doi:10.11887/j.cn.202203012

http://journal. nudt. edu. cn

隐身飞机 RCS 测量与成像方法研究综述^{*}

贾高伟, 阴 鹏, 邵 帅, 王建峰 (国防科技大学空天科学学院, 湖南长沙 410073)

摘 要:隐身飞机已逐步成为大国重器,并将持续发挥重要影响,隐身技术也已成为飞行器设计的关键 技术。隐身飞机的雷达散射截面积(radar cross section, RCS)测量是设计、制造、维护隐身飞机的必要手段。 从缩比模型的 RCS 测试、全尺寸飞机室外 RCS 测试、全尺寸飞机室内近场测试三个方面,回顾了隐身飞机 RCS 测量的基本流程,总结了隐身飞机 RCS 近场测量的理论基础,并着重对具有成像诊断功能的近场 RCS 测 量技术进行了梳理与分析。对隐身飞机 RCS 测量的应用趋势和关键技术进行了总结与展望,有利于对隐身 飞机 RCS 测量形成总体性了解,并把握 RCS 测量的发展方向。

关键词:隐身飞机;雷达散射截面测量;成像诊断;近场 – 远场 中图分类号:TN95 文献标志码:A 开放科学(资源服务)标识码(OSID): 文章编号:1001 – 2486(2022)03 – 093 – 11

Review of RCS measurement and imaging methods of stealth aircraft

JIA Gaowei, YIN Peng, SHAO Shuai, WANG Jianfeng

(College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China)

Abstract: Stealth aircraft has gradually become a great power, and will continue to play an important role, making stealth technology become the key technology of aircraft design. RCS (radar cross section) measurement of stealth aircraft is a necessary step to design, manufacture and maintain stealth aircraft. The basic process of RCS measurement of stealth aircraft was reviewed from three aspects: RCS test of scaled model, outdoor RCS test of full-scale aircraft and indoor near-field test of full-scale aircraft, the theoretical basis of RCS near-field measurement of stealth aircraft was summarized, and the near-field RCS measurement technology with imaging diagnosis function was analyzed intensively. The development trend and key technologies of stealth aircraft RCS measurement were prospected, which is helpful to have a general understanding of RCS measurement of stealth aircraft and grasp the development direction of RCS measurement.

Keywords: stealth aircraft; radar cross section measurement; imaging diagnosis; near field-far field

探测与反探测、隐身与反隐身,一直是军事对 抗技术发展的主线。隐身飞机的出现,颠覆了传 统空战模式,引领了对抗技术的发展。"隐身"已 经成为一流战机的必要能力,也是军事强国竞相 发展的高端科技^[1]。当前,隐身无人机日益受到 人们的重视,呈现巨大灵活的应用空间,隐身无人 机的发展同样促进了隐身技术的长足进步^[2]。 飞机隐身化要求设计师在考虑气动、结构、推力等 系统的同时,还需高度兼顾隐身设计这一高门槛 技术^[3]。

一般地,飞机的隐身化包括雷达隐身、红外隐 身、射频隐身以及声隐身等^[1,4]。本文的研究聚 焦于雷达隐身,非特意说明,后文中的隐身均是指 雷达隐身。雷达隐身性能与飞机外形和材料相 关,其中雷达散射截面积(radar cross section, RCS)是一个重要指标^[5-6]。

对飞行器 RCS 缩减的过程即是飞行器隐身 化的过程,其中外形优化十分重要,其机理为通过 外形调整,将雷达主要回波反射至非作战方向,从 而降低散射回雷达的特征信号。材料隐身也是常 用方法,使用样式又可分为吸波结构和吸波涂料, 其机理是通过吸波性材料将入射的电磁波转为热 能,进而降低散射回雷达的特征信号。

针对雷达特征抑制,飞机隐身化设计的传统 设计流程包括^[1,7]:

1)利用电磁散射计算软件评估飞机模型的 RCS,作为总体设计的依据;

2)制作缩比模型,在室内或者其他干净的电

磁空间开展 RCS 实测,评估隐身性能^[8];

3)制作全尺寸飞行器原型系统,开展室外静态测试^[9-11];

4)对于全尺寸飞行器系统,开展室外飞行(动态)测试^[12]。

在上述过程中, RCS 测量是基础性关键技术,从不同的维度看, RCS 测量方法可以有诸多的分类。从测量的对象来看,它包括缩比模型飞机测试、全尺寸飞机静态测试、全尺寸飞机动态测试;从测量信号的工作形式看,它可分为时域测试与频域测试;从测量信号的频谱样式看,它可分为点频模式和带宽模式;从电磁波的波前模态看,又可分为近场测量和远场测量。

RCS 测量的呈现方式,包括一维曲线形式和 二维、三维图像形式。一维曲线是最为经典的表 达 RCS 大小的方式,用于体现某一点频辐照下, 沿不同的雷达入射方向测得的飞行器雷达回波强 弱;随着雷达波形复杂化,宽带信号在雷达波形中 变得常见。图像法是基于转台成像原理^[13-14],由 宽带信号提供距离向分辨率,由转台旋转积累方 位角,形成方位向分辨率,由此得到二维图像。类 似地,在通过高度向积累孔径,可以形成三维图 像,RCS 的成像结果对应于某一积累角度范围。

图像法具有直观、易懂,便于与外形、结构设 计相结合的特点。此外,目标的 RCS 成像可以对 飞行器强散射点进行定位,用以对飞行器隐身性 能的诊断。应用场景包括隐身飞机的设计、设备 集成、出厂验证和日常维护。

