doi:10.11887/j.cn.202102010

http://journal. nudt. edu. cn

无人机对地目标多帧融合定位与误差收敛特性分析*

鲁亚飞1,吴岸平1,2,陈清阳1

(1. 国防科技大学 空天科学学院, 湖南 长沙 410073;

2. 中国空气动力研究与发展中心 超高速空气动力研究所,四川 绵阳 621000)

摘 要:对地目标高精度定位是无人机开展目标侦察、火力引导、效能评估等的重要前提,然而无人机对 地目标定位精度受到误差因素多、传递链长等因素的制约。采用基于卡尔曼滤波的图像多帧配准对地面目 标定位的方法,通过融合无人机获取的多帧目标图像,基于卡尔曼滤波方法,研究无人机对地目标高精度融 合定位方法,并引入蒙特卡洛法进行仿真,分析基于卡尔曼滤波法多帧融合定位的误差收敛性、大小和分布, 分析观测间隔、视线俯仰角等对误差收敛性的影响,形成若干提高定位精度的建议。

关键词:无人机;对地定位;卡尔曼滤波;误差收敛性

中图分类号: V279 文献标志码: A 文章编号: 1001 - 2486 (2021) 02 - 066 - 08

Analysis of UAV multi-frame fusion location and error convergence characteristic for ground target

LU Yafei¹, WU Anping^{1,2}, CHEN Qingyang¹

(1. College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China;

2. Hypervelocity Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China)

Abstract: High-precision positioning of the ground target is an important premise for the UAV (unmanned aerial vehicle) to carry out target reconnaissance, firepower guidance, effectiveness evaluation, etc. However, the accuracy of the UAV' s target positioning is limited by factors such as many error factors and long transmission chain. The method of multi-frame image registration method based on Kalman filter for ground target location was studied. By combining the multi-frame target image acquired by UAV, the high-precision fusion positioning of UAV to ground target was studied based on Kalman filter. Monte Carlo method was introduced to simulate the error convergence, value and distribution of multi-frame fusion location method based on Kalman filter. The influence of observation interval and line-of-sight elevation angle on error convergence was analyzed. Several suggestions for improving the positioning accuracy were proposed.

Keywords: unmanned aerial vehicles; target location; Kalman filter; error convergence

无人机凭借隐蔽性好、造价低廉、起降简单、 生命力强、不惧伤亡等特点在现代军事和民用方 面受到青睐^[1-3]。世界上各军事强国竞相发展无 人机,美国已经研制了上百种无人机,并能够完成 诸如电子战、情报监视与侦察、目标指示等任务。 民用方面,无人机同样能够胜任诸多任务,包括航 拍摄影、地质勘探、地区搜索等^[4]。

在无人机执行区域搜索、火力引导、效能评估 等任务过程中,对目标的精确定位和状态估计是 任务完成的关键因素之一。无人机通过机载的光 学侦察载荷得到目标的相应参数,结合无人机测 量设备所得到的无人机位置参数、姿态参数求解 得到目标的位置信息,定位精度高低决定了对目 标的状态信息的掌控。追求高精度的定位方法, 不仅需要搭载的载荷技术成熟完善,同样也需要 采取误差小、计算可靠、收敛特性好的定位估计 方法。

基于无人机侦察图像的目标定位问题已有持 续的研究,并逐步应用于实践,然而受到误差因素 多、传递链长等因素的制约,无人机对地目标定位 的精度不高,难以满足高精度定位、精确导引等任 务要求^[5-8]。在载机特征和传感器性能有限的情 况下,如何通过最优估计算法提高精度成为当前 研究的热点。根据目标的性质、运动特性的不同, 有不同的最优估计算法,常用的有最小二乘法、加 权最小二乘法、极大似然估计方法、几何定位法、 测量子集优化定位算法等。其中,加权最小二乘 协同定位算法是一种常用的算法,该方法力图估

* 收稿日期:2019-08-26

基金项目:湖南省自然科学基金资助项目(2017JJ3366);基础加强计划技术领域基金资助项目(2019JCJQJJ210) 作者简介:鲁亚飞(1985—),男,河南汝州人,博士,副教授,硕士生导师,E-mail:luyafeichina@163.com

