doi:10.11887/j.cn.202401006

http://journal. nudt. edu. cn

迎风格式在接触间断的数值耗散及其诱导误差

韩 芳,魏雁昕,刘 君*

(大连理工大学 航空航天学院, 辽宁 大连 116024)

摘 要:在不同流场参数条件下对三种迎风格式在接触间断中的数值耗散问题进行了数值实验,并对数 值耗散产生的机理进行了分析。数值计算结果和理论分析表明,矢通量分裂格式计算接触间断问题时,若流 场静止或流场内存在亚声速区域,密度耗散的产生会诱导出以特征速度运动的数值扰动误差,该误差对数值 耗散的大小无影响,但会影响流场的速度及压力参数分布,从而改变流场的结构。在二维问题中,诱导误差 相互干扰会产生大量的复杂小尺度结构,给流场结构分析带来困难。同时,在密度参数线性分布的流场中, 若空间离散格式重构的对象为对流通量,使用矢通量分裂格式计算流场会产生数值误差,使计算精度难以到 达二阶。

关键词:迎风格式;有限差分格式;接触间断;数值耗散;数值误差 中图分类号:V211.3 文献标志码:A 文章编号:1001-2486(2024)01-051-12

Numerical dissipation of upwind schemes in contact discontinuity and their induced error

HAN Fang, WEI Yanxin, LIU Jun*

(School of Aeronautics and Astronautics, Dalian University of Technology, Dalian 116024, China)

Abstract: The numerical experiments of three upwind schemes in contact discontinuity were carried out on the numerical dissipation under different flow field parameters, and the mechanism of numerical dissipation was analyzed. The numerical calculation results and theoretical analysis show that when the flux vector splitting scheme is used for contact discontinuity calculation, if the flow field is static or there exists a subsonic region in the flow field, the generation of density dissipation will induce numerical perturbation errors moving with characteristic velocity. These errors have no effect on the magnitude of numerical dissipation, but it will affect the distribution of velocity and pressure parameters in the flow field, thus changing the structure of the flow field. In two-dimensional flow fields, the mutual interference of the induced errors will produce numerous complex small-scale structures, which bring difficulties to the flow field structure identification. Meanwhile, in the flow field with linear distribution of density parameters, if the object reconstructed by the spatial discrete scheme is convective flux, using the flux vector splitting scheme to calculate the flow field will generate numerical errors, making it difficult to reach the second order of computational accuracy.

Keywords: upwind scheme; finite difference scheme; contact discontinuity; numerical dissipation; numerical error

在计算流体力学(computational fluid dynamics, CFD)中,数值耗散主要来自空间离散 格式离散对流项和时间离散格式离散时间项所产 生的截断误差,其大小与格式的计算精度及稳定 性息息相关。因此,CFD研究者们常常采用降低 数值耗散的方法来构造更高精度的计算格 式^[1-3]。空间离散格式包含差分格式及对流通量 导数的求解两部分,本文主要讨论对流通量导数 计算方法的数值耗散特性,而迎风格式作为目前 CFD求解对流通量的主流格式^[4],成为本文的研 究对象。 迎风格式主要分为三类: 矢通量分裂(flux vector splitting, FVS)格式、通量差分分裂(flux difference splitting, FDS)格式以及混合格式。现 今 CFD 对迎风格式耗散性的主要观点^[5]为:以 Steger-Warming格式^[6]、Van Leer格式^[7]等为代 表的 FVS格式将对流通量分裂为正负两部分,在 其分裂过程中使用的简化策略诱导出过大的数值 耗散,降低了格式对线性波、非线性波等的模拟精 度;以 Roe格式^[8]、HLLC格式^[9]为代表的 FDS格 式的基础是求解局部黎曼问题,其数值耗散较低, 这使得 FDS格式能够准确地捕捉到激波、接触间

收稿日期:2021-11-04

基金项目:国家自然科学基金资助项目(11872144)

第一作者:韩芳(1992一),女,山东济南人,博士研究生,E-mail:duthanf@mail.dlut.edu.cn

^{*}通信作者:刘君(1965-),男,内蒙古固阳人,教授,博士,博士生导师,E-mail:liujun65@dlut.edu.cn

断等非线性波、线性波,但其在强激波处的计算稳 定性较差,例如 Roe 格式的"红玉"现象问题;混 合格式作为以上两种格式的结合,既具备了 FVS 格式在非线性波捕捉上的鲁棒性,也具备了 FDS 格式在线性波捕捉上的高分辨率,其耗散较低且 稳定性优于 FDS 格式,例如 AUSM + 格式^[10]、 LDFSS 格式^[11]等。