关于隐身测量技术的论述,国内已有相关学 者进行了总结,肖志河等^[5]从飞行器隐身测试评 估的角度,介绍了国内外典型的测量技术进展,总 结了低散射诊断技术的最新成果;张澎等^[9]从隐 身飞机不同研制阶段采用不同的 RCS 测试方法 的角度,总结了几种现有测量方式的优劣,并以美 国为对象,讨论了 RCS 近场测试技术应用现状; 高超等^[10]从近场测量技术发展的角度,总结了近 场测量发展历程,综合分析了国内外近场测试研 究的进展以及在飞行器 RCS 测量中的应用实例; 柴建忠等^[11]从雷达散射截面诊断与评估的角度, 讨论了全尺寸飞行器的诊断需求,梳理了近场测 量的一般过程和实施方案。

本文围绕隐身飞机 RCS 测量方法与技术的 最新发展,从缩比模型测量、全尺寸目标室外测 量、全尺寸室内进场测量的角度,着重分析并梳理 相应的测量体系和关键技术,并结合隐身飞机的 发展与应用方向,对相关的 RCS 测量需求与趋势 进行总结和分析。

1 缩比模型的测试样式与系统

缩比模型是在飞行器外形设计基本明确的基础上,选择针对性的材料、工艺,完成缩比样机的制造^[1]。缩比样机的测量环境,可以分为室外测量和暗室内测量两类。

1.1 室外缩比模型测试

缩比样机测试一般包括缩比模型、支架、转 台、信号发射与接收以及信号处理等。室外测试 系统一般通过距离门的形式选定某距离区间内的 回波^[15],以此来较好地屏蔽缩比模型之外的杂波 散射。室外缩比模型测试过程容易组织、成本可 控,但需考虑外界噪声电平对测试的影响。

1.2 室内缩比模型测试

另一种更为普遍的缩比样机测试,是在微波 暗室内完成^[16]的。暗室内测量的优势是无外界 电磁干扰、杂波少、背景电平低、测量精度高。由 于室内空间受限,暗室内测量环境的构建,形成平 面波是重要方面。绝对意义上的平面波是不存在 的,电磁测量中平面波的定义是指波面内各点的 相位差小于 22.5°。

室内一般通过反射镜转换的形式将球面波无 限逼近平面波。从反射镜的数量看,可以分为单 反射镜、双反射镜以及三反射镜等形式。

单镜面反射利用旋转抛物面将放置于焦点的 馈源辐射球面波校准为平面波,具有结构简单、成 本较低的特点,适用于高频测量,由于焦距相对较 短,导致静区幅度锥削较大,一般采用偏馈结构, 交叉极化较高,如图1所示。

双反射镜紧缩场方面,卡塞格伦双面紧缩场 是经典布局。副面先为旋转双曲面,主面为旋转 抛物面。副面先将馈源发出的球面波校准为由虚 源发出的球面波,主面再将其校准为平面波,可以 获得较大的等效焦径比^[12]。双柱面反射镜紧缩 场是另一种常见布局,它采用两个弯曲面相垂直

(a) 单反射面紧缩场结构(a) Compact range based on single surface

- (b) MIT 林肯实验室单抛物面紧缩场
- (b) Single surface compact range in MIT
- 图1 单反射面紧缩场示意图及实物图
- Fig. 1 Schematic diagram and real system of single surface compact range

的抛物面,副面校准一维波前为柱面波,主面再校 准另一维波前为平面波,具有等效焦距较长,交叉 极化较低等优势。

图 2 展示了两种紧缩场工作示意图。图 3 展 示了雷神公司双柱面紧缩场的实际结构图以及实 景图^[17]。

(a) 卡塞格伦双面紧缩场

(a) Cassegrain dual reflector compact range

(b) 双圆柱面紧缩场

(b) Dual cylindrical reflector compact range

图 2 不同的双反射面紧缩场示意图

Fig. 2 Different dual reflector compact range

三反射镜紧缩场一般由一个标准面主镜、两个 赋形面的副反射镜组成。其优势在于通过赋形副 反射镜控制波束重新赋形,增大静区利用率^[12]。

(a)双柱面紧缩场系统结构

(a) Geometric diagram of dual reflector compact range

(b) 双柱面紧缩场实物图

(b) Real system of dual reflector compact range

图 3 雷神公司双柱面紧缩场实物图

Fig. 3 Real compact range of Raytheon company

1.3 缩比测试的特点总结

综合来看,缩比模型测量的优势在于:可以准确提取真实目标在电磁波照射下的散射模型,具 有实施方便、可重复验证、效率高、测量成本低等 特点。

当然,它也存在不足之处:

 1)复合材料的广泛使用,使得传统的缩比等 效测试模型(机身材料为良导体)不再适用。

2)飞行器细微结构处缩比模型的加工精度 会引入明显的测量误差。

参考美国研发 F22 的过程,就存在缩比模型 与实际产品 RCS 不一致的情况,这导致了较大的 时间、物力的损失。

2 全尺寸室外测试场

美国在研发飞行飞机的过程中,设计和建造 了多个大型的室外测试场,用于开展静态和动态 RCS测试。

2.1 美国国家 RCS 测量设施

美国国家 RCS 测量设施(national RCS test facility, NRTF)是美国空军在新墨西哥州霍夫曼 空军基地开展全尺寸飞机静态 RCS 测量的重要 设施。它包含两个独立的子系统——Mainsite 主 站和先进测量系统(radar target scatter advanced measurement system, RAMS)。Mainsite 主站测量 频率覆盖 0. 14~18 GHz、34~36 GHz、94 GHz,能 够对全尺寸飞机目标提供近实时的 RCS 曲线测 量以及逆合成孔径雷达(inverse synthetic aperture radar, ISAR)成像^[18-20]。RAMS 距离 Mainsite 主 站约 56 km,适用于更低的 RCS 目标单站测量,其 测量频率范围 0. 12~18 GHz,同样支持近实时的 RCS 曲线测量以及 ISAR 成像。该系统为美国一 系列的飞机、导弹提供 RCS 和天线性能测试,如 图 4 所示。

