doi:10.11887/j.cn.202006016

http://journal. nudt. edu. cn

BDS/INS 紧组合三频动对动模糊度解算方法^{*}

赵修斌1,朱楚江1,庞春雷1,张 良1,高玉洁2

(1. 空军工程大学 信息与导航学院,陕西 西安 710077;2. 中国人民解放军 95140 部队,广东 惠州 516211)

摘 要:针对伪距观测噪声较大导致动对动条件下三频整周模糊度解法(Three Carrier Ambiguity Resolution, TCAR)模糊度解算不可靠的问题,提出了一种 BDS/INS 紧组合三频动对动整周模糊度解算方法。通过紧组合系统输出的高精度位置坐标,估算出双差几何距离值,并用其分别代替无几何和几何模式下的双差伪距观测值,显著降低了伪距双差观测噪声水平,有效提高了三频整周模糊度解算成功率。仿真实验结果表明,BDS/INS 紧组合输出的高精度位置坐标使得伪距观测精度提高了 60% 以上,在短基线条件下,当伪距观测噪声达到 2 m 时,无几何模式下的 TCAR 算法模糊度解算成功率为 0.73%,几何模式下的 TCAR 算法模糊度解算成功率为 31.25%,而 BDS/INS 紧组合的 TCAR 算法在两种模式下的模糊度解算成功率达到 99% 以上,并且获得了厘米级的相对定位精度。

关键词:BDS/INS 紧组合;TCAR 法;动对动;整周模糊度;短基线 中图分类号:P228.1 文献标志码:A 文章编号:1001-2486(2020)06-127-06

Triple-frequency kinematic-to-kinematic ambiguity resolution with BDS/INS tightly-coupled integration

ZHAO Xiubin¹, ZHU Chujiang¹, PANG Chunlei¹, ZHANG Liang¹, GAO Yujie²

(1. Information and Navigation College, Air Force Engineering University, Xi'an 710077, China;

2. The PLA Unit 95140, Huizhou 516211, China)

Abstract: Aiming at the problem that when pseudorange observation noise was high, and the ambiguity calculation of TCAR (three carrier ambiguity resolution) method was unreliable in the condition of kinematic-to-kinematic, a triple-frequency kinematic-to-kinematic ambiguity resolution with BDS/INS tightly-coupled integration was proposed. Replacing the double-difference pseudorange observations in GF (geometry-free) and GB (geometry-based) patterns with the double-difference geometry distances estimated by the tightly-coupled integration system, the method obviously decreased the noise level of the pseudorange double-difference observations and improved the success rate of triple-frequency ambiguity calculation. Simulation results show that, the high-precision position output of BDS/INS tightly-coupled integration improved the accuracy of pseudorange observations by more than 60%. In short-baseline condition, when the pseudorange observation noise is 2 m, the success rate of triple-frequency integer ambiguity calculation by GF-TCAR is 0.73% while 31.25% by GB-TCAR. However, the integer ambiguity calculation success rate by the new TCAR method is beyond 99%. And this new solution can achieve centimeter-level kinematic-to-kinematic relative positioning.

Keywords: BDS/INS tightly-coupled integration; TCAR method; kinematic-to-kinematic; integer ambiguity; short baseline

基于载波相位差分的动对动相对定位技术在 飞机精密编队飞行、空中加油、空间飞行器交会对 接和舰载机着舰等领域具有重要应用,其关键在 于动对动条件下整周模糊度的快速解算^[1-3]。目 前,我国北斗卫星导航系统正在迅猛发展,已经可 以在 *B*1、*B*2、*B*3 三个频点上播发卫星导航信号, 以提供更精确的导航定位服务。三频信号能够提 供额外频点的载波相位观测值,从而为整周模糊 度的解算提供了极大便利^[4-5]。针对三频整周模 糊度解法,国内外学者已经进行了大量研究,其中 最具代表性的是三频整周模糊度解法(Three Carrier Ambiguity Resolution, TCAR)和级联模糊 度算法(Cascading Integer Resolution, CIR)^[6-7]。在此基础上,姚一飞等通过引入电离层延迟先验 信息,将电离层延迟作为未知参数与位置参数以 及模糊度参数一并求解,提高了单历元模糊度固 定成功率^[8]。梁宵等针对 TCAR 和 CIR 在模糊 度解算性能上弱于最小二乘降相关平差法(Least-squares AMBiguity Decorrelation Adjustment, LAMBDA)的问题,提出了一种宽窄巷结合的

