doi:10.11887/j.cn.202202003

http://journal. nudt. edu. cn

超音速气流中热塑性复合材料壁板的非线性热颤振特性*

高艺航^{1,2},段静波³,雷勇军¹

(1. 国防科技大学 空天科学学院,湖南 长沙 410073; 2. 中国运载火箭技术研究院 北京宇航系统工程研究所,北京 100076;
 3. 石家庄铁道大学 工程力学系,河北 石家庄 050043)

摘 要:热塑性复合材料结构在高速流场中的颤振行为是可重复使用航天器设计中需要考虑的问题。 基于 Mindlin 厚板理论和 Von-Karman 大变形理论描述热塑性复合壁板结构大变形,超音速气动力采用活塞气 动理论。考虑温度引起的壁板面内热应力和热塑性材料力学性能的改变。根据虚功原理和有限元法推导建 立了热塑性复合材料壁板的热颤振模型,进而采用 V-g 法和 Newmark 法分别从频域和时域求解热塑性壁板的 热颤振特性。在验证方法正确性和收敛性的基础上,讨论了温度对热塑性复合壁板的颤振频域模态耦合特 性、颤振时域极限环振荡特性。结果表明,考虑热塑性材料温变特性会进一步降低壁板的颤振动压,而且热 塑性壁板极限环振荡下等效应力水平较低,没有达到材料屈服极限。

关键词:热塑性复合壁板;非线性热颤振;超音速气流;模态耦合;极限环振荡特性 中图分类号:0322 文献标志码:A 文章编号:1001-2486(2022)02-016-08

Nonlinear thermal flutter characteristics of thermoplastic composite panels in supersonic flow

GAO Yihang^{1,2}, DUAN Jingbo³, LEI Yongjun¹

(1. College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China;

2. Beijing Institute of Astronautical Systems Engineering, China Academy of Launch Vehicle Technology, Beijing 100076, China;

3. Department of Engineering Mechanics, Shijiazhuang Tiedao University, Shijiazhuang 050043, China)

Abstract: The flutter behavior of thermoplastic composite structures in high-speed flow is a key problem in the design of reusable spacecraft. Based on the classical Mindlin thick theory, the Von-Karman larger deformation theory and the piston theory, the thermoplastic composite structure panel and its aerodynamics were described, along with the consideration of both the thermal stress and the variation of mechanical properties caused by the temperature. The aeroelastic model of the thermoplastic composite panel was established based on the principle of virtual work and the finite element method, and the V-g method and the Newmark method were used to solve the thermal flutter characteristics of the thermoplastic panel from frequency domain and time domain, respectively. After the validity and convergence of the presented method were verified, the effects of temperature on mode coupling in frequency domain, limit cycle oscillation in time-domain and stress response were investigated. The results show that the flutter dynamic pressure obtained by considering the temperature variation of thermoplastic materials will further reduce the flutter dynamic pressure of the panel, and the equivalent stress of thermoplastic panels under the limit cycle oscillation is lower than the material yield limit.

Keywords: thermoplastic composite panels; nonlinear thermal flutter; supersonic flow; mode coupling; limit cycle oscillation characteristics

随着航天器朝着高速、强突防、低成本、短周 期方向发展,对结构构件的材料与成型提出了更 高的要求。热塑性树脂基复合材料由于其耐高 温、高强度、高韧性、可重复使用等诸多优异性能, 成为可重复使用航天器首选的先进复合材料。然 而,热塑性复合材料基体韧性大,受热塑性显著, 在航天器极端复杂的气动热环境中,热塑性复合 材料制成的壁板类结构的气动弹性力学行力及机

理十分值得研究。

关于壁板热颤振问题的研究最早可以追溯到 20世纪50年代,Houbolt^[1]最先开始研究温度场 均匀分布的二维壁板颤振边界及其屈曲失稳特 性。随后,Dowell^[2]针对金属壁板几何非线性颤 振问题进行了大量研究。Kouchakzadeh 等^[3]采用 经典板理论和 von Karman 非线性位移应变关系 进行结构建模,研究复合材料层合板在超音速气

作者简介:高艺航(1991一),女,河南驻马店人,博士研究生,E-mail:gaoyhddup@163.com; 段静波(通信作者),男,副教授,博士,硕士生导师,E-mail:duanjingbo@stdu.edu.cn