(a) 天线支架(a) Antenna support

(b) 不同的测量天线(b) Different antenna measurement

图 4 美国国家 RCS 测量场 Fig. 4 Test field of NRTF

2.2 海伦达尔 RCS 测试场

海伦达尔(Helendale) RCS 测试场由洛克希 德·马丁公司始建于 20 世纪 80 年代,它由一座旧 的机场改建而来,地处美国加利福尼亚州 Palmdale。海伦达尔测试场是美国最先进的测试 场之一,采用低散射支架技术和精确定标技术,可 以充分保证测试结果的精度^[21]。美国 SPC 公司为 其提供了测试雷达,该测试场 21 m 高的铁塔上布 置了很多天线(120 MHz~18 GHz,以及 35 GHz 附 近点频),确保了测试频率的覆盖率,这些天线可以 上下移动以适应不同的观测视角,如图 5 所示。

(a) 主测试场(a) Main test field

(b)测试场全貌
(b) Overview of test site
图 5 Helendale RCS 测试场
Fig. 5 RCS test field of Helendale

2.3 泰昂 RCS 测试场

泰昂(Tejon)测试场由诺普洛斯·格鲁曼公司 始建于 20 世纪 80 年代,位于加利福尼亚州的 Antelope 山谷,位置偏僻,总面积超过 5.6 km²,测 试场共4个测试区^[21],由 2个旧测试系统共用一 个天线阵列,2个新建的测试系统共用一个天线阵 列。其天线高度可调,场地中有多个具有低散射特 性的支架及旋转机构,如图 6 所示。支持 ISAR 成 像功能,测量频率至少覆盖 145 MHz ~18 GHz。

2.4 格雷巴特 RCS 测试场

格雷巴特(Gray Butte) RCS 测试场是由旧机 场改造形成的,原本归麦道技术公司所有,位于加

(a)测试场全貌(a) Overview of test site

(b) 测量支架(b) Test pylon

图 6 Tejon RCS 测试场 Fig. 6 RCS test field of Tejon

利福尼亚州旧金山附近的 Palmdale。格雷巴特测 试场启用于 20 世纪 60 年代,是莫哈维沙漠里最 早的 RCS 测试场^[21]之一。该测试场有一个移动 的作业仓,可以在铁轨上移动,如图 7 所示。内有 起重机,将目标放置在低散射支架上后,作业仓移 离主支架。其测量频率覆盖 145 MHz ~ 18 GHz, 以及 24 ~ 35 GHz 范围内的点频。

(a) 可移动的作业仓(a) Movable operation bin

(b) 作业仓移离主支架(b) Operation bin away from the pylon

图 7 Gray Butte RCS 测试场 Fig. 7 RCS test field of Gray Butte

2.5 波德曼 RCS 测试场

波德曼(Boardman)RCS 测试场是波音公司 的大型室外测试场,位于俄勒冈州波德曼以西的 一个偏僻区域。它的构造与格雷巴特 RCS 测试 场相似,同样有一个飞机棚,可在轨道上移动,在 测试时离开支架。雷达包含多个波段的天线,从 而保证频率覆盖范围。该试验场有多个不同的支 架,如图 8 所示。支持对 F15、F18、科特曼直升机 等多类飞机的 RCS 测试^[20-21]。

(a) 测试场俯视图(a) Top view of test site

(b) 各类测量飞机(b) Different aircrafts for measurement

图 8 波音 Boardman RCS 测试场 Fig. 8 Boardman RCS test filed of Boeing company

2.6 全尺寸外场测试的特点总结

综合来看,全尺寸外场测试中常见的工程问题包括:

1)金属支架的设计与使用。为确保可以提 供更大的承重,并更为精确地控制被测飞行器的 姿态,需要选择金属支架,并考虑支架旋转机构与 测试模型的结合。为保证测试精度,一般要求金 属支架较被测目标 RCS 要低两个量级;同时确保 连接区域有足够低的 RCS,可将支架的转顶置于 被测模型的内部,并设计过渡外形以保持局部区 域的连续性。

2)降低环境对测量精度的影响。大型外场 一般选址于人烟稀少的地区,目标与地面之间的 多次散射成为主要影响量,必须予以抑制。一般 可在地面铺设吸波材料,但这一方法因铺设方式、 位置以及吸波材料的不同,会导致测试背景的不 一致性。一种潜在的办法是增高金属支架的高 度,并通过背景矢量相减、软硬件距离门等方式抑 制背景杂波。

3)定标方式选择与成本控制。对于室外测试中的空中动态飞行试验,重复测试的一致性、定标体的设置、目标的飞行航迹规划、环境杂波的消

除,以及雷达对低 RCS 目标的探测性能等因素都 需要综合考虑,并制定最后的执行方案。全尺寸 飞机动态飞行测试只能在飞机原理样机研制出来 后开展,试验周期长,一般用于出厂或交付验收。

3 全尺寸近场测试理论与系统

3.1 全尺寸近场测试的需求

结合第1.3节、第2.6节中对于缩比模型测 试以及全尺寸外场测试特点的总结,一种不依赖 于微波暗室和大型测试外场保障^[22-25],且具备与 紧缩场暗室相当的测量精度,可以大大提高隐身 飞机设计、制造、研制周期的新型测量手段——全 尺寸近场测试,呈现出日益明确的应用需求。

图9展示了对两个典型战机开展近场 RCS 测量与诊断的试验,分别是瑞典的萨博战斗机^[26] 和 F35 战斗机^[21,27-28]。萨博战斗机在室外开展 近场测量,而 F35 则在室内开展近场测量,需要说 明的是,F35 的近场测量条件并不像微波暗室那 么苛刻,只需在部分区域布置吸波结构即可。