迎风格式的数值耗散大小可表现为其对间断 的捕捉能力大小。一般认为,在相同的计算条件 下,捕捉到间断过渡区越窄,则格式的数值耗散越 低,捕捉间断的能力越强,例如,Sod^[12]、Lax^[13]、 Shu-Osher^[14]等问题。对存在间断相互干扰的问 题,则以捕捉流场小尺度结构的能力来衡量格 式的数值耗散大小,在相同的计算条件下,捕捉 到的小尺度结构越多、越清晰,则表明格式的数 值耗散越小,例如 2-D Riemann 问题^[15]等。不 论是对间断的捕捉,还是对流场小尺度结构的 捕捉,以上问题对迎风格式数值耗散的研究都 集中于间断本身或间断附近,对在数值耗散作 用下产生的激波间断或接触间断等对下游流场 影响的研究很少。文献[16-18]在计算运动激 波问题时发现,捕捉法计算运动激波会产生非 物理波动,这一波动会向流场下游进行传播,进 而污染激波下游区域,改变激波下游流场的结 构分布,这一现象在以上三种迎风格式中都存 在,但文章并未对非物理波动的产生机理进行 分析。文献[19-20]采用以上三种迎风格式对 马赫数为3的运动正激波进行了模拟,计算结 果表明无论采用哪种格式,在激波由初始间断 形成数值过渡区的过程中,在激波下游都会产 生一个等熵波和一个非等熵波。这两个波在不 同格式下大小不同,但始终存在,影响着激波下 游流场结构分布。文献[21-22]在研究使用加 权本质无振荡(weighted essentially non-oscillatory, WENO)格式计算含接触间断的可压缩流时发现, FVS 格式特征值逐点分裂的不兼容性以及质量方 程、动量方程、能量方程中各分量非线性离散的不 一致性会导致流场中出现非物理振荡,推荐使用 全局 Lax-Friedrichs(L-F) 分裂格式,并在 WENO 格式实现过程中使用一组共同的权值来消除非物 理振荡。

为了进一步分析不同迎风格式数值耗散的产 生机理,同时认清上文所提到的非物理波动是否 与格式的数值耗散有关,采用具有单一流场结构 的接触间断作为数值模拟对象开展研究。综合不 同迎风格式的数值耗散及其非物理波动在接触间 断问题中的表现,可以为不同的流场问题选择更 加合适的计算格式。

1 控制方程与数值方法

二维笛卡尔坐标系(*x*,*y*,*t*)下无量纲化的守 恒型 Euler 方程为:

$$\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} = \mathbf{0}$$
(1)

式中,U为守恒变量,F、G分别为x、y方向的对流通量,其表达式为:

$$\begin{cases} \boldsymbol{U} = (\rho, \rho u, \rho v, \rho e)^{\mathrm{T}} \\ \boldsymbol{F} = (\rho u, \rho u^{2} + p, \rho u v, (\rho e + p) u)^{\mathrm{T}} \\ \boldsymbol{G} = (\rho v, \rho u v, \rho v^{2} + p, (\rho e + p) v)^{\mathrm{T}} \end{cases}$$
(2)

其中, ρ 为密度,u、v分别为x、y方向的速度,p为 压力,e为气体总比内能,其计算式为:

$$e = \frac{p}{(\gamma - 1)\rho} + \frac{u^2 + v^2}{2}$$
(3)

式中, γ 为比热比,本文使用量热完全气体模型, $\gamma = 1.4$ 。

采用有限差分法进行数值求解,其中时间离 散采用一阶显式格式,因此方程(1)的离散形式 可写成:

$$\boldsymbol{U}_{i,j}^{n+1} = \boldsymbol{U}_{i,j}^{n} - \Delta t \left(\frac{\boldsymbol{F}_{i+1/2,j}^{n} - \boldsymbol{F}_{i-1/2,j}^{n}}{\Delta x} + \frac{\boldsymbol{G}_{i,j+1/2}^{n} - \boldsymbol{G}_{i,j-1/2}^{n}}{\Delta y} \right)$$
(4)