计目标位置与速度。针对非实验条件下的误差补 偿,诸多学者采用最小二乘法、递推最小二乘法和 卡尔曼滤波器,但这主要针对线性误差的情况,且 对于载体的倾斜也有要求^[9-12]。文献[13]给出 了一种对固定地面目标进行多点观测的无源目标 定位算法,该方法避免了激光测距,仅用角度信息 采用无迹卡尔曼滤波(Unscented Kalman Filter, UKF)对目标位置进行估计,多次观测对角度误差 也起到了补偿作用。文献[14]设计了一种基于 改进的扩展卡尔曼滤波(Extended Kalman Filter, EKF)的单站无人机无源定位方法,对提高该算法 的定位精度起到了一定的效果。文献[15]采用 双机交会观测方法解决了针对运动目标的定位问 题,并对最佳交会角度进行了优化分析,同时采用 自适应卡尔曼滤波方法提高了定位精度。文 献[16]提出了一种基于蒙特卡洛卡尔曼滤波的 目标定位算法,并通过飞行试验分析了定位误差 随着滤波迭代次数收敛的过程,表明采用卡尔曼 滤波方法可以有效提高对地目标定位的精度。

综上所述,为了提高无人机对地面目标的定 位精度,通常采用多帧数据融合的方法,利用最小 二乘方法、卡尔曼滤波方法等最优估计方法进行 误差修正,可以有效降低目标定位误差。在多帧 数据融合过程中,误差的收敛速度、收敛目标等特 征是控制定位过程的关键。本文研究基于卡尔曼 滤波的无人机对地目标定位方法,并对定位误差 收敛特性进行分析,引入蒙特卡洛法进行仿真,分 析基于卡尔曼滤波法多帧融合定位的误差收敛 性、大小和分布,分析观测间隔、视线俯仰角等对 误差收敛性的影响,形成若干提高定位精度的 建议。

1 基于卡尔曼滤波的对地目标定位方法

1.1 典型无人机对地目标搜索定位过程

无人机在情报侦察与监视、攻击或打击目标、 部队防护、电子战、武器投放、干扰、欺骗、对地支 援等军事领域得到了成功的运用,对目标的搜索 和跟踪定位是上述任务的重要过程。典型对地面 目标跟踪定位过程如图1所示,包括区域搜索和 目标识别、目标跟踪和精确定位、航线盘旋与目标 详查、恢复搜索航线等过程。

区域搜索和目标识别过程中,无人机按照设 定的搜索航线扫描指定区域,持续对待搜索区域 进行扫描成像,获得序列图像,基于自动目标匹配 和人工判读的方法,识别进入视场的目标;目标跟 踪和精确定位过程中,基于目标在视场中的位置

图 1 无人机对地目标搜索定位过程

Fig. 1 Diagram of target search and location for UAV

和偏差,手动或自动控制光电吊舱的方位角、俯仰 角和滚转角,持续跟踪目标,持续获取图像,并基 于机上姿态位置传感器输出,通过定位解算,获 取目标位置信息;因光电吊舱的控制范围有限, 固定翼无人机需要持续保持空速飞行,为了长 时跟踪目标,需要调整无人机飞行航迹,如转移 至基于目标坐标位置的圆盘旋航线,进一步对 目标进行详查和定位;完成单个目标定位过程 后,可根据任务要求,恢复设定的搜索航线或退 出任务流程。

1.2 基于齐次坐标变换的目标坐标估计

无人机通过目标在成像设备(可见光或红外 相机)获得图像中的位置,结合无人机自身的姿态位置、云台的指向角以及距离信息,即可求解出 目标的绝对位置坐标^[17-18]。目标位置求解的过 程如图 2 所示。