(a) SAAB 战斗机的室外近场测试(a) Outdoor near field test of SAAB fighter jet

(b) F35 战斗机的验证性测试环境(b) Acceptance test facility of F35 fighter jet

图9 近场测试对不同战机的应用

Fig. 9 Near-filed RCS test for different fighter jets

近场测试中的扫描样式比较灵活,包括平面 扫描、柱面扫描、球面扫描、一维线阵扫描 等^[29-30]。一维线阵扫描又可分为水平线性轨迹、 垂直线性轨迹以及目标沿方位向旋转(收发装置 不动)等。针对不同的扫描样式,调整待测飞行器的方位/俯仰姿态角,可以得到飞行器多方位的 RCS测量值^[31]。

近场测试的核心技术是将近场测量数据转换 (亦称外推)为远场 RCS,一般可分为两种技术路 线:基于成像原理的外推技术和基于成像结果的 外推技术。

3.2 基于成像原理的近远场转换

理论计算和试验测试表明目标散射中心是目标在高频区的基本特征:即在高频区,目标的总电磁散射可以有多个散射中心来表征^[24-25,32]。近场测量技术的基本原理是假设目标散射信号是多散射点模型,且目标的点散布函数在一定角度范围内不受照射条件变化的影响,这是高频区目标的客观特性。需要说明的是,该假设下的测量结果忽略了散射点之间的影响,但实践表明,对于复杂目标的 RCS 统计值,它依旧是精确的,只是在RCS 估计的峰值处有所差异^[24]。

一般地,针对散射点的雷达回波信号,可以建 立目标角散射方向函数 $S_0(\hat{r})$ 与散射点的三维散 射分布函数 $\rho(r')之间的联系,即$

$$S_0(\hat{r}) = \frac{1}{4\pi} \int_V \rho(r') \exp(j2kr \cdot r') d^3r' \quad (1)$$

式中,r'为辐射点的位置,r为空间任意观测点。 当满足远场条件时单站 $RCS \cdot \sigma(\hat{r}) = |S_0(\hat{r})|^2$ 的关系为: $\sigma(\hat{r}) = 4\pi |S_0(\hat{r})|^2$ 。而在近场条件下,当探测点距离目标远点r = R时,对近场回波进行求导,得到

$$U = \frac{jk}{2\pi} \int_{V} \rho(r') \frac{\exp(j2k|r-r'|)}{4\pi |r-r'|} d^{3}r'|_{r=R}$$
(2)

观察式(2)和式(3)可以发现,远场角散射方 向函数 $S_0(\hat{r})$ 与近场测量值 U 都是关于 $\rho(r')$ 的 函数,两者之间可以建立联系,并可以通过 U 来 计算得到 $S_0(\hat{r})$ 。具体实施方面,又可结合不同 的近似条件与精度要求,引用 Huygens 外推法、 Hankel 外推法等不同算法^[28]。

上述处理过程基于合成孔径成像理论,但不 需要进行成像处理,通过理论建模,建立了近场测 试值与远场 RCS 之间的解析关系式,减小了计算 量。该方向的研究,以美国 LaHaie 的研究团队影 响较大^[11,33]。对于该理论体系,国内高超等,基 于 LaHaie 的理论,推导得到了柱面、平面以及球 面扫描模式的近远场变换方法^[34]。

对于该类近场 - 远场外推技术,结合不同的 扫描方式,试验系统有不同的配置和要求。从公 开资料看,金属球、飞机模型或者部件等小型目标 的散射远场 RCS 评估是易于开展组织的,试验系 统的布置也相对简单^[35]。关于大型全尺寸飞机 的近场 – 远场外推应用的公开报道较少。

3.3 基于成像结果的近远场转换

图 10 展示了基于成像结果的 RCS 外推基本 流程。以 ISAR 或者其他二维形式的成像模式为 例,以目标中心为原点建立极坐标系,某一散射点 的 RCS 可以表示为 σ(ρ,φ),ρ 为目标相关圆心 距离,φ 为角度。一般地,成像过程可以表述为:

$$\sigma(\rho,\varphi) = \int_0^\infty \int_0^{2\pi} E^{\mathrm{F}}(f,\theta) \cdot \xi(f,\theta,\rho,\varphi) \,\mathrm{d}f\mathrm{d}\theta$$
(3)

其中,f为辐射频率, θ 为成像积累角, $E^{F}(f,\theta)$ 为 远场回波数据, $\xi(f,\theta,\rho,\varphi)$ 为成像因子。由 式(3)可知,像 $\sigma(\rho,\varphi)$ 与回波 $E^{F}(f,\theta)$ 之间满足 傅里叶变换关系^[17,36],即 $\sigma(\rho,\varphi) \Leftrightarrow E^{F}(f,\theta)$ 。

近场-远场变换与RCS外推

在近场情况下,可以通过近场回波数据 $E^{N}(f,\theta)$ 得到目标的像 $\sigma(\rho,\varphi)$,这样通过像 $\sigma(\rho,\varphi)$ 就建立了近场回波与远场回波之间的 联系。

由上述内容可知,基于成像结果的近远场转换思路明晰,易于处理,但难点在于如何获取高精度的近场成像结果 $\sigma(\rho, \varphi)$ 。相应的关键步骤一般包括:

1)必须进行球面波前(相位)校正,以消除散 焦和位置失真^[37-38];

2) 探测天线与目标不宜太近,避免目标中心 点与边缘点对应的能量差异太大,超出了系统动 态范围; 3)理论上假设了辐照源天线为各向同性,这 在实际中是难以满足的,应当考虑天线方向图的 影响^[33,39-41]。

德国 Vaupel 与 Eibert 团队基于层析 SAR 成像,并通过远场外推,得到了米格 29 模型的成像结果及其 RCS^[17],如图 11 所示。

(a) HH 极化	(b) VV 极化
(a) HH polarization	(b) VV polarization

图 11 米格 29 模型成像显示 HH 极化和 VV 极化

Fig. 11 The SAR imaging results of Mig29 scale model HH polarization and VV polarization