式中, $F_{i\pm 1/2,j}^n$, $G_{i,j\pm 1/2}^n$ 为半节点处通量,i,j为网格 节点在x,y方向的标号,n,n+1分别代表n时刻,n+1时刻, $\Delta x, \Delta y$ 为x,y方向的网格尺度。

以上公式及变量皆为无量纲化的,下文数值 实验中的所有变量和数据也是无量纲化的。

文中以迎风格式作为研究对象,分别选用 Van Leer、Roe、AUSM +格式作为三种迎风格式的 代表进行数值计算。

2 接触间断问题

2.1 一维接触间断问题

使用二维均匀正交网格计算一维流场,计算 区域设定为[0,10]×[0,1],网格量为200×20。 无量纲化的初始条件为:

$$(\rho, u, v, p) = \begin{cases} (\rho_1, u, 0, 1/1, 4), & 0 \le x \le x_d \\ (1, u, 0, 1/1, 4), & x_d < x \le 10 \end{cases}$$

(5)

其中, x_d 为间断的初始位置。将 x_d 左侧的区域记为1区,将 x_d 右侧的区域记为2区,因此 ρ_1 为间断左侧的初始密度参数。

对一维接触间断问题,由之后的计算结果

可以看出,在初始间断形成数值过渡层的过程 中出现了非物理波动,其传播速度为特征速度, 为避免扰动传出边界,设置间断的初始位置 x_d 满足式(6):

$$\begin{cases} \begin{bmatrix} x_{d} - (u - c_{1})t_{stop} \end{bmatrix} \ge 1 \\ \begin{bmatrix} x_{d} + (u + 1)t_{stop} \end{bmatrix} \le 9 \end{cases}$$
(6)

其中, c₁为1区的声速, t_{stop}为计算终止时刻。根 据初始间断左右流场马赫数的不同, 即流场初始 条件的不同, 设置以下五个算例, 其具体参数如 表1所示。

表1 不同马赫数条件下的接触间断初始条件

Tab. 1	Initial conditions contact discontinuity under					
different Ma conditions						

初始 条件	1 区初 始流场 密度	x 方向 速度	初始 间断 位置	1 区初 始流场 马赫数	2 区初 始流场 马赫数
1	4.0	0	3.5	0	0
2	4.0	2.0	2.0	4.00	2.0
3	4.0	0.8	2.0	1.60	0.8
4	0.1	2.0	3.5	0.64	2.0
5	4.0	0.4	3.5	0.80	0.4

为计算方便,本节统一取计算终止时刻 t_{stop} = 2.0,根据给定的 CFL(Courant-Friedrichs-Lewy)数确定时间步长,此处 CFL = 0.5。此外,分别选取 CFL $\in \{0.01, 0.05, 0.1, 0.5\}$ 对初始条件 5 的流 场进行计算,可知在允许范围内,时间步长的大小 对计算结果影响很小,可忽略不计。

为了消除差分格式及限制器等因素的影响, 选择一阶迎风格式进行数值计算,图1~5分别给 出了五种初始条件下的流场参数分布曲线,包括 密度ρ、速度 u 及压力 p 分布曲线。

(a)密度参数分布曲线(a) Density parameter distribution curves

(b) 速度参数分布曲线

(c) Pressure parameter distribution curves

图 1 t = 2.0 时的流场参数分布曲线(初始条件 1) Fig. 1 Distribution curves of flow field parameters at t = 2.0 (initial condition 1)

(a) 密度参数分布曲线

(b)速度参数分布曲线(b) Velocity parameter distribution curves

(c) Pressure parameter distribution curves

图 2 t = 2.0时的流场参数分布曲线(初始条件 2) Fig. 2 Distribution curves of flow field parameters at t = 2.0 (initial condition 2)

从图 1 可以看出,在静止流场中,Roe 格式及 AUSM + 格式可以完整地保持接触间断不变,其 密度、速度及压力参数分布曲线皆保持初始状态。 而 Van Leer 格式计算的流场参数分布曲线不仅 有密度耗散,速度及压力曲线也有波动。