LAMBDA 整周模糊度解法,并获得了毫米级的相 对定位精度^[9]。王官龙等提出了一种北斗三频 无故障导航算法,并将其运用于海基精密进近与 着陆系统(Joint Precision Approach and Landing System, JPALS)中,能够在短时间内实现模糊度 的正确固定^[10]。

TCAR 主要可以分为几何(Geometry-Based, GB)和无几何(Geometry-Free,GF)两种模式,在 短基线条件下,电离层延迟误差通过双差几乎完 全消除,观测噪声和多路径误差成为主要误差 源^[11]。在动对动情形下,伪距观测噪声过大将会 导致模糊度解算不可靠。因此,伪距测量精度是 影响模糊度固定的决定性因素。

惯性/卫星组合导航系统能够持续提供高精度位置输出,其误差不随时间累积,且其工作过程不受外界测量环境影响,能够有效避免观测噪声和多路径误差的影响^[12]。肖凯等首次提出了基于 GNSS/INS 紧组合的三频整周模糊度解法,获得了高精度的组合导航解^[13],但是该算法的核心是实现组合导航,而不是进行动态相对定位。本文在 BDS/INS 紧组合的基础上,提出了一种适用于动对动情形的三频整周模糊度解算方法。

1 算法设计

本文旨在研究动对动条件下的整周模糊度解 算方法,无固定基准站作为参考,故在两个运载体 上各自配备一套组合导航系统,两套系统独立工 作。传统 TCAR 第一步采用伪距观测值来估算超 宽巷模糊度,但由于动对动条件下伪距测量值容 易产生粗差或者多路径效应,导致其误差较大,从 而使得超宽巷模糊度的解算可靠性下降。因此本 文采用 BDS/INS 紧组合的实时位置输出代替伪 距观测值,在 GF 和 GB 两种模式下分别进行组合 模糊度解算,并恢复初始模糊度。具体算法框图 如图 1 所示。

2 BDS/INS 紧组合模型

BDS/INS 紧组合模型采用伪距组合方式^[14]。 误差状态向量由 17 个误差量组成: x =[$\delta r \ \delta v \ \delta \phi \ \epsilon \ \nabla \ b_{elk} \ d_{elk}$],其中,位置误差 $\delta r =$ [$\delta r_E \ \delta r_N \ \delta r_U$],速度误差 $\delta v = [\delta v_E \ \delta v_N \ \delta v_U$],下标 E、N、U表示地理坐标系,陀螺仪漂移误差 $\epsilon =$ [$\varepsilon_x \ \varepsilon_y \ \varepsilon_z$],加速度计零偏误差 $\nabla = [\nabla_x \ \nabla_y \ \nabla_z]$, 下标 $x_x y_x z$ 表示载体坐标系,姿态角误差 $\delta \phi =$ [$\delta \theta \ \delta \gamma \ \delta \varphi$], b_{elk} 表示时钟误差, d_{elk} 表示时钟频

Fig. 1 Triple-frequency integer ambiguity calculating block diagram

率误差。

误差状态方程可以表示为: **x** = Fx + Gw (1)

$$\begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{C}_{b}^{t} \\ \mathbf{C}_{b}^{t} & \mathbf{0} \end{bmatrix}, \mathbf{F}_{G} = \begin{bmatrix} \mathbf{0} & 1 \\ \mathbf{0} & -\frac{1}{T_{elk}} \end{bmatrix}, \mathbf{F}_{w} \ \mathbf{59} \ \mathbf{1} \ \mathbf{50} \ \mathbf{1} \ \mathbf{1$$

