei. Research on multiobjective evolutionary algorithm and its application in the flight vehicle dynamics system [D]. Changsha: National University of Defense Technology, 2014. (in Chinese)
- [11] 赵汉元.飞行器再入动力学和制导[M].长沙:国防科技大学出版社,1997.
   ZHAO Hanyuan. Reentry dynamics and guidance of flight vehicle [M]. Changsha: National University of Defense Technology Press, 1997. (in Chinese)
- [12] 刘欣. 助推 滑翔式飞行器弹道设计与制导技术研究[D]. 长沙: 国防科技大学, 2012.
  LIU Xin. Research on trajectory design and guidance approach for boost-glide vehicle [D]. Changsha: National University of Defense Technology, 2012. (in Chinese)
- [13] Zhang Q F, Li H. MOEA/D: a multiobjective evolutionary algorithm based on decomposition [J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731.
- [14] Phillips T H. A common aero vehicle (CAV) model, description, and employment guide [R]. Schafer Corporation for AFRL and AFSPC, 2003.
- [15] Gill P E, Murray W, Saunders M A. SNOPT: an SQP algorithm for large-scale constrained optimization [J]. SIAM Journal on Optimization, 2002, 12(4): 979 – 1006.
- [16] Feng Z W, Zhang Q B, Tang Q G, et al. Control-structure integrated multiobjective design for flexible spacecraft using MOEA/D [J]. Structural and Multidisciplinary Optimization, 2014, 50(2): 347 - 362.
- [17] Deb K. Multi-objective optimization using evolutionary algorithms [M]. New York: John Wiley & Sons, 2001.