从图 2 中可以看出,在流场为全场超声速条件时,三种格式对接触间断的数值模拟结果相同,都是仅有密度的耗散,速度及压力参数无变化。

从图 3~5 可以看出,在流场中存在亚声速区 域时,Roe 格式及 AUSM +格式捕捉的接触间断 仅有密度的变化,速度及压力参数无变化。Van Leer 格式捕捉的接触间断存在速度及压力参数 的变化,其波动曲线与在静止流场中的结果相似, 不仅在间断处有波动,在间断两侧也产生了两个 非物理波动。但是,尽管 Van Leer 格式计算的接 触间断有速度及压力的变化,其密度变化曲线与 Roe 格式及 AUSM +格式的计算结果曲线几乎 重合。

根据以上算例的计算结果,对一维接触间断, Roe 格式及 AUSM + 格式在静止流场中没有耗 散,在非静止流场中有密度耗散;Van Leer 格式则 在所有流场中都有密度的耗散。图 6 给出了不同 时刻静止流场(初始条件1)中非物理波动的位置 变化曲线,从图中可以看出,在上文中出现的非物 理波动分别以特征速度 $u - c_1$ 和 $u + c_2$ 逐步远离 间断。将间断左侧波记为"波 1",间断右侧波记 为"波 2",则图中 v_1 、 v_2 分别代表两个波动的传播 速度, c_1 、 c_2 分别为当地点声速。

图 7 给出了使用初始条件 1 计算的接触间断 流场压力波动幅值随时间变化曲线,从图中可以 看出,随着时间步的推进,诱导误差在远离接触间 断的同时,其幅值大小也会逐渐降低,但不会消 失。结合图6和图7可以看出,对定常问题,在计 算时间足够长的情况下,误差会运动出有限的计 算区域,流场结构会恢复原本的状态。但对非定 常问题,波动对流场的影响无法消除,在参考文 献[16-18]的算例中可以看到波动对间断下游 流场参数的污染。

此外,这逐步远离间断的非物理波动不应 归于 Van Leer 格式的数值耗散,而是一种数值 误差,因为数值耗散的作用是"抹平"间断,而这 两个非物理波动对密度曲线的过渡区并无 影响。

(a) 密度参数分布曲线

(a) Density parameter distribution curves

(b) 速度参数分布曲线

(c) 压力参数分布曲线

(c) Pressure parameter distribution curves

图 3 t = 2.0 时的流场参数分布曲线(初始条件 3) Fig. 3 Distribution curves of flow field parameters at t = 2.0 (initial condition 3)

(a) Density parameter distribution curves

(b) 速度参数分布曲线

(b) Velocity parameter distribution curves

(c) 压力参数分布曲线

图 4 t = 2.0 时的流场参数分布曲线(初始条件 4) Fig. 4 Distribution curves of flow field parameters at t = 2.0 (initial condition 4)

(a) Density parameter distribution curves

(b) Velocity parameter distribution curves

(c) 压力参数分布曲线(c) Pressure parameter distribution curves

图 5 t = 2.0 时的流场参数分布曲线(初始条件 5) Fig. 5 Distribution curves of flow field parameters at

图 6 波动位置随时间变化曲线(初始条件1) Fig. 6 Curve of fluctuation position with time (initial condition 1)

综上所述,本文认为迎风格式的数值耗散受 流场参数影响较大,在不同马赫数条件下数值耗 散大小不同,不过文献[23]的计算结果也显示, 在低马赫数(0.1,0.01,0.001)条件下,Roe格式 的耗散大小与马赫数无关,而 HLL 格式的数值耗 散随着马赫数的减小而变大。此外,Van Leer 格 式捕捉接触间断时产生的非物理波动是一种数值

误差,它们的存在影响了流场的速度及压力参数 分布,但对 Van Leer 格式在接触间断问题中的数 值耗散大小并无影响。

2.2 对数值计算结果的理论推导及机理分析

满足 Euler 方程的初始间断在计算过程中会 由数学间断变成数值过渡区,按照 CFD 理论,一 维有限差分格式的数值解在过渡区满足式(7):

$$\frac{\partial \boldsymbol{U}}{\partial t} + \frac{\partial \boldsymbol{F}}{\partial x} = \sum_{n=2}^{\infty} \gamma_n \frac{\partial^n \boldsymbol{U}}{\partial x^n}$$
(7)

因为一个网格节点无法存储两组数据,因此 初始间断必占据两个网格节点。假设初始间断的 中心在半节点 *i* +1/2 处(又称为界面),那么 *i* 点 的初始流场参数和 *i* -1 点的相等。