目标定位的过程是通过光电吊舱获得的目标 在图像中的坐标,结合光电吊舱视线方位角和俯 仰角,利用齐次坐标变换解算目标在地理坐标系 下的位置的过程。

在无人机对地目标定位过程中,操作人员首 先从机载相机获取的二维图像中识别并选择拟定 位兴趣目标,得到目标在图像坐标系的坐标向量

(b) Calculation diagram of UAV ground target location solution

图 2 目标坐标解算过程

 $[x_{cam} y_{cam} f]^{T}$,忽略云台安装位置与机体坐标系的偏移,基于齐次坐标变换原理,目标在地理坐标系的表达可以表征为式(1)的形式^[19]。

$$\begin{bmatrix} x_{\rm p} \\ y_{\rm p} \end{bmatrix} = \begin{bmatrix} x_{\rm UAV} \\ y_{\rm UAV} \end{bmatrix} + \frac{\Delta z_{\rm pv}}{\begin{bmatrix} 0, 0, 1 \end{bmatrix} \boldsymbol{C}_{b}^{n} \boldsymbol{C}_{c}^{b} \begin{bmatrix} x_{\rm cam} & y_{\rm cam} & f \end{bmatrix}^{\mathrm{T}}} \times \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \boldsymbol{C}_{b}^{n} \boldsymbol{C}_{c}^{b} \begin{bmatrix} x_{\rm cam} & y_{\rm cam} & f \end{bmatrix}^{\mathrm{T}}$$
(1)

式中: $[x_{cam} y_{cam} f]^{T}$ 表征目标在图像坐标系下的 坐标表达; $[x_{UAV} y_{UAV} z_{UAV}]^{T}$ 表征无人机在地 理坐标系的坐标; $\Delta z_{pv} = z_{p} - z_{v}$ 表征目标和无人 机之间的相对高度, 该值可以基于地平面假设采 用无人机的高度信息估计或者基于吊舱的激光测 距机进行测量; 变换矩阵 C_{b}^{n} 表示从机体坐标系 到地理坐标系的转换矩阵; 变换矩阵 C_{c}^{b} 表示从图 像坐标系到机体坐标系的转换矩阵。

$$\boldsymbol{C}_{b}^{n} = \boldsymbol{C}_{b}^{n}(\psi, \theta, \phi) = \begin{bmatrix} \cos\psi & 0 & \sin\psi \\ 0 & 1 & 0 \\ -\sin\psi & 0 & \cos\psi \end{bmatrix} \cdot \begin{bmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\varphi & -\sin\varphi \\ 0 & \sin\varphi & \cos\varphi \end{bmatrix}$$
(2)

式中, (ψ,θ,φ) 表征无人机由导航传感器测得的 三轴姿态角,分别为滚转角、俯仰角和航向角。

$$\boldsymbol{C}_{c}^{b} = \boldsymbol{C}_{c}^{b}(\alpha, \beta) = \begin{bmatrix} \cos\alpha & \sin\alpha & 0 \\ -\sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \cos\beta & 0 & \sin\beta \\ 0 & 1 & 0 \\ -\sin\beta & 0 & \cos\beta \end{bmatrix}$$
(3)

式中, (*α*,*β*) 表征云台的方位角和俯仰角。 式(1)可用于在已知无人机姿态、位置、云台 指向角度以及目标在图像中的坐标的前提下假设 目标区域的高度,估算无人机侦察图像中特定目 标的位置。由于定位过程中涉及多个旋转变换矩 阵,对机体姿态误差、云台指向误差飞行敏感,且 依赖于目标区域高程的估计,会引入较大的定位 误差,因此需进一步采用多点融合的方法,提高对 地定位精度。

1.3 基于卡尔曼滤波的多点融合定位误差修正

卡尔曼滤波法是 20 世纪 60 年代由卡尔曼首次提出的一种线性最小方差估计方法,其核心是 在动态过程中用递推方法对状态量进行估计,并 预测误差的协方差矩阵,再利用这些协方差矩阵 计算卡尔曼滤波增益,进一步的以滤波增益为权 值更新状态量估计值。对于线性和非线性系统, 采用不同的方法计算均值和协方差衍生出了不同 类型的卡尔曼滤波。由于无人机定位的观测过程 是一个离散状态,故采用离散型卡尔曼滤波的基 本方程建立计算模型。