李南京等^[42-44]利用转台模式下的测量回波 进行了成像处理,得到了共型天线的 RCS 值,凸 显了基于图像的 RCS 测量方法在干扰环境下具 有测量能力^[36]。廖可非等^[45-46]、张晓玲等^[47]详 细推导了三维 SAR 的近场波数域成像方法,阐述 了基于三维 SAR 成像的 RCS 近场变换原理,得到 了 RCS 测量值。廖可非等^[48-49]考虑到散射点 RCS 随方位角变化,提出了基于多个子阵列分段 处理并进行 RCS 拼接的方法。

根据成像中提高分辨率以及利于散射点提取 的思路, Larsson 提出了基于压缩感知技术与 ISAR 成像结合的方式,提高散射点提取精度^[50]。 Benoudiba-Campanini 等基于压缩感知和三维成像 技术,获取了圆锥体不同部位 RCS 受损状态评 估^[51]。Benoudiba-Campanini 等提出了基于正则 化分解的方法,用于对 SAR 图像解译,以提升 RCS 测量精度^[52]。

RCS 成像的另一个优势是提供诊断功能,用 于确定和定位飞行器部件对整体散射的贡 献^[53-54]。这是飞行器可视化设计的重要组成,可 以与气动、结构设计一起,构成可视化多学科优化 的基础。

3.4 典型的可用于近场测试的集成系统

3.4.1 意大利 IDS 公司 RCSMS 近场测量系统

RCS测试系统(RCS measurement system, RCSMS)主要由射频和天线、天线定位器、目标定 位器、采集控制软件和后处理软件组成,由矢量网 络分析仪和专用的雷达天线组成基本的电磁波收 发系统。该系统辐射波形为线性调频连续波,辐 射功率大于 10 W,最小可感知 RCS 为-60 dBm² (35 m测量距离,在 L、S、C、X 波段),工作频繁覆 盖 1~40 GHz,支持全极化测量,距离测量范围从 数分米到数百米,最高距离分辨率 5 cm。使用球 面波补偿将近场测量值转换为远场,支持 RCS 测 量以及 ISAR 成像^[55]。图 12 展示了该系统的工 作示意图。

(a) 飞机移动测量模式(a) Measurement type of aircraft movement

(b) 飞机静置测量模式(b) Measurement type of aircraft standing

图 12 RCSMS 测量模式示意图 Fig. 12 Schematic diagram of RCSMS facility

3.4.2 美国 StarDynamics 公司 BlueMax 现场测量系统

BlueMax C6 由 StarDynamics 公司开发研制, 可固定在卡车或导轨上进行二维扫描,以满足室 内、室外、静态、动态等多种测量要求。该系统采 用统一的射频架构,支持多频段覆盖。最高脉冲 重复频率(pulse repetition frequency, PRF)可达 2 MHz,支持多样距离波门、多通道接收、全极化 测量与校准。该系统频率覆盖 0.1~18 GHz,接 收测量灵敏度 - 85 dBm(接收噪声带宽 100 MHz 时)。适用于数据吞吐量大或采样率要求高的测 试情况^[56]。图 13 展示了该系统的基本样式与 组成。

(a) 车载测量系统(a) Measurement system mounted on a truck

(b) 测量系统主要构成(b) Main parts of measurement system

图 13 BlueMax G6 近场测量系统 Fig. 13 Near field test facility of BuleMax G6

3.4.3 美国 SPC 公司的 MKV 测量雷达系统

SPC 公司长期致力于测量雷达的研发与服务,该公司研制的 MK 系列雷达在美国多个测量场得到应用(包括诺普洛斯·格鲁晨公司以及洛克希德·马丁公司的 RCS 测量系统、美国空军诊断成像雷达等)。当前最新的 MKV^e系统采用步进频体制,支持多频率、超宽带、相参测量,能够进行 SAR 与 ISAR 成像,频率覆盖范围 50 MHz ~ 100 GHz,能够跟踪动态目标,是一种先进的高性能测量系统^[57]。

4 发展趋势分析

在隐身飞机 RCS 测量领域,测量精度的提高、测量成本的控制、测量时间的缩短、测量空间的简化,一直是人们努力的方向。结合前文的阐述,梳理总结隐身飞机测量方法的相关发展趋势为:

1)适用于全尺寸无人机的更高精度 RCS 测量技术。未来的隐身战机将朝无人化、全频段极低 RCS^[58]、多功能集成等方向发展,隐身无人机的设计、集成、测试环境等均对现有的 RCS 测量方法与设备提出了新的要求。考虑到无人机成本较低,结构较有人机简化,模型样机制作更易实现,但对研制周期、系统成本以及测量精度有更高

要求。全尺寸无人机的高精度 RCS 测量^[59]在整体设计流程中会更早应用,并发挥重要作用。因而针对全尺寸无人机,低成本、高效率、高精度地 开展 RCS 测量变得十分迫切。

2)适用于全尺寸飞机的近场实时成像诊断 技术。除了用于飞机的隐身设计,RCS 测量对隐 身飞机的维护、保养以及载荷集成同样至关重要。 具有二维或者三维成像能力的 RCS 测量技术能 够准确地定位和评估散射源,对于快速定位飞机 隐身能力破损点,评估隐身材料维修状态具有重 要意义。同时,基于隐身平台的电磁载荷装载,天 线的安装与透波材料选取与应用是关键步骤,基 于近场成像技术的 RCS 测量能够直观、量化地评 估集成效果。

3) 近场 RCS 测量精度与速度的进一步提高。 近场测量已展现出成本低、周期短、对场地要求低 等优势,当前常用的近场测量的前提是基于目标 的点散射模型。该模型忽略了各散射点之间的影 响,物理上忽略了蠕动波等影响^[53,60],随着隐身 频段的拓展,在低频波段或者当目标存在大量结 构细节时,如何利用近场测量方式得到高精度 RCS 测量值是值得持续深入研究的问题。

参考文献(References)

 [1] 桑建华.飞行器隐身技术[M].北京:航空工业出版 社,2013.