对于 FVS 格式,一阶迎风格式离散 Euler 方程写成:

$$\boldsymbol{U}_{i}^{n+1} = \boldsymbol{U}_{i}^{n} - \frac{\Delta t}{\Delta x} (\boldsymbol{F}_{i}^{+} - \boldsymbol{F}_{i-1}^{+} + \boldsymbol{F}_{i+1}^{-} - \boldsymbol{F}_{i}^{-})^{n} (8)$$

式中,上标"+"和"-"分别代表通量为正、负数 值通量。

以 Van Leer 格式为例,在 $Ma_1 > 1, Ma_2 > 1$ 的 超声速流动中,由于在超声速条件下负通量为**0**, 且 *i* 点的初始流场参数和 *i* – 1 点的相等,有 $U_i^1 = U_i^0$,则密度参数 $\rho_i^1 = \rho_i^0$ 。此外, *i* + 1 点的流场参 数更新可写成以下形式:

$$\boldsymbol{U}_{i+1}^{1} = \boldsymbol{U}_{i+1}^{0} - \frac{\Delta t}{\Delta x} (\boldsymbol{F}_{i+3/2}^{+} - \boldsymbol{F}_{i+1/2}^{+})^{0}$$
$$= \boldsymbol{U}_{i+1}^{0} - \frac{\Delta t}{\Delta x} (\boldsymbol{F}_{i+1}^{+} - \boldsymbol{F}_{i}^{+})^{0}$$
(9)

展开有:

$$\begin{pmatrix} \rho \\ \rho u \\ \rho e \end{pmatrix}_{i+1}^{1} = \begin{pmatrix} \rho \\ \rho u \\ \rho e \end{pmatrix}_{i+1}^{0} - \frac{\Delta t}{\Delta x} \left(\begin{pmatrix} \rho u \\ \rho u^{2} + p \\ (\rho e + p)u \end{pmatrix}_{i+1}^{0} - \frac{\Delta t}{(\rho e + p)u} \right)_{i+1}^{0} = \frac{1}{2} \left(\frac{\rho u}{\rho e^{2}} + \frac{\rho u}{\rho e^{2}} \right)_{i+1}^{0} = \frac{1}{2} \left(\frac{\rho u}{\rho e^{2}} + \frac{\rho u}{\rho e^{2}} \right)_{i+1}^{0} = \frac{1}{2} \left(\frac{\rho u}{\rho e^{2}} + \frac{\rho u}{\rho e^{2}} \right)_{i+1}^{0} = \frac{1}{2} \left(\frac{\rho u}{\rho e^{2}} + \frac{\rho u}{\rho e^{2}} \right)_{i+1}^{0} = \frac{1}{2} \left(\frac{\rho u}{\rho e^{2}} + \frac{\rho u}{\rho e^{2}} \right)_{i+1}^{0} = \frac{1}{2} \left(\frac{\rho u}{\rho e^{2}} + \frac{\rho u}{\rho e^{2}} \right)_{i+1}^{0} = \frac{1}{2} \left(\frac{\rho u}{\rho e^{2}} + \frac{\rho u}{\rho e^{2}} \right)_{i+1}^{0} = \frac{1}{2} \left(\frac{\rho u}{\rho e^{2}} + \frac{\rho u}{\rho e^{2}} \right)_{i+1}^{0} = \frac{1}{2} \left(\frac{\rho u}{\rho e^{2}} + \frac{\rho u}{\rho e^{2}} \right)_{i+1}^{0} = \frac{1}{2} \left(\frac{\rho u}{\rho e^{2}} + \frac{\rho u}{\rho e^{2}} \right)_{i+1}^{0} = \frac{1}{2} \left(\frac{\rho u}{\rho e^{2}} + \frac{\rho u}{\rho e^{2}} \right)_{i+1}^{0} = \frac{1}{2} \left(\frac{\rho u}{\rho e^{2}} + \frac{\rho u}{\rho e^{2}} \right)_{i+1}^{0} = \frac{1}{2} \left(\frac{\rho u}{\rho e^{2}} + \frac{\rho u}{\rho e^{2}} \right)_{i+1}^{0} = \frac{1}{2} \left(\frac{\rho u}{\rho e^{2}} + \frac{\rho u}{\rho e^{2}} \right)_{i+1}^{0} = \frac{1}{2} \left(\frac{\rho u}{\rho e^{2}} + \frac{\rho u}{\rho e^{2}} \right)_{i+1}^{0} = \frac{1}{2} \left(\frac{\rho u}{\rho e^{2}} + \frac{\rho u}{\rho e^{2}} \right)_{i+1}^{0} = \frac{1}{2} \left(\frac{\rho u}{\rho e^{2}} + \frac{\rho u}{\rho e^{2}} \right)_{i+1}^{0} = \frac{1}{2} \left(\frac{\rho u}{\rho e^{2}} + \frac{\rho u}{\rho e^{2}} \right)_{i+1}^{0} = \frac{1}{2} \left(\frac{\rho u}{\rho e^{2}} + \frac{\rho u}{\rho e^{2}} \right)_{i+1}^{0} = \frac{1}{2} \left(\frac{\rho u}{\rho e^{2}} + \frac{\rho u}{\rho e^{2}} \right)_{i+1}^{0} = \frac{1}{2} \left(\frac{\rho u}{\rho e^{2}} + \frac{\rho u}{\rho e^{2}} \right)_{i+1}^{0} = \frac{1}{2} \left(\frac{\rho u}{\rho e^{2}} + \frac{\rho u}{\rho e^{2}} \right)_{i+1}^{0} = \frac{1}{2} \left(\frac{\rho u}{\rho e^{2}} + \frac{\rho u}{\rho e^{2}} \right)_{i+1}^{0} = \frac{1}{2} \left(\frac{\rho u}{\rho e^{2}} + \frac{\rho u}{\rho e^{2}} \right)_{i+1}^{0} = \frac{1}{2} \left(\frac{\rho u}{\rho e^{2}} + \frac{\rho u}{\rho e^{2}} \right)_{i+1}^{0} = \frac{1}{2} \left(\frac{\rho u}{\rho e^{2}} + \frac{\rho u}{\rho e^{2}} \right)_{i+1}^{0} = \frac{1}{2} \left(\frac{\rho u}{\rho e^{2}} + \frac{\rho u}{\rho e^{2}} \right)_{i+1}^{0} = \frac{1}{2} \left(\frac{\rho u}{\rho e^{2}} + \frac{\rho u}{\rho e^{2}} \right)_{i+1}^{0} = \frac{1}{2} \left(\frac{\rho u}{\rho e^{2}} + \frac{\rho u}{\rho e^{2}} \right)_{i+1}^{0} = \frac{1}{2} \left(\frac{\rho u}{\rho e^{2}} + \frac{\rho u}{\rho e^{2}} \right)_{i+1}^{0} = \frac{1}{2} \left(\frac{\rho u}{\rho e^{2}} + \frac{\rho u}{\rho e^{2}} \right)_{i+1}^{0} = \frac{1}{2} \left(\frac{\rho u}{\rho e^{2}} +$$

$$\begin{pmatrix} \rho u \\ \rho u^{2} + p \\ (\rho e + p) u \\ \end{pmatrix}_{i}^{0}$$
(10)

尽管守恒变量有变化 $U_{i+1}^{1} \neq U_{i+1}^{0}$,但是把密 度 $\rho_{i+1}^{1} = \rho_{i+1}^{0} - \frac{\Delta t}{\Delta x} (\rho_{i+1}^{0} - \rho_{i}^{0}) u_{i+1}^{0}$ 代入 U_{i+1}^{1} 可以得 到 $p_{i+1}^{1} = p_{i+1}^{0}$ 和 $u_{i+1}^{1} = u_{i+1}^{0}$,符合双曲型方程扰动 不向上游传播的特性。

考虑 $Ma_1 = Ma_2 = 0$ 的静止流场,在间断两侧 有 $F_{i+1} \neq F_i^-$,因此计算一个时间步后守恒变量满 足不等式 $U_i^1 \neq U_i^0$ 。由于在通量分裂表达式中声 速和压力、密度之间是非线性的,把 $\rho_i^1 \neq \rho_i^0$ 代入 U_i^1 得到 $u_i^1 \neq u_i^0$ 、 $p_i^1 \neq p_i^0$,同样在 i + 1 点上也有 $u_{i+1}^1 \neq u_{i+1}^0$ 、 $p_{i+1}^1 \neq p_{i+1}^0$ 。基于以上原因, Van Leer 格式数值模拟静止流场中的接触间断时出现了向 两侧传播的速度波和压力波。这种现象在间断一 侧或两侧皆为亚声速时也存在。