无人机对地定位过程中,通过获取的目标序列 图像,持续获取多组测量数据,每组数据包括:目标 在图像坐标系的坐标向量[$x_{cam} y_{cam} f$]^T、无人机的 地理坐标[$x_{UAV} y_{UAV} z_{UAV}$]^T、姿态测量值(ψ , θ , ϕ)以及云台的方位和俯仰角(α , β)。基于离散卡 尔曼滤波进行数据融合的状态转移方程为:

 $\boldsymbol{X}_{k} = \boldsymbol{\Phi}_{k,k-1} \boldsymbol{X}_{k-1} + \boldsymbol{\Gamma}_{k-1} \boldsymbol{W}_{k-1}$ (4) 式中:被估计状态变量 $\boldsymbol{X} = \begin{bmatrix} x_{p} & y_{p} \end{bmatrix}^{T}$ 为待定位目 标的地理坐标; $\boldsymbol{\Phi}_{k,k-1}$ 为 t_{k-1} 时刻至 t_k 时刻的一步转移矩阵,假设在整个解算周期内,待定位目标静止不动,则 $\boldsymbol{\Phi}_{k,k-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$; $\boldsymbol{\Gamma}_{k-1}$ 为系统的噪声驱动阵; W_k 为系统激励噪声序列。

量测方程为:

$$\boldsymbol{Z}_{k} = \begin{bmatrix} \boldsymbol{\mu} \\ \boldsymbol{v} \end{bmatrix} = \begin{bmatrix} h_{1}(\boldsymbol{X}_{k}, \boldsymbol{\Theta}_{k}) \\ h_{2}(\boldsymbol{X}_{k}, \boldsymbol{\Theta}_{k}) \end{bmatrix} + \boldsymbol{V}_{k}$$
(5)

式中:量测变量 $Z_k = [\mu \quad v]^T$ 表征目标在 NED 坐 标系下相对于无人机的方位和俯仰向量;量测方 程 $h(X_k, \Theta_k)$ 可采用式(1)的逆变换结合各传感 器测量值 Θ_k 得到^[20],其中 $\Theta_k = [x_{UAV} \quad y_{UAV} \quad z_{UAV}$ $\psi \theta \phi \alpha \beta]; V_k$ 为量测噪声, $V_k \sim N(0, \delta^2)$ 噪声 服从正态分布。

观测矩阵 H 可以通过式(6)计算得到。

$$\boldsymbol{H} = \begin{bmatrix} \frac{\partial h_1}{x_p} & \frac{\partial h_1}{y_p} \\ \frac{\partial h_2}{x_p} & \frac{\partial h_2}{y_p} \end{bmatrix}$$
(6)

基于上述状态方程和量测方程,只要给定状态变量的初值,根据 k 时刻量测 Z_k,就可以递推计算 k 时刻的状态估计 X_k(k=1,2,…)。其算法流程如图 3 所示,在一个滤波周期内,从卡尔曼滤波在使用系统信息和量测信息的先后次序来看,卡尔曼滤波具有两个明显的信息更新过程:时间信息更新和量测信息更新。

图 3 基于卡尔曼滤波的多点融合定位流程 Fig. 3 Multi-point fusing location process based on Kalman filter

2 定位误差收敛特征分析

采用蒙特卡洛方法,引入无人机对地定位过 程中的典型误差源,分析定位误差的收敛特性,以 及观测间隔、视线俯仰角等对误差收敛性的影响。

2.1 基于蒙特卡洛方法的定位误差仿真

蒙特卡洛方法又称随机模拟法,通过计算机 产生符合条件的随机数据,用于模拟实际的试验 数据。基于蒙特卡洛方法的对地定位误差仿真过 程如图4所示。 **步骤1**:参数初始化设置。假设无人机的飞 行轨迹为半径 *R* = 1 500 m,相对高度 *H* = 1 500 m, 测量数据的位置点平均分布在圆形轨迹上,共计 180 个点。目标在圆形轨迹的正中间,在飞行过 程中,始终保证无人机搭载的载荷对准目标,这将 使得目标在视野里,目标点的理想坐标为(0 m, 0 m,1500 m)。