> SANG J H. Low-observable technologies of aircraft [M]. Beijing: Aviation Industry Press, 2013. (in Chinese)

- [2] 王荣, 闫溟, 白鹏, 等. 飞翼无人机平面外形气动隐身优 化设计[J]. 航空学报, 2017, 38(增刊1): 78-85.
 WANG R, YAN M, BAI P, et al. Optimization design of aerodynamics and stealth for a flying-wing UAV planform[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(Suppl 1): 78-85.(in Chinese)
- [3] 刘春阳. 无人机隐身技术若干问题研究[D]. 西安: 西安 电子科技大学, 2012.

LIU C Y. Some key techniques for stealth UAV[D]. Xi'an: Xidian University, 2012. (in Chinese)

 [4] 杨天旗. 飞行器翼面隐身结构综合设计[D]. 南京:南京 航空航天大学, 2014.
 YANG T Q. Integrated design of low detectable structure of

aircraft wing[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014. (in Chinese)

 [5] 肖志河,高超,白杨,等.飞行器雷达隐身测试评估技术及发展[J].北京航空航天大学学报,2015,41(10): 1873-1879.

XIAO Z H, GAO C, BAI Y, et al. Aircraft radar stealth test and evaluation technology and progress[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(10): 1873 – 1879. (in Chinese)

[6] 付强,周剑雄,秦敬喜,等. 雷达目标散射中心模型反演 及其在识别中的应用[J].系统工程与电子技术,2011, 33(1):48-52. FU Q, ZHOU J X, QIN J X, et al. Global scattering center model extraction and its application in radar target recognition [J]. Systems Engineering and Electronics, 2011, 33(1): 48-52. (in Chinese)

- [7] 麻连凤, 桑建华, 陈颖闻, 等. 隐身目标 RCS 外场测试概述[C]//2013 航空试验测试技术学术交流会论文集, 2013:164-167.
 MA L F, SANG J H, CHEN Y W, et al. Overview of RCS field test of stealth targets [C]//Proceedings of 2013 Aviation Test and Testing Technology Summit and Academic Exchange Conference, 2013:164-167. (in Chinese)
- [8] 刘君,马瑶,渠立永,等. 微波暗室低散射目标 RCS 测量 方法[J]. 解放军理工大学学报(自然科学版), 2013, 14(1):19-24.
 LIU J, MA Y, QU L Y, et al. Research on radar cross section measurement method of low-scattering objects in microwave anechoic chamber[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2013, 14(1):19-24. (in Chinese)
- [9] 张澎,车理论,马永利,等.国外隐身飞机 RCS 近场测试 技术[J].飞机设计,2019,39(4):15-19.
 ZHANG P, CHE L L, MA Y L, et al. Foreign RCS near-field measurement technology for stealth aircraft[J]. Aircraft Design, 2019, 39(4):15-19. (in Chinese)
- [10] 高超,巢增明,袁晓峰,等.飞行器 RCS 近场测试技术研究进展与工程应用[J].航空学报,2016,37(3):749-760.
 GAO C, CHAO Z M, YUAN X F, et al. Progress of aircraft RCS near field measurement and its application [J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3):749-760. (in Chinese)
- [11] 柴建忠,高旭. 基于近场测量系统的飞机 RCS 诊断评估 技术[C]//中国航空学会总体专业分会飞机发展与设计 第十次学术交流会论文集,2015:383-386.
 CHAI J Z, GAO X. Diagnosis and evaluation technology of aircraft RCS based on near-field measurement system [C]// Proceedings of the 10th Academic Exchange Conference of Aircraft Development and Design of General Professional Branch of China Aviation Society, 2015: 383 - 386. (in Chinese)
- [12] MONEBHURRUN V. IEEE Standard 1502 2020: IEEE recommended practice for radar cross-section test procedures [stand on standards][J]. IEEE Antennas and Propagation Magazine, 2021, 63(2): 106.
- [13] 王洪帅. 雷达散射截面的测量与转台成像研究[D]. 西安: 西安电子科技大学, 2015.
 WANG H S. RCS measurements and study of turntable imaging[D]. Xi'an: Xidian University, 2015. (in Chinese)
- [14] HU C F, LI N J, CHEN W J, et al. High-precision RCS measurement of aircraft's weak scattering source[J]. Chinese Journal of Aeronautics, 2016, 29(3): 772 - 778.
- [15] ZIKIDIS K, SKONDRAS A, TOKAS C. Low observable principles, stealth aircraft and anti-stealth technologies [J].
 Journal of Computations & Modelling, 2014, 4(1): 129 – 165.
- [16] 阮成礼,梁淮宁.旋转目标 RCS 的二维成像[J]. 电子科 技大学学报, 2000, 29(6): 604-608.
 RUAN C L, LIANG H N. RCS 2D-imaging of rotating targets[J]. Journal of University of Electronic Science and Technology of China, 2000, 29(6): 604 - 608. (in

Chinese)