的状态转移矩阵, C_b 为载体系到地理系的转换矩阵, T_{elk} 为时钟频率误差时间常数,G是噪声投影矩阵,w是8维系统噪声列向量。

观测方程由 BDS 测量得到的伪距与 INS 推算的伪距作差得到

 $\rho_{\text{INS}} - \rho = [E_{n\times3} \cdot C_n^e \quad \mathbf{0}_{n\times12} \quad A_{n\times2}]\mathbf{x} + \mathbf{v}$ (2) 式中, ρ_{INS} 为 INS 伪距推算值, ρ 为 BDS 接收机的 伪距测量值, $E_{n\times3}$ 为接收机到卫星的方向余弦矩 阵, C_n^e 为导航系到大地系的坐标转换矩阵,

$$A_{n\times 2} = \begin{bmatrix} -1 & 0 \\ -1 & 0 \\ \vdots & \vdots \\ -1 & 0 \end{bmatrix}, \nu \, \mathbb{D}_{\mathbb{Z}_{n}} \mathbb{D}_{n$$

3 三频整周模糊度解算

在选取组合模糊度时首先要求组合系数是整数,以保持模糊度的整数特性,此外还需尽量满足 组合波长长、电离层延迟小和噪声放大因子小的 要求。在短基线条件下,电离层延迟误差可以忽 略不计,此时主要考虑组合波长长、噪声放大因子 小的组合。根据文献[11]的分析,本文选取(0, 1,-1)、(1,0,-1)和(1,0,0)依次作为超宽巷 (Extra Wide Lane, EWL)、宽巷(Wide Lane, WL) 和窄巷(Narrow Lane, NL)的组合系数。

3.1 geometry-free 模式

传统无几何模式下的 TCAR 算法利用伪距双 差观测值来估计 EWL 整周模糊度。短基线条件 下,组合系数为(0,1,-1)的双差整周模糊度通 过下式直接取整得到。

$$\Delta \nabla N_{(0,1,-1)} = \Delta \nabla \phi_{(0,1,-1)} - \frac{\Delta \nabla \rho}{\lambda_{(0,1,-1)}} \quad (3)$$

式(3)忽略了双差电离层延迟误差, $\Delta \nabla \phi_{(0,1,-1)}$ 为 以周为单位的双差载波相位观测值, $\Delta \nabla \rho$ 为 B3 频点的双差伪距观测值。当双差整周模糊度 $\Delta \nabla N_{(0,1,-1)}$ 被正确固定后, $\lambda_{(0,1,-1)}$ ($\Delta \nabla \phi_{(0,1,-1)}$) 可视为无模糊度的高精度伪距测量 值,则第二个整周模糊度 $\Delta \nabla N_{(1,0,-1)}$ 可由式(4) 直接取整得到。

$$\frac{\Delta \nabla N_{(1,0,-1)} = \Delta \nabla \phi_{(1,0,-1)} -}{\lambda_{(0,1,-1)} \left(\Delta \nabla \phi_{(0,1,-1)} - \Delta \nabla N_{(0,1,-1)} \right)}{\lambda_{(1,0,-1)}} \quad (4)$$

同样地,当整周模糊度 $\Delta \nabla N_{(1,0,-1)}$ 被正确固定后, $\lambda_{(1,0,-1)}(\Delta \nabla \phi_{(1,0,-1)} - \Delta \nabla N_{(1,0,-1)})$ 可视为无模 糊度的高精度伪距测量值,则第三个整周模糊度 $\Delta \nabla N_{(1,0,0)}$ 可由式(5)直接取整得到。

$$\Delta \nabla N_{(1,0,0)} = \Delta \nabla \phi_{(1,0,0)} - \frac{\lambda_{(1,0,-1)} \left(\Delta \nabla \phi_{(1,0,-1)} - \Delta \nabla N_{(1,0,-1)} \right)}{\lambda_{(1,0,0)}} \quad (5)$$

当以上三个组合整周模糊度被依次确定后, 另外两个双差原始整周模糊度 $\Delta \nabla N_{(0,1,0)}$ 和 $\Delta \nabla N_{(0,0,1)}$ 也可以被正确求解。