步骤2:无误差的目标定位结果。考虑到无 人机飞行轨迹的圆心为目标,假设目标的定位结 果在载机 NED 坐标系下坐标为(0 m,0 m, 1500 m)。

步骤3:产生正态分布随机序列。根据分析 的误差因素,引入相应的误差分布序列,引入的误 差源的分布特征和大小如表1所示。

图 4 蒙特卡洛仿真过程流程

Fig. 4 Process of Monte Carlo simulation

表1 误差源的分布特征与大小

Tab. 1 Distribution characteristics and values of error source
--

误差类型	误差分布	误差值/(°)
无人机经度	正态分布	0.000 3
无人机纬度	正态分布	0.000 3
无人机高度	正态分布	0.000 3
无人机偏航角	正态分布	0.200 0
无人机滚转角	正态分布	0.200 0
无人机俯仰角	正态分布	0.200 0
云台下倾角	均匀分布	0.040 0
云台方位角	均匀分布	0.040 0
无人机经度	正态分布	0.000 3
无人机纬度	正态分布	0.000 3

步骤4:利用产生的误差分部序列求解得到 目标点的位置,将其减去无误差定位结果得到误 差大小。

步骤 5:进行 150 次循环仿真,将得到的误差 求解均值,从而得到定位误差的值。

2.2 定位误差分析

基于蒙特卡洛方法的多点融合定位误差仿真 结果如图 5 所示。仿真结果表明:与单点定位结 果的散布特征相比,通过采用文中方法开展多帧 数据融合后,无人机对目标的位置估计值大幅接 近真值。

为了定量分析误差收敛的过程,进一步对 位置估计值在东向和北向两个方向上的收敛特 征进行仿真分析。其正东方向坐标收敛过程如 图 6 所示。其正北方向坐标收敛过程如图 7 所示。

由图 6 和图 7 可知:在卡尔曼滤波法中,目标估计点的正东方向坐标大约从第 18 个观测 点开始收敛;正北方向坐标大约从第 17 个观测

图6 东向误差收敛过程

图 7 北向误差收敛过程

Fig. 7 Error convergence course on north coordinate

点收敛;在收敛过程中,收敛曲线平缓,最后可 以看到误差大概收敛的位置,这将可以估计误 差的大小。

2.3 误差收敛特征影响因素分析

由于设计的无人机路径是圆形,飞行平稳,所 以不考虑无人机的姿态角,只讨论观测点间隔和 云台下倾角对基于卡尔曼滤波法多点定位的误差 影响。

2.3.1 观测间隔对多帧图像定位误差收敛特征 的影响

仿真中除了圆形轨迹观测点数目的改变,其 余参数不变。图 8 为观测间隔 $\Delta \theta = 2^{\circ}$ 的误差收 敛过程,根据收敛过程分析,得到表征收敛次数 n = 41,误差收敛值 $\Delta r = 37.48$ m。同样的方法得 到的不同观测间隔条件下的收敛次数和收敛值对 比见表 2。

表2 收敛特性与观测间隔的关系

Tab. 2 Relationship between error convergence characteristic and observation interval

观测/(°)	收敛次数	收敛值/m
2	41	37.48
4	32	34. 53
6	26	28.92
8	18	18.35

由表2可以看出,当Δθ增大时,误差的收敛 速度加大。故在进行无人机定位过程中,观测间 隔对卡尔曼滤波法定位的影响是:观测间隔越大, 定位过程各个数据点之间的基线越长,无人机定 位结果的误差收敛越快,且估计误差越小。

2.3.2 观测倾角对多帧图像定位误差收敛特性的影响

为了分离观测距离和观测倾角的影响,设计 对目标的观测距离为 $D = 2\ 000\ m\ R持不变,观测$ 倾角 $\beta = -30^\circ$, -40° , -50° , -60° , -70° ,观测 倾角 β 定义水平为零,向下为负。对应的飞行相 对高度 $H = |D\sin\beta|$,盘旋半径 $R = D\cos\beta$,其他传 感器误差分布特性见表1。无人机观测间隔 $\Delta\theta =$ 8°时,仿真结果如图9、表3所示。