- [17] VAUPEL T, EIBERT T F. Comparison and application of near-field ISAR imaging techniques for far-field radar cross section determination [J]. IEEE Transactions on Antennas and Propagation, 2006, 54(1): 144-151.
- [18] 陈秦,翁小龙.外军装备目标特征信号测试设备及其特性研究[J].表面技术,2013,42(6):92-96.
 CHEN Q, WENG X L. Test device study of foreign military equipment target characteristic signatures [J]. Surface Technology, 2013,42(6):92-96.(in Chinese)
- [19] 宁超,张向阳,肖志河.隐身飞机散射特性综合分析研究[J].制导与引信,2009,30(2):34-38.
 NING C, ZHANG X Y, XIAO Z H. Comprehensive research study on scattering characteristics of stealth aircraft [J]. Guidance & Fuze, 2009, 30(2):34-38. (in Chinese)
- [20] 陈秦,魏薇,肖冰,等. 国外武器装备 RCS 测试外场研究 现状[J]. 表面技术, 2012, 41(5): 129-132.
 CHEN Q, WEI W, XIAO B, et al. Research status of outdoor RCS measurement range for weapon and equipment abroad[J]. Surface Technology, 2012, 41(5): 129-132. (in Chinese)
- [21] The Howland Company. Radar cross section (RCS) facilities introduction [EB/OL]. [2021 - 09 - 08]. https:// thehowlandcompany. com/design-consulting/.
- [22] DULUCQ B, MORVAN S, MASSALOUX P, et al. Near-field 3D-RCS measurement simulation: antenna pattern issues [C]// Proceedings of the 8th European Conference on Antennas and Propagation, 2014: 3225 – 3227.
- [23] COWN B J, RYAN C E. Near-field scattering measurements for determining complex target RCS [J]. IEEE Transactions on Antennas and Propagation, 1989, 37(5): 576-585.
- [24] BROQUETAS A, PALAU J, JOFRE L, et al. Spherical wave near-field imaging and radar cross-section measurement [J]. IEEE Transactions on Antennas and Propagation, 1998, 46(5): 730-735.
- [25] ANGUELA X, BROQUETAS A. A near field 3D radar imaging technique [C]//Proceedings of the 23rd European Microwave Conference, 1993: 377 – 379.
- [26] SOTOUDEH O, LARSSON C, SUNDBERG A, et al. ISAR measurements at SAAB [C]//Proceedings of 7th European Conference on Antennas and Propagation, 2013: 2934 – 2935.
- [27] 高超,袁晓峰,肖志河.一种近场条件下获取远场 RCS 的方法[J]. 微波学报, 2012, 28(增刊3): 61-63.
 GAO C, YUAN X F, XIAO Z H. A method of obtaining far field RCS base on near field measurement [J]. Journal of Microwaves, 2012, 28(Suppl 3): 61-63. (in Chinese)
- [28] 张麟兮,李南京,胡楚锋,等.雷达目标散射特性测试与 成像诊断[M].北京:中国宇航出版社,2009. ZHANG L X, LI N J, HU C F, et al. Radar target scattering characteristic test and imaging diagnosis[M]. Beijing: China Aerospace Press, 2009. (in Chinese)
- [29] 赵元红. RCS 近场测量系统设计与软件开发[D]. 长沙: 国防科技大学, 2016.

ZHAO Y H. Design and software development of RCS nearfield measurement system[D]. Changsha: National University of Defense Technology, 2016. (in Chinese)

[30] 徐志浩,李南京,胡楚锋,等.近场散射测量中的天线方 向图修正技术[J].系统工程与电子技术,2017,39(11): 2399-2404. XU Z H, LI N J, HU C F, et al. Antenna pattern correction in near-field scattering measurement [J]. Systems Engineering and Electronics, 2017, 39(11): 2399 – 2404. (in Chinese)

- [31] 张小苗.平面近场散射测量关键问题研究[D].西安:西安电子科技大学,1998.
 ZHANG X M. Study on several key problems for planer near-field scattering measurements [D]. Xi'an: Xidian University, 1998. (in Chinese)
- [32] BROQUETAS A, JOFRE L, CARDAMA A. A near field spherical wave inverse synthetic aperture radar technique [C]// Proceedings of IEEE Antennas and Propagation Society International Symposium 1992 Digest, 1992: 1114-1117.
- [33] LAHAIE I J, RICE S A. Antenna-pattern correction for nearfield-to-far field RCS transformation of 1D linear SAR measurements [J]. IEEE Antennas and Propagation Magazine, 2004, 46(4): 177-183.
- [34] 高超,袁晓峰,肖志河,等.基于散射分布函数模型的近远场变换技术研究[J].电波科学学报,2015,30(2): 371-377.
 GAO C, YUAN X F, XIAO Z H, et al. Near-field to far-field transformation based on reflectivity distribution model [J]. Chinese Journal of Radio Science, 2015, 30(2): 371-377. (in Chinese)
- [35] 高超,陈文强,王洪叶,等.一种 RCS 近场测量中天线方 向图补偿方法[J].北京理工大学学报,2019,39(1): 58-63.
 GAO C, CHEN W Q, WANG H Y, et al. Antenna compensation in near field RCS measurement [J]. Transactions of Beijing Institute of Technology, 2019, 39(1):58-63.(in Chinese)
- [36] 李南京, 徐志浩, 胡楚锋, 等. 基于成像提取的 RCS 精确 测量方法研究[J]. 仪器仪表学报, 2017, 38(1): 74-82.
 LI N J, XU Z H, HU C F, et al. Research on accurate radar cross section measurement method based on imaging extraction[J]. Chinese Journal of Scientific Instrument, 2017, 38(1): 74-82. (in Chinese)
- [37] 阚瀛芝. 毫米波近场隐匿目标三维成像技术[D]. 长沙: 国防科技大学, 2017.
 KAN Y Z. Millimeter wave near-field three-dimensional radar imaging technology for concealed target [D]. Changsha: National University of Defense Technology, 2017. (in Chinese)
- [38] LI Y, WU Z, HUANG P L, et al. A new method for analyzing integrated stealth ability of penetration aircraft[J]. Chinese Journal of Aeronautics, 2010, 23(2): 187-193.
- [39] NICHOLSON K J, WANG C H. Improved near-field radar cross-section measurement technique[J]. IEEE Antennas and Wireless Propagation Letters, 2009, 8: 1103 – 1106.
- [40] KAYA A, KARTAL M. Point scatterer model for RCS prediction using ISAR measurements [C]//Proceedings of the 4th International Conference on Recent Advances in Space Technologies, 2009: 422 - 425.
- [41] NEITZ O, EIBERT T. Fourier based 3D ISAR near-field imaging and radar cross section transformation [C]// Proceedings of International Conference on Electromagnetics in Advanced Applications, 2015: 1198 – 1201.
- [42] 李南京,冯引良,胡楚锋,等.基于二维微波成像的共形 天线 RCS 提取方法[J].红外与激光工程,2013,42(7): 1945-1949.