^{*} 收稿日期:2020-07-31

基金项目:国家自然科学基金资助项目(11702325);河北省重点研发计划资助项目(213504010);民航航空器适航审定技术重点 实验室开放基金资助项目(SH2020112705)

流中的非线性气动弹性问题。如果飞行马赫数较 高,在强烈的气动加热效应作用下,壁板将面临极 端严酷的热环境。Zhou 等^[4]发现受热壁板在气 流中的运动形式极其复杂,具有从低速气流中的 衰减振动、热屈曲振动形式到高速气流中各种类 型的振动。杨智春等^[5]采用分步分析方法研究 了复合材料铺层方式对壁板热颤振特性的影响。 李凯伦等^[6]对高超声速环境中功能梯度薄板的 热气动弹性问题进行了研究,发现气动加热效应 能够使薄板发生热屈曲或者提前进入振动状态。 Yang 等^[7-8]针对高超声速飞行器一体化防热结 构,建立了泡沫填充复合材料波纹夹芯板的高阶 分层气动弹性模型,讨论了几何参数和材料性能 对颤振临界动压的影响。Li 等^[9]研究了三角形 栅格芯夹层板在超音速气流中的颤振和屈曲,并 采用位移反馈的方法设计了主动控制器,为夹层 结构在飞行器设计中的应用提供了理论依据。

关于热塑性复合材料,Özen 等^[10]分别采用 实验和仿真分析方法研究了热塑性蜂窝夹芯板低 能量冲击响应特性。Chen 等^[11]设计和制备了多 层热塑性复合材料(ThermoPlastic Composite, TPC)波纹夹芯板,采用平板压缩试验研究了芯材 结构的失效机理。目前,公开的文献资料大多是 关于热塑性复合材料的制造工艺、本构关系、弹塑 性变形、损伤测试方面的研究^[12],而关于热塑性 复合材料壁板的颤振问题报道还比较少^[13-15]。 基于此,本文以热塑性复合材料层合板为研究对 象,研究其颤振特性,分析关键参数对壁板热颤振 特性的影响规律。

1 超音速流场中复合壁板颤振有限元方程

1.1 结构模型

如图 1 所示,矩型热塑性复合材料壁板的长 度和宽度分别为 L 和 H,厚度为 h。由于复合材 料壁板属于厚板,因而,本文采用 Mindlin 厚板理 论,壁板内任意一点的位移场可写为:

$$\begin{cases} u = u_0 - z\theta_x \\ v = v_0 - z\theta_y \\ w = w_0 \end{cases}$$
(1)

其中, u_0 、 v_0 、 w_0 分别为中面上的点沿 x 轴、y 轴和 z 轴方向的位移, θ_x 和 θ_y 分别为中面法向转角。

考虑高速气流作用下壁板可能产生的几何非 线性变形,采用 Von-Karman 大变形理论,给出热 塑性壁板的应变 – 位移关系如下:

图 1 热塑性复合材料壁板示意图 Fig. 1 Sketch of thermoplastic composite panel

其中:ε₀包括壁板中面面内位移产生的应变分量 和壁板大变形时挠度引起的非线性应变分量;κ 为弯曲时壁板的曲率向量;γ为横向剪切应变向 量;z为壁板厚度方向的坐标。

在热塑性壁板应力 - 应变关系方面,考虑温 度对热塑性壁板热应力的影响以及材料力学性能 随温度的变化,暂不引入应力应变的塑性本构关 系,但在分析中讨论屈服极限对壁板颤振应力的 影响。对于第 k 铺层,并忽略法向正应力,则壁板 应力 - 应变关系为:

$$\begin{cases} \boldsymbol{\sigma}^{k} = \overline{\boldsymbol{Q}}_{m}^{k} (\boldsymbol{\varepsilon} - \boldsymbol{\varepsilon}_{T}) \\ \boldsymbol{\tau}^{k} = \overline{\boldsymbol{Q}}_{s}^{k} \boldsymbol{\gamma} \end{cases}$$
(3)