由表3可知,在给定观测距离的情况下,观 测下倾角越大,无人机相对于目标的视线与大 地垂线方向的角度越小;则角度误差收敛速度 越快,收敛值越小,反之则误差收敛速度越慢, 收敛值越大。表现在飞行航迹上,即在给定观 测距离条件下,应尽量以一个较小的盘旋半径

图 9 观测倾角 $\beta = -30^{\circ}$ 的误差收敛过程 Fig. 9 Error convergence course when observation pith angular $\beta = -30^{\circ}$

表 3 收敛特性与观测倾角的关系

Tab. 3 Relationship between error convergence characteristic and observation pitch angular

观测倾角/(°)	收敛次数	收敛值/m
- 30	35	43.04
- 40	30	29.90
- 50	24	22. 54
- 60	18	12. 84

同时需要注意:受到固定翼无人机机动能力 限制,存在最小盘旋半径约束,且盘旋半径越小, 无人机的滚转角越大,方位角的变化率越大,因为 通信延时等因素带来的角度测量误差可能越大, 进一步影响对地目标的定位精度。因此在实际的 定位过程中,如何选择合适的盘旋半径,需要开展 进一步深入的研究。

2.4 提高定位精度的建议

综上所述可以提出以下几点提高定位精度的 方法:

1)通过航迹规划来提高无人机定位精度。
 由误差分析可以知道观测间隔对定位结果的影响,航迹规划可以提前确定观测间隔取值,同样高度的确定也影响着目标定位精度。所以航迹规划
 是较为关键的。

 2)使用精度较高的测量设备,如高度气压 计,因为相对高度的大小将影响无人机定位精度。
 若提高设备的精度,将减小引入的偏差,提高定位的精度。 3)采用合适的算法,有单点定位法、多点最 小二乘法、卡尔曼滤波法,其定位精度越来越高, 误差越来越小。所以采用合适的算法同样是提高 定位的关键。

3 结论

对地目标高精度定位和定位误差的快速收敛 是无人机对地目标定位需要关注的重要问题。本 文基于卡尔曼滤波方法的对地目标定位数学模 型,引入蒙特卡洛法对定位误差收敛特性进行仿 真分析,讨论了观测间隔、视线俯仰角等对误差收 敛特性的影响,形成若干提高定位精度的建议。

研究发现:采用卡尔曼滤波的方法可以有效 地提升目标定位的精度,观测间隔和观测倾角对 定位误差的收敛特性有影响,其中观测间隔对收 敛特征的影响主要表现在对采样基线的影响,采 样基线越长,误差收敛速度越快,收敛值越小。在 给定观测距离的情况下,观测倾角产生的影响主 要表现在观测下倾角越大,误差收敛速度越快,收 敛值越小。同时不可忽视的是,对固定翼无人机 而言,在一定的观测距离条件下,观测倾角的增大 意味着盘旋半径的减小,实际测量过程中需要综 合考虑机动能力约束、通信延时对传感器测量误 差影响等因素。

参考文献(References)

 [1] 徐诚,黄大庆,孔繁锵,等.一种小型无人机无源目标定 位方法及精度分析[J].仪器仪表学报,2015,36(5): 1115-1122.
 XU Cheng, HUANG Daqing, KONG Fanqiang, et al. Small UAV passive target location approach and accuracy

analysis[J]. Chinese Journal of Scientific Instrument, 2015, 36(5): 1115 – 1122. (in Chinese)

- [2] 孙健,刘朝君,尹文强.无人机跟踪运动目标航迹规划算法[J].飞行力学,2017,35(6):35-38.
 SUN Jian, LIU Zhaojun, YIN Wenqiang. Route planning algorithm for tracking moving target with UAV[J]. Flight Dynamics, 2017, 35(6):35-38. (in Chinese)
- [3] 檀立刚,戴明,刘晶红,等. 机载光电测量设备目标自主定位误差分析[J].光学精密工程,2013,21(12):3133-3140.
 TAN Ligang, DAI Ming, LIU Jinghong, et al. Error analysis of target automatic positioning for airborne photo-electric measuring device [J]. Optics and Precision Engineering, 2013,21(12):3133-3140. (in Chinese)
- [4] CONTE G, DOHERTY P. An integrated UAV navigation system based on aerial image matching [C]// Proceedings of IEEE Aerospace Conference, 2008.
- [5] 周前飞,刘晶红,熊文卓,等. 机载光电成像平台的多目标自主定位系统研究[J]. 光学学报, 2015, 35(1): 1-15.