LI N J, FENG Y L, HU C F, et al. Extracting RCS of conformal antenna based on 2-D microwave imaging [J]. Infrared and Laser Engineering, 2013, 42(7): 1945 – 1949. (in Chinese)

- [43] HU C F, LI N J, CHEN W J, et al. A near-field to far-field RCS measurement method for multiple-scattering target [J].
 IEEE Transactions on Instrumentation and Measurement, 2019, 68(10): 3733 – 3739.
- [44] 党娇娇,李南京,胡楚锋,等. 耦合目标近场散射外推技术研究[J]. 电子学报,2017,45(6):1327-1333.
 DANG J J, LI N J, HU C F, et al. Near-far field extrapolation technique for coupling targets [J]. Acta Electronica Sinica, 2017,45(6):1327-1333.(in Chinese)
- [45] 廖可非,刘扬,欧阳缮. 基于子阵列自适应成像的 RCS 测量方法[J]. 桂林电子科技大学学报,2020,40(4):270-273.
 LIAO K F, LIU Y, OUYANG S. RCS measurements method based on adaptive subarray imaging [J]. Journal of Guilin

based on adaptive subarray imaging [J]. Journal of Guillin University of Electronic Technology, 2020, 40(4): 270 – 273. (in Chinese)

- [46] 廖可非. 基于合成孔径三维成像的雷达散射截面测量技术研究[D].成都:电子科技大学,2016.
 LIAO K F. Research on synthetic aperture 3-D imaging based radar cross section measurement[D]. Chengdu: University of Electronic Science and Technology of China, 2016. (in Chinese)
- [47] 明婧,张晓玲,蒲羚,等. 一种新型圆迹阵列三维 SAR系统的点扩散函数分析与地面实验结果[J]. 雷达学报,2018,7(6):770-776.
 MING J, ZHANG X L, PU L, et al. PSF analysis and ground

test results of a novel circular array 3-D SAR system [J]. Journal of Radars, 2018, 7(6): 770 – 776. (in Chinese)

 [48] 张晓玲,陈明领,廖可非,等.基于三维 SAR 成像的 RCS 近远场变换方法研究[J].电子与信息学报,2015, 37(2):297-302.

ZHANG X L, CHEN M L, LIAO K F, et al. Research on methods of targets' RCS near-field-to-far-field transformation based on 3-D SAR imaging [J]. Journal of Electronics & Information Technology, 2015, 37 (2): 297 – 302. (in Chinese)

[49] 任浩田,廖可非. 基于改进型 CLEAN 算法三维成像的雷达散射截面积反演[J]. 科学技术与工程, 2021, 21(11): 4492-4497.
REN H T, LIAO K F. Radar cross section inversion based on improved clean algorithm for 3D imaging [J]. Science

(in Chinese)

Technology and Engineering, 2021, 21(11): 4492 - 4497.

- [50] LARSSON C. Compressive sensing methods for radar cross section ISAR measurements [C]//Proceedings of the 4th International Workshop on Compressed Sensing Theory and Its Applications to Radar, Sonar and Remote Sensing, 2016: 237-241.
- [51] BENOUDIBA-CAMPANINI T, GIOVANNELLI J F, MINVIELLE P. SPRITE: 3-D sparse radar imaging technique[J]. IEEE Transactions on Computational Imaging, 2020, 6: 1059 – 1069.
- [52] BENOUDIBA-CAMPANINI T, MINVIELLE P, MASSALOUX P, et al. A new regularization method for radar cross section imaging [C]//Proceedings of 2017 11th European Conference on Antennas and Propagation (EUCAP), 2017: 1419 – 1423.
- [53] LAHAIE I J. Overview of an image-based technique for predicting far-field radar cross section from near-field measurements [J]. IEEE Antennas and Propagation Magazine, 2003, 45(6): 159-169.
- [54] 索欣诗,余雄庆.飞机总体参数优化的可视化技术[J]. 机械科学与技术,2016,35(12):1961-1966.
 SUO X S, YU X Q. Visualization for aircraft conceptual design optimization[J]. Mechanical Science and Technology for Aerospace Engineering, 2016,35(12):1961-1966. (in Chinese)
- [55] The IDS Corporation. RCSMS static RCS measurement system introduction [EB/OL]. [2021 - 09 - 08]. http://www. idscorporation.com/pf/rcsms/.
- [56] The Star Dynamics Corporation. BlueMax instrumentation radar system introduction [EB/OL]. [2021 - 09 - 08]. http://www.stardynamics.com/
- [57] The ECS radar Physics Lab. MKV^e radar system introduction [EB/OL]. [2021-09-08]. http://www.ecstech.com.
- [58] MINVIELLE P, MASSALOUX P, GIOVANNELLI J F. Indoor 3-D radar imaging for low-RCS analysis [J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(2): 995-1008.
- [59] MASSALOUX P, BENOUDIBA-CAMPANINI T, MINVIELLE P, et al. Indoor 3D spherical near field RCS measurement facility: a new high resolution method for 3D RCS imaging [C]//Proceedings of 2019 Antenna Measurement Techniques Association Symposium (AMTA), 2019: 1-5.
- [60] 张元,何鸿飞,武亚君,等.近场 RCS 测量不确定度分析[J].制导与引信,2016,37(3):43-46,56.
 ZHANG Y, HE H F, WU Y J, et al. Uncertainty analysis of near field RCS measurement[J]. Guidance & Fuze, 2016, 37(3):43-46,56.(in Chinese)