根据误差传播理论,假设载波相位观测噪声与 伪距观测噪声互不相关^[15],则式(3)~(5)中由观 测噪声引起的组合整周模糊度误差均方差分别为:

$$\sigma_{\Delta V N_{(0,1,-1)}} = \sqrt{\sigma_{\Delta V \phi_2}^2 + \sigma_{\Delta V \phi_3}^2 + \frac{\sigma_{\Delta \phi}^2}{\lambda_{(0,1,-1)}^2}} \quad (6)$$

$$\sigma_{\Delta V N_{(1,0,-1)}} = \sqrt{\sigma_{\Delta V \phi_1}^2 + \sigma_{\Delta V \phi_3}^2 + \frac{\lambda_{(0,1,-1)}^2}{\lambda_{(1,0,-1)}^2}} (\sigma_{\Delta V \phi_2}^2 + \sigma_{\Delta V \phi_3}^2) \quad (7)$$

$$\sigma_{\Delta \nabla N_{(1,0,0)}} = \sqrt{\sigma_{\Delta \nabla \phi_1}^2 + \frac{\lambda_{(1,0,-1)}^2}{\lambda_{(1,0,0)}^2} (\sigma_{\Delta \nabla \phi_1}^2 + \sigma_{\Delta \nabla \phi_3}^2)}$$
(8)

由式(6)~(8)易知,EWL 模糊度解算同时受到 载波相位噪声和伪距噪声的影响,而 WL 和 NL 模糊度解算只受载波相位噪声的影响。由于载波 相位测量精度与多路径效应以及接收机灵敏度等 因素有关,很难通过有效手段对其进行显著提高, 因此本文着重分析伪距误差对模糊度解算的影响。假设北斗非差载波相位观测值噪声标准差为 0.02周,则双差载波相位观测值噪声标准差为 0.04周。对于式(3)来说,利用四舍五入取整法 成功解算 EWL 整周模糊度的前提条件为:

$$|d\Delta \nabla N_{(0,1,-1)}| < 0.5$$
 (9)
根据"3 σ "原则,按照 99.74% 置信区间,取

$$\sigma_{\Delta V N_{(1,0,0)}} = \frac{|d\Delta V N_{(0,1,-1)}|}{3} < 0.167 \quad (10)$$

则

$$\boldsymbol{\tau}_{\Delta \nabla \boldsymbol{\rho}} < 0.814 \tag{11}$$

$$\sigma_{\rho} < 0.407$$
 (12)

即要求动对动条件下的伪距观测值均方误差不超 过 0.407 m。而在复杂观测条件下伪距测量误差 的增大极有可能导致 EWL 整周模糊度固定错误。 故本文采用 BDS/INS 紧组合对无几何模式下的 TCAR 算法进行改进。利用 BDS/INS 紧组合伪距 更新得到的接收机实时高精度位置坐标推算接收 机到卫星的几何距离,并用其代替伪距观测值,从 而式(3)改写为:

$$\Delta \nabla N_{(0,1,-1)} = \Delta \nabla \phi_{(0,1,-1)} - \frac{\Delta \nabla \rho_c}{\lambda_{(0,1,-1)}}$$
(13)

式中, $\Delta \nabla \rho_{e}$ 代表由紧组合系统推算出的双差几何 距离,式(4)~(5)保持不变。

3.2 geometry-based 模式

几何模式下的 TCAR 算法与无几何模式下的 区别在于,逐级解算模糊度时不再采用直接取整 的无几何模型,而是采用几何模型来求解。其具 体步骤如下。

步骤1:采用最小二乘法解算 EWL 的模糊度 浮点解

$$\begin{bmatrix} \Delta \nabla \boldsymbol{\rho} \\ \Delta \nabla \boldsymbol{\phi}_{(0,1,-1)} \end{bmatrix} = \begin{bmatrix} \boldsymbol{A} & \boldsymbol{0} \\ \boldsymbol{A} & \lambda_{(0,1,-1)} \boldsymbol{I} \end{bmatrix} \begin{bmatrix} \boldsymbol{X} \\ \Delta \nabla \boldsymbol{N}_{(0,1,-1)} \end{bmatrix} + \begin{bmatrix} \boldsymbol{\varepsilon}_{\Delta \nabla \boldsymbol{\rho}} \\ \boldsymbol{\varepsilon}_{\Delta \nabla \boldsymbol{\phi}_{(0,1,-1)}} \end{bmatrix}$$
(14)