其中,
$$\boldsymbol{\sigma}^{k} = \begin{bmatrix} \boldsymbol{\sigma}_{x}^{k} \\ \boldsymbol{\sigma}_{y}^{k} \\ \boldsymbol{\tau}_{xy}^{k} \end{bmatrix}, \boldsymbol{\tau}^{k} = \begin{bmatrix} \boldsymbol{\tau}_{xz}^{k} \\ \boldsymbol{\tau}_{yz}^{k} \end{bmatrix}, \boldsymbol{\varepsilon} = \begin{bmatrix} \boldsymbol{\varepsilon}_{x} \\ \boldsymbol{\varepsilon}_{y} \\ \boldsymbol{\gamma}_{xy} \end{bmatrix}, \boldsymbol{\varepsilon}_{T} =$$

$$\begin{bmatrix} \alpha_{x} \Delta T \\ \alpha_{y} \Delta T \\ \alpha_{xy} \Delta T \end{bmatrix}, \overline{\boldsymbol{\mathcal{Q}}}_{m}^{k} = \begin{bmatrix} Q_{11} & Q_{12} & Q_{16} \\ \overline{Q}_{12} & \overline{Q}_{22} & \overline{Q}_{26} \\ \overline{Q}_{16} & \overline{Q}_{26} & \overline{Q}_{66} \end{bmatrix}, \overline{\boldsymbol{\mathcal{Q}}}_{s}^{k} = \begin{bmatrix} \overline{Q}_{44} & \overline{Q}_{45} \\ \overline{Q}_{54} & \overline{Q}_{55} \end{bmatrix}_{\circ}$$

其中, \overline{Q}_{ij} 为矩阵 \overline{Q}_{m}^{s} 、 \overline{Q}_{s}^{s} 的元素,具体的表达式参见文献[16]。

根据复合材料层合理论, n 层复合变刚度壁 板本构关系可写为:

$$\begin{cases} N = A\varepsilon_0 + B\kappa - N_{\rm T} \\ M = B\varepsilon_0 + D\kappa - M_{\rm T} \\ F_{\rm T} = A_{\rm T} \gamma \end{cases}$$
(4)

其中, $N_{x}M_{x}F_{s}$ 分别为复合变刚度壁板的膜力、弯矩、横向剪力等内力,矩阵 $A_{x}B_{x}D_{x}A_{s}$ 见文献[16],矩阵 $N_{T}_{x}M_{T}$ 的表达式为:

$$\begin{cases} \boldsymbol{N}_{\mathrm{T}} = \sum_{k=1}^{n} \int_{z_{k-1}}^{z_{k}} \overline{\boldsymbol{Q}}_{\mathrm{m}}^{k} \boldsymbol{\varepsilon}_{\mathrm{T}} \mathrm{d}z \\ \boldsymbol{M}_{\mathrm{T}} = \sum_{k=1}^{n} \int_{z_{k-1}}^{z_{k}} \overline{\boldsymbol{Q}}_{\mathrm{m}}^{k} \boldsymbol{\varepsilon}_{\mathrm{T}} \mathrm{d}z \end{cases}$$
(5)

1.2 气动力模型

在*Ma* > 1.6的高速气流中,壁板颤振可采用 一阶准定常活塞理论计算气动力。当壁板表面来 流沿 *x* 方向时,气动力表达式^[17] 为:

$$\Delta p = -\frac{2q}{\sqrt{Ma^2 - 1}} \left(\frac{\partial w}{\partial x} + \frac{Ma^2 - 1}{Ma^2 - 1} \frac{1}{V_{\infty}} \frac{\partial w}{\partial t}\right) \quad (6)$$

其中, $q = \frac{1}{2}\rho_{\infty}V_{\infty}$ 为来流动压, ρ_{∞} 为来流密度,Ma为来流马赫数。

1.3 非线性颤振有限元方程

根据 Hamilton 原理,建立复合壁板的运动微分方程,即

$$\int_{t_1}^{t_2} (\delta U - \delta T - \delta W) \, \mathrm{d}t = 0 \tag{7}$$

其中, δT 和 δU 分别为虚动能和虚应变能, δW 为气动力和结构阻尼所做的虚功。

基于复合壁板本构关系、几何关系以及气动 力模型,分别写出壁板体积域 V 内的虚应变能和 虚动能,以及其表面 S 上的外力虚功。其中,虚应 变能包括壁板振动产生的应变能 δU_M 和热载荷产 生的应变能 δU_{ΔT} 两部分,具体如下:

$$\begin{cases} \delta U_{\rm M} = \frac{1}{2} \delta \int_{V} (\boldsymbol{\varepsilon}_{0}^{\rm T} \boldsymbol{A} \boldsymbol{\varepsilon}_{0} + \boldsymbol{\varepsilon}_{0}^{\rm T} \boldsymbol{B} \boldsymbol{\kappa} + \boldsymbol{\kappa}^{\rm T} \boldsymbol{B} \boldsymbol{\varepsilon}_{0} + \\ \boldsymbol{\kappa}^{\rm T} \boldsymbol{D} \boldsymbol{\kappa}) \, \mathrm{d} V + \frac{1}{2} \delta \int_{V} \gamma^{\rm T} \boldsymbol{A}_{s} \gamma \mathrm{d} V \\ \delta U_{\Delta T} = -\frac{1}{2} \delta \int_{V} \left[N_{x} \left(\frac{\partial w}{\partial x} \right)^{2} + N_{y} \left(\frac{\partial w}{\partial y} \right)^{2} + \\ 2N_{xy} \left(\frac{\partial w}{\partial x} \frac{\partial w}{\partial y} \right)^{2} \right] \mathrm{d} V \\ \delta T = \frac{1}{2} \delta \int_{V} \rho \left[\left(\frac{\partial u}{\partial t} \right)^{2} + \left(\frac{\partial v}{\partial t} \right)^{2} + \left(\frac{\partial w}{\partial t} \right)^{2} \right] \mathrm{d} V \\ \delta W = \frac{1}{2} \int_{S} \left(\Delta p \delta w - c \frac{\partial w}{\partial t} \right) \mathrm{d} S \end{cases}$$

$$\tag{8}$$

运用有限元方法求解壁板颤振,采用四边形 四节点板单元对壁板进行网格离散,总体位移列 阵可记为如下形式:

$$\boldsymbol{u} = \begin{bmatrix} \boldsymbol{u}_1^{\mathrm{T}} & \boldsymbol{u}_2^{\mathrm{T}} & \boldsymbol{u}_3^{\mathrm{T}} & \boldsymbol{u}_4^{\mathrm{T}} \end{bmatrix}^{\mathrm{T}}$$
(9)

其中

$$\boldsymbol{u}_{i} = \begin{bmatrix} u_{i} & v_{i} & w_{i} & \theta_{xi} & \theta_{yi} \end{bmatrix}^{\mathrm{T}} \quad i = 1, 2, 3, 4$$
(10)

将总体位移列阵代入式(8),通过变分则可 获得壁板的有限元颤振方程:

 $M\ddot{u} + (C + C_a)\dot{u} + (K + K_a - K_T)u = 0$ (11) 其中, \ddot{u} 、 \dot{u} 、u分别为节点加速度、速度、位移列向 量,M、C、K分别为质量矩阵、阻尼矩阵、刚度矩 阵, 且 $K = K_{mm} + K_{mb} + K_{bh} + K_{ss}$, K_{mm} 、 K_{mb} 、 K_{bm} 、 K_{bb} 、 K_{ss} 分别为平面拉伸刚度矩阵、拉弯耦合 刚度矩阵、弯拉耦合刚度矩阵、弯曲刚度矩阵和剪 切刚度矩阵, M_a 、 C_a 分别为气动质量矩阵、气动 阻尼矩阵, K_a 、 K_T 均为气动刚度矩阵,具体表达式 如下:

$$\begin{cases} \boldsymbol{K} = \boldsymbol{K}_{mm} + \boldsymbol{K}_{mb} + \boldsymbol{K}_{bm} + \boldsymbol{K}_{bb} + \boldsymbol{K}_{ss} \\ \boldsymbol{K}_{mm} = \int_{V} (\boldsymbol{B}_{m0} + \boldsymbol{B}_{mL})^{\mathrm{T}} \boldsymbol{A} \Big(\boldsymbol{B}_{m0} + \frac{1}{2} \boldsymbol{B}_{mL} \Big) \mathrm{d} V \\ \boldsymbol{K}_{mb} = \int_{V} (\boldsymbol{B}_{m0} + \boldsymbol{B}_{mL})^{\mathrm{T}} \boldsymbol{B} \boldsymbol{B}_{b} \mathrm{d} V \\ \boldsymbol{K}_{bm} = \int_{V} \boldsymbol{B}_{b}^{\mathrm{T}} \boldsymbol{B} \Big(\boldsymbol{B}_{m0} + \frac{1}{2} \boldsymbol{B}_{mL} \Big) \mathrm{d} V \\ \boldsymbol{K}_{bb} = \int_{V} \boldsymbol{B}_{b}^{\mathrm{T}} \boldsymbol{D} \boldsymbol{B}_{b} \mathrm{d} V \\ \boldsymbol{K}_{ss} = \int_{V} \boldsymbol{B}_{b}^{\mathrm{T}} \boldsymbol{D} \boldsymbol{B}_{b} \mathrm{d} V \\ \boldsymbol{M} = \int_{S} \boldsymbol{\rho} \boldsymbol{h} \boldsymbol{N}^{\mathrm{T}} \boldsymbol{N} \mathrm{d} S \\ \boldsymbol{C} = \int_{S} \boldsymbol{c} \boldsymbol{h} \boldsymbol{N}^{\mathrm{T}} \boldsymbol{N} \mathrm{d} S \\ \boldsymbol{C}_{a} = \frac{2q}{\sqrt{Ma^{2} - 1}} \int_{S} \frac{Ma^{2} - 2}{Ma^{2} - 1} \frac{1}{V_{\infty}} \boldsymbol{N}^{\mathrm{T}} \boldsymbol{N}_{w} \mathrm{d} S \\ \boldsymbol{K}_{a} = \frac{2q}{\sqrt{Ma^{2} - 1}} \int_{S} \boldsymbol{N}^{\mathrm{T}} \frac{\partial \boldsymbol{N}_{w}}{\partial x} \mathrm{d} S \\ \boldsymbol{K}_{T} = \int_{V} \boldsymbol{G}^{\mathrm{T}} \begin{bmatrix} N_{x} & N_{xy} \\ N_{xy} & N_{y} \end{bmatrix}} \boldsymbol{G} \mathrm{d} V \end{cases}$$
(12)

1.4 复合材料屈服准则

基于 Hill 正交各向异性屈服准则, Chen 和 Sun 提出了适用于各向异性纤维增强复合材料的 三维塑性势函数。Weeks 和 Sun 进一步假设复合 材料在纤维方向 1 上是线弹性的, 在纤维方向 2~3 面内是横观各向同性的, 从而将三维塑性势 函数简化为^[14]:

2f = (σ₂₂ - σ₃₃)² +4(σ²₂₃ + σ²₁₃ + σ²₁₂) (13) 本文研究的热塑性 C/PPS 材料为缎纹机织 复合材料,材料在纤维方向1、2 上是线弹性的,且 不考虑纤维方向3(厚度方向)的正应力σ₃₃,因 而,上述塑性势函数可最终退化为:

$$2f = 4(\sigma_{23}^2 + \sigma_{13}^2 + \sigma_{12}^2) \tag{14}$$

2 算例验证与分析

2.1 正确性验证

根据文献[18]中 T300/5208 型环氧树脂复 合材料壁板算例,壁板几何尺寸为0.3 m × 0.12 m,厚度为1 mm,具体材料参数取值及颤振 动压无量纲化与文献[18]一致,采用本文程序进 行了固有频率及颤振速度计算,结果见表1 和 表2。从表1中可以看出,本文计算的固有频率 与文献结果吻合较好。采用有限元法分析时,通 常需要通过细密网格才能保证分析结果的精度。 因此,需要进行网格收敛性验证。

表1 环氧树脂复合材料壁板固有频率

Tab.1 Frequencies of epoxy resin composite panels 单位:Hz

					1	•
模态	C-F-F-F		C-C-C-C		C-F-C-F	
阶数	**	文献	**	文献	**	文献
DI XX	平义	[18]	平义	[18]	平义	[18]
1	9.64	9.96	564.72	568.8	63.21	63.40
2	30.67	31.75	599.31	601.2	84.64	85.40
3	61.83	62.44	680.04	682.8	172.10	174.70

从表2中可以看到,随着网格划分数量增多, 结果逐渐收敛。当网格划分数为40×16时,本文 颤振速度计算结果与文献吻合得很好。因此,综 合考虑线性壁板颤振的计算精度和效率,本文后 续计算均采用40×16的网格数量。

表 2 环氧树脂复合材料壁板无量纲颤振动压

l'ab. 2	Flutter	velocity	of	epoxy	resin	composite p	panels
---------	---------	----------	----	-------	-------	-------------	--------

		5 1 5	1	1	
网格	[30%02	%30%0°] _s	$\left[\ 70\%0\%70\%0^\circ\right]_{\rm s}$		
数量	本文	文献[18]	本文	文献[18]	
10×4	362.1		237.9		
15 × 6	347.2		226.8		
20×8	342.0	340.0	221.9	220.0	
30×12	341.5		221.5		
40×16	340.2		220.4		