ZHOU Qianfei, LIU Jinghong, XIONG Wenzhuo, et al.

Multi-target self-determination orientation system based on airborne photoelectric imaging platform [J]. Acta Optica Sinica, 2015, 35(1): 1-15. (in Chinese)

- [6] CHEN V C, MICELI W J. Effect of roll, pitch and yaw motions on ISAR imaging [J]. SPIE, 1999, 38 (10): 149-158.
- [7] MADISON R W, DEBITETTO P A, OLEAN A R, et al. Target geolocation from a small unmanned aircraft system [C]// Proceedings of IEEE Aerospace Conference, 2008: 1-19.
- [8] WEDDING J, MCLAIN T W, BEARD R W. Vision-based target localization from a fixed wing miniature air vehicle [C] // Proceedings of the American Control Conference, 2006: 2862 – 2867.
- [9] EHRMAN L M, LANTERMAN A D. Extended Kalman filter for estimating aircraft orientation from velocity measurements[J]. Radar, Sonar & Navigation, 2008, 2(1): 12 - 16.
- [10] WAN E A, VAN DER MERWE R. The unscented Kalman filter for nonlinear estimation [C]// Proceedings of Adaptive Systems for Signal Processing, Communications, and Control Symposium, 2000, 3(5): 153 – 158.
- [11] CRISAN D, OBANUB O. Particle filters with random resampling times [J]. Stochastic Processes and Their Application, 2012, 122(4): 1332-1368.
- [12] BOERS Y, DRIESSEN J N. Interacting multiple model particle filter [J]. IEEE Proceedings of Radar Sonar and Navigation, 2003, 150(5): 344 – 349.
- [13] 陈新,彭科举,周东祥.基于优选数据准则的空基多平台 协同定位方法[J].信号处理,2010,26(10):1466 -1472.

CHEN Xin, PENG Keju, ZHOU Dongxiang. Bearing only method based on optimal data in multi-UAV co-location [J]. Signal Processing, 2010, 26 (10): 1466 – 1472. (in Chinese) [14] 马凌,蒋外文,张肖霞. 基于改进扩展卡尔曼滤波的单站 无源定位算法[J]. 计算机工程与应用, 2016, 52(10): 124-127.
 MA Ling, JIANG Waiwen, ZHANG Xiaoxia. Single passive

location algorithm based on improved extended Kalman filter[J]. Computer Engineering and Applications, 2016, 52(10): 124 – 127. (in Chinese)

- [15] BAI G B, LIU J H, SONG Y M, et al. Two-UAV intersection localization system based on the airborne optoelectronic platform[J]. Sensors, 2017, 17(1): 1-18.
- [16] 贺若飞,田雪涛,刘宏娟.基于蒙特卡罗卡尔曼滤波的无人机目标定位方法[J].西北工业大学学报,2017,35(3):435-441.
 HE Ruofei, TIAN Xuetao, LIU Hongjuan. A UAV target localization approach based on Monte-Carlo Kalman filter[J]. Journal of Northwestern Polytechnical University, 2017,35(3):435-441. (in Chinese)
- [17] TISDALEL J. A multiple UAV system for vision-based search and localization [C]// Proceedings of American Control Conference, 2008: 1-6.
- [18] WANG X, LIU J H, ZHOU Q F. Real-time multi-target localization aerial vehicles [J]. Sensors, 2017, 17(33): 1 – 28.
- [19] PACHTER M, CECCARELLI N, CHANDLER P R. Visionbased target geolocation using micro air vehicles [J]. Journal of Guidance, Control, and Dynamics, 2008, 31(3): 597 – 615.
- [20] MONDA M J, WOOLSEY C A, REDDY C K. Ground target localization and tracking in a riverine environment from a UAV with a gimbaled camera [C]// Proceedings of AIAA Guidance, Navigation and Control Conference and Exhibit, 2007, 6747: 1 – 14.