式中, $\Delta \nabla \rho$ 为伪距双差观测值, $\Delta \nabla \phi_{(0,1,-1)}$ 为 EWL 双差载波相位观测值, *A* 为线性设计矩阵, *I* 为单位阵, *X* 为基线向量, $\epsilon_{\Delta \nabla \rho}$ 为双差伪距噪声, $\epsilon_{\Delta \nabla \phi_{(0,1,-1)}}$ 为双差载波相位噪声。得到 EWL 的模 糊度浮点解及其协方差矩阵后, 利用 LAMBDA 算 法即可得到 EWL 模糊度固定解。

步骤2:采用最小二乘法解算 WL 的模糊度 浮点解

$$\begin{bmatrix} \Delta \nabla \dot{\boldsymbol{\rho}}_{WL} \\ \Delta \nabla \boldsymbol{\phi}_{(1,0,-1)} \end{bmatrix} = \begin{bmatrix} \boldsymbol{A} & \boldsymbol{0} \\ \boldsymbol{A} & \lambda_{(1,0,-1)} \boldsymbol{I} \end{bmatrix} \begin{bmatrix} \boldsymbol{X} \\ \Delta \nabla N_{(1,0,-1)} \end{bmatrix} + \begin{bmatrix} \boldsymbol{\varepsilon}_{\Delta \nabla \boldsymbol{\phi}_{(0,1,-1)}} \\ \boldsymbol{\varepsilon}_{\Delta \nabla \boldsymbol{\phi}_{(1,0,-1)}} \end{bmatrix}$$
(15)

其中

$$\Delta \nabla \tilde{\boldsymbol{\rho}}_{WL} = \lambda_{(0,1,-1)} \left(\Delta \nabla \boldsymbol{\phi}_{(0,1,-1)} - \Delta \nabla N_{(0,1,-1)} \right)$$
(16)

同样地,在得到 WL 的模糊度浮点解及其协 方差矩阵后,利用 LAMBDA 算法即可得到 WL 模 糊度固定解。

步骤 3:采用最小二乘法解算 NL 的模糊度浮 点解

$$\begin{bmatrix} \Delta \nabla \boldsymbol{\rho}_{\mathrm{NL}} \\ \Delta \nabla \boldsymbol{\phi}_{(1,0,0)} \end{bmatrix} = \begin{bmatrix} \boldsymbol{A} & \boldsymbol{0} \\ \boldsymbol{A} & \boldsymbol{\lambda}_{(1,0,0)} \boldsymbol{I} \end{bmatrix} \begin{bmatrix} \boldsymbol{X} \\ \Delta \nabla \boldsymbol{N}_{(1,0,0)} \end{bmatrix} + \begin{bmatrix} \boldsymbol{\varepsilon}_{\Delta \nabla \boldsymbol{\phi}_{(1,0,0)}} \\ \boldsymbol{\varepsilon}_{\Delta \nabla \boldsymbol{\phi}_{(1,0,0)}} \end{bmatrix}$$
(17)

其中:

$$\Delta \nabla \tilde{\boldsymbol{\rho}}_{\text{NL}} = \boldsymbol{\lambda}_{(1,0,-1)} \left(\Delta \nabla \boldsymbol{\phi}_{(1,0,-1)} - \Delta \nabla \boldsymbol{N}_{(1,0,-1)} \right)$$
(18)