2.2 频域线性颤振分析

以四边简支的 C/PPS 热塑性复合材料矩形 壁板为对象,采用有限元法求解研究其热固有特 性和频域热颤振特性。热塑性复合材料密度为 0.9~1.6 g/cm³,本文计算中取 1.25 g/cm³,泊松 比取 0.08,热膨胀系数取 1.6×10⁻⁶℃,其随温 度变化的材料力学性能参数见表 3^[15]。壁板几 何尺寸为 0.4 m×0.2 m,厚度为 3 mm,铺层方式 为[0]₇,来流方向平行于 x 轴。

表 3 热塑性材料力学性能参数

Гаb. З	Mechanical property parameters of	of
	thermonlastic materials	

uterniophistic initientiis					
温度/℃	拉伸模量∕ GPa	剪切模量/ GPa	屈服强量/ MPa		
	014	010	u		
23	56.69	5.12	66.00		
60	56.22	4.68	58.00		
90	54.34	3.54	44.00		
120	51.88	1.77	24.00		
150	50.49	0.86	9.84		

由于温度载荷不仅产生热应力,而且温度还 改变材料的力学性能,这两方面均对壁板颤振产 生影响。热塑性材料受温度变化影响较大,需要 同时考虑两方面的影响。本文采用 V-g 法求解热 塑性复合材料壁板频域颤振特性,并分析材料力 学性能随温度变化对热塑性复合材料壁板热颤振 特性的影响。

图 2 分别给出了 60 ℃和 90 ℃下壁板前两阶 模态阻尼随无量纲动压的变化规律。壁板无量纲 颤振动压定义见文献[19]。从图 2 中可以看到, 两种温度下壁板热颤振均由 1 阶模态和 2 阶模态

(a) Modal coupling of the panel at 60 $^\circ\!\mathrm{C}$

耦合引起。在60℃下,由阻尼曲线在来流动压为 211.0时过零点,这说明壁板的无量纲颤振动压 为211.0。同样,在90℃下,由阻尼曲线过零点 可得知,壁板无量纲颤振动压为149.5。

图 3 给出了 23 ℃、60 ℃、90 ℃、120 ℃四个温 度下考虑与不考虑材料性能随温度变化两种情况 下热塑性壁板的热颤振特性。总体上看,温度的升 高显著降低了壁板的颤振动压。在常温23 ℃下, 壁板颤振无量纲动压最大。考虑热塑性材料温变 后得到的壁板无量纲动压低于仅考虑热应力时的 颤振动压,从图 3 中可以看到,在 60 ℃、90 ℃、 120 ℃下,壁板无量纲动压分别降低了 5.1、17.0、 34.8。由此可得出,考虑材料性能随温度变化后, 得出的壁板颤振动压更低,而且温度越高,材料性 能随温度变化对壁板颤振特性影响越明显。

panels at different temperatures

以四边简支的 C/PPS 热塑性复合材料壁板 为对象,采用有限元法从时域求解壁板非线性热 颤振特性。

图4~6 给出了60 ℃时热塑性复合材料壁板 特征点(0.5*a*,0.5*b*)在不同来流速度下的颤振时 间历程和相平面图。从图4可以看到,当来流动 压 λ =188.6时,壁板受到初始扰动后,振动是收 敛的,这表明动压未达到颤振临界动压。当来流 动压 λ =213.7时,壁板受到初始扰动后,进入极 限环振动,振幅数量级为1.7×10⁻³mm,此时动 压超过颤振临界动压,壁板做周期振动,发生颤 振,如图5所示。当动压进一步增大,取来流动压 λ =234.7时,壁板受到初始扰动后,仍处于颤振 极限环振动,但是壁板做周期振动的振幅增大为 4.3×10⁻¹mm,如图6所示。

Fig. 4 Time history and phase plane plot of flutter for the centre of the plate at 60 °C (λ = 188.6)

(a) Time history plot of deflection at the centre of the plate

(b) Phase plane plot of flutter

60 ℃时壁板中点颤振时间历程和相平面图(λ = 213.7)

图 5

(b) 颤振相平面图(b) Phase plane plot of flutter

图7给出了热塑性复合材料壁板在23℃、 60℃、90℃、120℃下壁板极限环振幅随无量纲 动压的变化情况。从图7中可以看出,不同温度 下壁板的颤振极限环振幅随动压的增大而增大, 增大趋势基本一致。但随着温度从23℃逐渐增 加到120℃,壁板进入颤振的动压越来越低。此 外,从图7中还可以看出考虑与不考虑材料性能 随温度变化对壁板极限环振幅的影响。在常温 23℃下,两者没有差异。在60℃下,考虑材料力 学性能随温度变化时,壁板进入颤振的动压低于 不考虑材料力学性能随温度变化的情况。与此同 时,相同动压下,考虑材料力学性能随温度变化时 的极限环振幅要高于不考虑材料力学性能随温度 变化的情况。在90℃、120℃下,规律相似于 60℃的情形,只是壁板进入颤振的动压差值随着

图 7 不同温度下壁板极限环振幅随无量纲动压的变化 Fig. 7 Change of limit cycle amplitude of the panel along with dimensionless dynamic pressure at different temperatures

温度从60 ℃到120 ℃逐渐增大,相同动压下,极限环振幅差异也越来越大。

2.4 颤振应力分析

文献[15] 给出的不同温度下剪切试验数据 表明,C/PPS 热塑性材料剪切强度都随着温度的 增加而出现明显的降低,在120℃时剪切强度比 常温时降低了 63.64%。对于热塑性壁板,在颤 振发生过程中,如果应力响应达到材料塑性屈服 强度将引起不可恢复的永久变形,这是热塑性壁 板热颤振设计中需要考虑的问题。下面仍以四边 简支的 C/PPS 热塑性复合壁板为例,研究壁板颤 振亚临界过程中的应力变化情况。

图8给出了热塑性复合材料壁板分别在 23 ℃、60 ℃、90 ℃、120 ℃下, 壁板极限环振荡下 等效应力幅值随动压变化的情况。从图 8 中可以 看到,在同一温度下,随着动压增大,壁板的应力 水平在增大。例如在23℃时,随着壁板颤振动压 由 280.5 增加到 322.1, 颤振等效应力由 0.399 MPa增加到 1.27 MPa;在 60 ℃时,随着壁 板颤振动压由 220.2 增加到 216.7, 颤振等效应 力由0.462 MPa增加到 0.840 MPa。比较不同温 度下壁板的颤振等效应力,可以看出,随着壁板温 度的升高,在温度应力和材料温变的共同作用下, 壁板颤振等效应力是逐渐降低。原因在于,温度 产生的结构温度应力是压应力,而壁板颤振产生 的应力是反向的拉应力,两者呈现相互抵消的效 应,且温度越高,抵消效应越明显。此外,从图8 中可以发现,壁板极限环振荡下等效应力幅值总 体较小,均没有达到各温度下 C/PPS 热塑性复合 材料的屈服极限(见表3),壁板没有出现屈服区 域。这主要是由于壁板颤振过程中产生的主要是

双向拉或压应力状态,切应力较小,而等效应力则 是反映切应力水平,因而壁板极限环振荡下等效 应力幅值总体较小。

3 结论

本文建立了超音速流场中热塑性复合材料壁 板热颤振的有限元模型,与相应文献结果进行对 比,验证了本文模型及算法的正确性。进而采用 V-g 法、Newmark 法分别从频域、时域求解复合变 刚度壁板颤振特性,得出的主要结论如下:

 1)热塑性壁板热颤振由1阶模态(纵向一 弯)和2阶模态(纵向二弯)耦合产生,随着温度 的升高,壁板的颤振动压显著降低,而且考虑热塑 性材料温变特性后得到的壁板颤振动压要低于仅 考虑热应力时的颤振动压。

2)不同温度下,当考虑材料力学性能随温度 变化时,壁板进入颤振的动压低于不考虑材料力 学性能随温度变化的情况。与此同时,相同来流 动压下,考虑材料力学性能随温度变化时的极限 环振幅要高于不考虑材料力学性能随温度变化的 情况。

3)随着壁板温度的升高,壁板颤振等效应力 是逐渐降低的,而且壁板极限环振荡下等效应力 水平总体较低,均没有达到各温度下复合材料的 屈服极限。

参考文献(References)

- [1] HOUBOLT J C. A study of several aerothermoelastic problems of aircraft in high speed flight[D]. Zurich: the Swiss Federal Institute of Technology, 1958.
- [3] KOUCHAKZADEH M A, RASEKH M, HADDADPOUR H. Panel flutter analysis of general laminated composite plates[J]. Composite Structures, 2010, 92 (12): 2906 – 2915.
- [4] ZHOU R C, XUE D Y, MEI C. Finite element time domain—modal formulation for nonlinear flutter of composite panels[J]. AIAA Journal, 1994, 32(10): 2044 – 2052.
- [5] 杨智春,谭光辉,夏巍. 铺层方式对复合材料壁板热颤振 特性的影响[J]. 宇航学报,2008,29(3):1047-1052. YANG Z C, TAN G H, XIA W. Effects of stacking sequence on thermal flutter speed of composite panel[J]. Journal of Astronautics, 2008, 29(3):1047-1052. (in Chinese)
- [6] 李凯伦,张家忠.功能梯度材料薄板的热气动弹性数值 分析方法及特性研究[J]. 宇航学报,2013,34(9): 1177-1186.