得到 NL 的模糊度浮点解及其协方差矩阵后,利用 LAMBDA 算法即可得到 NL 模糊度固定解,最后还原初始模糊度。

考虑到伪距观测值噪声的影响,本文采用改进的 GB-TCAR 算法,在解算 EWL 模糊度浮点解时,将双差伪距观测值用紧组合系统推出的双差 几何距离 ΔV ρ。代替,则式(14)改为:

$$\begin{bmatrix} \Delta \nabla \boldsymbol{\rho}_{c} \\ \Delta \nabla \boldsymbol{\phi}_{(0,1,-1)} \end{bmatrix} = \begin{bmatrix} \boldsymbol{A} & \boldsymbol{0} \\ \boldsymbol{A} & \lambda_{(0,1,-1)} \boldsymbol{I} \end{bmatrix} \begin{bmatrix} \boldsymbol{X} \\ \Delta \nabla \boldsymbol{N}_{(0,1,-1)} \end{bmatrix} + \begin{bmatrix} \boldsymbol{\varepsilon}_{\Delta \nabla \boldsymbol{\rho}_{c}} \\ \boldsymbol{\varepsilon}_{\Delta \nabla \boldsymbol{\phi}_{(0,1,-1)}} \end{bmatrix}$$
(19)

其余步骤保持不变。

4 算例分析

本文的实验数据通过仿真产生。为了验证动 对动条件下的算法性能,按如下步骤进行实验数 据的仿真。

步骤1:仿真产生两段飞机编队飞行轨迹,总 时长为1200 s,两段轨迹的初始位置均为东经 108.54°、北纬34.15°,高度相差100 m,且在飞行 过程中始终保持100 m 不变。因此,在飞行过程 中两架飞机之间形成的基线长度始终为100 m。 同时产生两段相应的惯导跟踪轨迹,两个惯导 的精度水平一致,陀螺仪漂移误差设置为 0.01 (°)/h,加速度计零偏误差设置为10μg。

步骤2:利用卫星星座模拟器产生一段时间 的卫星星历数据,从而得到该段时间内两架飞机 的伪距观测值和载波相位观测值。

步骤 3:利用前文介绍的 BDS/INS 紧组合模型对步骤 1 和步骤 2 中的仿真惯导数据和伪距观

测数据进行组合处理,得到组合位置输出值。

4.1 BDS/INS 紧组合模型性能仿真分析

对 BDS/INS 紧组合模型在不同伪距噪声水 平下的导航定位性能进行仿真,其输出的位置误 差如图 2 所示,位置误差均方差如表 1 所示。

图 2 BDS/INS 紧组合模型位置误差 Fig. 2 BDS/INS tightly-coupled model positioning error

表1 BDS/INS 紧组合模型位置误差均方差

Tab. 1 BDS/INS tightly-coupled model positioning error of mean square

				单位:m			
$\sigma_{ ho}$	均方差						
	σ_{x}	σ_{y}	σ_{z}	$\sigma_{_{ ilde{ ho}}}$			
2	0.278 3	0.4207	0.374 5	0.628 2			
1	0.164 0	0.247 8	0.196 0	0.356 0			
0.5	0.076 9	0.068 4	0.1408	0.174 4			
0.3	0.046 3	0.060 8	0.0837	0. 113 3			

从图 2 和表 1 可以看出,当伪距噪声标准差 在 2 m以内时,该紧组合模型输出的 x、y、z 三个 方向的位置精度能够达到分米级甚至厘米级,利 用该位置推算出的几何距离均方误差不超过 0.628 2 m,其精度相比于原始伪距观测值提升了 60%以上,因而能够被用来替代伪距观测值进行 整周模糊度的解算。

4.2 三频整周模糊度解算性能仿真分析

为了验证本文所提算法的模糊度解算性能, 分别采用 GF、GB、BDS/INS 紧组合辅助的无几何 模式(TC+GF)以及 BDS/INS 紧组合辅助的几何 模式(TC+GB)在相同载波相位噪声水平(设为 0.02 周)、不同伪距噪声水平条件下对三频整周 模糊度进行逐级解算,并对其模糊度解算成功率 进行比较分析。为了使所得结论更加具有普遍性 和说服力,对每个实验程序均重复运行 1000 次, 取其算术平均值作为实验结果,如表 2 所示。