LI K L, ZHANG J Z. Numerical analysis method and aerothermoelastic behaviors of temperature-dependent functional graded panels[J]. Journal of Astronautics, 2013, 34(9): 1177 - 1186. (in Chinese)

 $\left[\,7\,\right]$ $\,$ ZHUANG W Z, YANG C, WU Z G. Aeroelastic analysis of

foam-filled composite corrugated sandwich plates using a higher-order layerwise model [J]. Composite Structures, 2021, 257: 112996.

- [8] ZHUANG W Z, YANG C, WU Z G. Modal and aeroelastic analysis of trapezoidal corrugated-core sandwich panels in supersonic flow [J]. International Journal of Mechanical Sciences, 2019, 157/158: 267 - 281.
- [9] SONG Z G, LI F M. Flutter and buckling characteristics and active control of sandwich panels with triangular lattice core in supersonic airflow [J]. Composites Part B, 2017, 108: 334 – 344.
- [10] ÖZEN İ, ÇAVA K, GEDIKLI H, et al. Low-energy impact response of composite sandwich panels with thermoplastic honeycomb and reentrant cores [J]. Thin-Walled Structures, 2020, 156: 106989.
- [11] CHEN L M, PENG S W, LIU J, et al. Compressive response of multi-layered thermoplastic composite corrugated sandwich panels: modelling and experiments [J]. Composites Part B: Engineering, 2020, 189: 107899.
- [12] YAO S S, JIN F L, RHEE K Y, et al. Recent advances in carbon-fiber-reinforced thermoplastic composites: a review[J]. Composites Part B: Engineering, 2018, 142: 241-250.
- [13] 马岩. 热塑性复合材料纤维铺放成型加热和冷却工艺技术研究[D]. 哈尔滨:哈尔滨工业大学, 2012.
 MA Y. Research on heating and cooling process of thermoplastic composite fiber placement[D]. Harbin: Harbin Institute of Technology, 2012. (in Chinese)
- [14] 苏益士. 热塑性层合板弯曲层间宏细观非线性力学行为

研究[D]. 天津: 天津大学, 2008.

SU Y S. Mechanical analysis of bending interlaminar macromicro nonlinear behavior of thermoplastic composite laminates[D]. Tianjin: Tianjin University, 2008. (in Chinese)

- [15] 王时玉. C/PPS 复合材料成型工艺参数及高温典型力学 行为分析[D]. 哈尔滨:哈尔滨工业大学, 2018.
 WANG S Y. Analysis of molding process parameters and typical high temperature mechanical behavior of C/PPS composites [D]. Harbin: Harbin Institute of Technology, 2018. (in Chinese)
- [16] HUANG K, GUO H, QIN Z, et al. Flutter analysis of laminated composite quadrilateral plates reinforced with graphene nanoplatelets using the element-free IMLS-Ritz method[J]. Aerospace Science and Technology, 2020, 103: 105915.
- [17] 杨智春, 夏巍. 壁板颤振的分析模型、数值求解方法和研究进展[J]. 力学进展, 2010, 40(1): 81-98.
 YANG Z C, XIA W. Analytical models, numerical solutions and advances in the study of panel flutter[J]. Advances in Mechanics, 2010, 40(1): 81-98. (in Chinese)
- [18] 林华刚. 超声速气流中复合材料结构的气动弹性颤振研究[D]. 哈尔滨:哈尔滨工业大学, 2019.
 LIN H G. Aeroelastic flutter study of composite structures in supersonic airflow [D]. Harbin: Harbin Institute of Technology, 2019. (in Chinese)
- [19] SHIAU L C, LU L T. Nonlinear flutter of two-dimensional simply supported symmetric composite laminated plates [J]. Journal of Aircraft, 1992, 29(1): 140 - 145.