从表2可以看出:GB模式下的整周模糊度解 算成功率高于 GF模式,这是由于几何模型充分 运用了所有可见卫星的观测信息,有效提高了模 糊度浮点解精度,并采用了 LAMBDA 算法对模糊 度浮点解进行了搜索和固定;在伪距观测噪声标 准差为1m以上时,GF模式下的模糊度解算成功 率不足 25%, GB 模式下的模糊度解算成功率不 足 80%, 而加入 BDS/INS 紧组合辅助后, 各级模 糊度解算成功率均在 99% 以上, 模糊度解算成 功率显著提高。此外, 在 BDS/INS 紧组合辅助 的 GB 模式下, 当伪距观测噪声标准差不超过 1 m时, 各级模糊度解算成功率均达到了 100%。 GF 模式下超宽巷、宽巷和窄巷模糊度解算成功 率逐渐降低, 这是由于下一级模糊度解算与上 一级有关, 并且下一级模糊度解算时加入了新 的观测噪声, 而 GB 模式使用了 LAMBDA 算 法, 一定程度上削弱了观测噪声对于下一级模 糊度解算的影响, 使得三者的解算成功率基本 相当。

在伪距观测噪声标准差为1m时,利用 BDS/INS紧组合辅助的GB模式进行两个运载 体之间的基线矢量解算,基线长度及其误差如 图3所示,基线矢量 x、y、z方向误差如图4所 示。从图中可以看出,基线长度误差均在5 cm 以内,基线矢量在 x、y、z方向上的误差也均在 5 cm以内。这表明该方法能够实现厘米级的 动对动相对定位。

表 2 三频整周模糊度解算成功率	
------------------	--

Tab. 2 Success rate of triple-frequency integer ambiguity calculation

	成功率/%											
$\sigma_{ ho}/{ m m}$	GF			GB		TC + GF			TC + GB			
	EWL	WL	NL	EWL	WL	NL	EWL	WL	NL	EWL	WL	NL
2	0.73	0.73	0.73	31.25	31.25	31.25	99.89	99.24	99.07	99.92	99.92	99.91
1	25.17	25.00	24.97	79.02	79.02	79.01	100	99.33	99.16	100	100	100
0.5	90.88	90.27	90.13	99.60	99.59	99.59	100	99.35	99.19	100	100	100
0.3	99.94	99.30	99.13	100	99.99	99.99	100	99.36	99.21	100	100	100

Fig. 4 Baseline vector errors in x, y and z directions

5 结论

本文提出了一种 BDS/INS 紧组合辅助的动对 动三频整周模糊度解算方法,通过紧组合输出的高 精度实时位置坐标推算出双差几何距离,并用其代 替原始 TCAR 算法中的双差伪距观测值,分别在 GF 和 GB 两种模式下分析其模糊度解算性能。仿 真结果表明,在 BDS/INS 紧组合的辅助下,三频整 周模糊度的解算成功率显著提高,当伪距观测噪声 标准差不超过 2 m 时,两种模式下的模糊度解算成 功率均在 99% 以上。由于在解算模糊度之前首先 需要对 BDS 和 INS 的数据进行紧组合处理,模糊 度解算的实时性有待进一步研究。

参考文献(References)

- [1] 许扬胤. 北斗动对动高精度相对定位技术研究[D]. 郑州:信息工程大学, 2017.
 XU Yangyin. Research on the technology of BDS kinematic to kinematic precise relative positioning [D]. Zhengzhou: Information Engineering University, 2017. (in Chinese)
- [2] Wu S S, Zhao X B, Zhang L, et al. Improving reliability and efficiency of RTK ambiguity resolution with reference antenna array: BDS + GPS analysis and test[J]. Journal of Geodesy, 2019, 93: 1297 - 1311.
- [3] 王一军,杨杰,余明杨. 北斗导航系统移动基准站差分定 位算法[J]. 国防科技大学学报,2017,39(5):45-49,138.
 WANG Yijun, YANG Jie, YU Mingyang. Differential positioning algorithm for mobile base station based on BeiDou navigation system [J]. Journal of National University of Defense Technology, 2017, 39(5):45-49,138. (in Chinese)
- [4] Hatch R, Jung J, Enge P. Civilian GPS: the benefits of three frequencies [J]. GPS Solutions, 2000, 4(3): 1-9.
- [5] 王兴,刘文祥,陈华明,等.北斗系统三频载波相位整周 模糊度快速解算[J].国防科技大学学报,2015,37(3): 45-50.

WANG Xing, LIU Wenxiang, CHEN Huaming, et al. Triplefrequency carrier phase ambiguity resolution for BeiDou navigation satellite system[J]. Journal of National University of Defense Technology, 2015, 37 (3): 45 - 50. (in Chinese)

- [6] Forssell B, Martin N M, Harris R A. Carrier phase ambiguity resolution in GNSS - 2 [C]// Proceedings of the 10th International Technical Meeting of ION GPS, 1997: 1727 - 1736.
- [7] 刘增军,彭竞,吕志成,等.一种适用于长基线的改进 CIR算法[J]. 国防科技大学学报,2013,35(2): 93-98.
 LIU Zengjun, PENG Jing, LYU Zhicheng, et al. An improved CIR for long baseline [J]. Journal of National University of Defense Technology, 2013,35(2):93-98. (in Chinese)
- [8] 姚一飞,高井祥,李增科,等.基于模糊度相关法的北斗 三频载波单历元基线解算[J].武汉大学学报(信息科学版),2016,41(11):1433-1439.
 YAO Yifei, GAO Jingxiang, LI Zengke, et al. BeiDou triple-frequency carrier single-epoch ambiguity resolution based on ambiguity related method [J]. Geomatics and Information Science of Wuhan University, 2016, 41(11): 1433-1439. (in Chinese)
- [9] 梁宵,黄智刚,秦红磊,等.采用宽窄巷结合的LAMBDA 解算方法的北斗多频差分定位技术[J].哈尔滨工业大学 学报,2017,49(11):46-51. LIANG Xiao, HUANG Zhigang, QIN Honglei, et al. Multifrequency Beidou differential positioning using combination of wide and narrow lane for LAMBDA resolution[J]. Journal of Harbin Institute of Technology, 2017, 49(11):46-51. (in Chinese)
- [10] 王官龙,崔晓伟,陆明泉.北斗三频海基 JPALS 无故障导航算法[J]. 航空学报, 2017, 38(12): 263 271.
 WANG Guanlong, CUI Xiaowei, LU Mingquan. Triple-frequency sea-based JPALS fault-free navigation algorithm for BDS[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12): 263 271. (in Chinese)
- [11] 何锡扬. BeiDou 三频观测值的中/长基线精密定位方法与 模糊度快速确定技术[D]. 武汉:武汉大学, 2016.
 HE Xiyang. Rapid ambiguity resolution and precise positioning for medium/long baselines with BeiDou triplefrequency signals [D]. Wuhan: Wuhan University, 2016. (in Chinese)
- [12] Han H Z, Wang J, Wang J L, et al. Performance analysis on carrier phase-based tightly-coupled GPS/BDS/INS integration in GNSS degraded and denied environments [J]. Sensors, 2015, 15(4): 8685 - 8711.
- [13] 肖凯,孙付平,王浩源. 三频差分 GNSS/INS 紧组合模型[J]. 中国惯性技术学报, 2018, 26(2):180-186.
 XIAO Kai, SUN Fuping, WANG Haoyuan. Triple-frequency differential GNSS/INS tightly coupled integration model[J].
 Journal of Chinese Inertial Technology, 2018, 26(2):180-186. (in Chinese)
- [14] 王新龙,李亚峰,纪新春. SINS/GPS 组合导航技术[M]. 北京:北京航空航天大学出版社,2015.
 WANG Xinlong, LI Yafeng, JI Xinchun. SINS/GPS integrated navigation technology [M]. Beijing: Beihang University Press, 2015. (in Chinese)
- [15] 魏国华,彭学武,王旭. 一种改进的 CIR 法用于单历元模 糊度 解算 [J]. 北京理工大学学报,2016,36(11): 1177-1182.
 WEI Guohua, PENG Xuewu, WANG Xu. Resolve integer ambiguity in single epoch occasion by a improved CIR method[J]. Transactions of Beijing Institute of Technology, 2016,36(11):1177-1182. (in Chinese)