对于 FDS 格式,离散 Euler 方程后得到:

$$\boldsymbol{U}_{i}^{n+1} = \boldsymbol{U}_{i}^{n} - \frac{\Delta t}{\Delta x} (\boldsymbol{F}_{i+1/2}^{n} - \boldsymbol{F}_{i-1/2}^{n}) \qquad (11)$$

以 Roe 格式为例,采用存储在网格节点上的 流动参数重构界面通量,一阶精度的界面通量,

$$\begin{cases} \boldsymbol{F}_{i+1/2} = \frac{1}{2} \left[\left(\boldsymbol{F}_{i+1} + \boldsymbol{F}_{i} \right) - \boldsymbol{A}^{*} \left(\boldsymbol{U}_{i+1} - \boldsymbol{U}_{i} \right) \right] \\ \boldsymbol{F}_{i-1/2} = \frac{1}{2} \left(\boldsymbol{F}_{i} + \boldsymbol{F}_{i-1} \right) = \boldsymbol{F}_{i} \end{cases}$$
(12)

其中, 广义系数矩阵 A^* 是根据 Roe 平均公式计算界面处左右变量以后得到。接触间断两侧参数 满足条件: $u_{i+1} = u_i = u^*$, $p_{i+1} = p_i = p^*$, 可知界面 密度变化量对动量方程和能量方程没有影响:

$$\begin{cases} \Delta F^* = A^* (U_{i+1} - U_i) = (-(\Delta \rho) u^*, 0, 0)^{\mathrm{T}} \\ \Delta \rho = \rho_{i+1} - \rho_i \end{cases}$$

计算一个时间步后的流场参数为:

$$\begin{pmatrix} \rho \\ \rho u \\ \rho e \end{pmatrix}_{i}^{1} = \begin{pmatrix} \rho \\ \rho u \\ \rho e \end{pmatrix}_{i}^{0} - \frac{u^{0} \Delta t}{\Delta x} \begin{pmatrix} 1 \\ u \\ 0.5u \end{pmatrix}^{0} \Delta \rho \qquad (14)$$

由式(14)可以看出,对于 $u^0 = 0$ 的静止流场, 一个时间步后流场参数不会发生变化。对于 $u^0 \neq 0$ 的流动,由于初始间断两侧密度不相等,即 $\Delta \rho \neq 0$,因此在时间推进过程中密度发生变化 $\rho_i^1 \neq \rho_i^0$,但是把更新后的密度代入动量方程和能量方 程以后可以推出 $u_i^1 = u_i^0 \ p_i^1 = p_i^0$,很好地解释了 2.1 节中 Roe 格式模拟接触间断所表现出的 特性。 对于混合格式 AUSM +, 其界面通量可以 写为:

$$\boldsymbol{F}_{i+1/2} = c_{i+1/2} M a_{i+1/2} \boldsymbol{\Phi}_{i+1/2} + \boldsymbol{p}_{i+1/2} \quad (15)$$

式中: $p = (0, p, 0)^{\mathrm{T}}$; c 为声速, $c = \sqrt{\gamma \frac{p}{\rho}}$ 通过声速 方程计算。

考察*i*+1 点流场参数更新,当流场为静止流场时,半点马赫数 *Ma_{i+1/2}*=0,且全场压力相等,因此有:

$$U_{i+1}^{1} = U_{i+1}^{0} - \frac{\Delta t}{\Delta x} (F_{i+3/2}^{0} - F_{i+1/2}^{0})$$
$$= U_{i+1}^{0} - \mathbf{0} = U_{i+1}^{0}$$
(16)

因此,在静止流场中,使用 AUSM + 格式计算 接触间断可保持流场参数不变。

当流场参数为非静止流场时,i + 1 点密度参数有更新,但将更新的密度参数 ρ_{i+1}^1 代入 U_{i+1}^1 可以得到 $p_{i+1}^1 = p_{i+1}^0$ 和 $u_{i+1}^1 = u_{i+1}^0$ 。以超声速流场为例进行说明。当流场为超声速时,一个时间步后i+1点的流场参数为:

$$\begin{pmatrix} \rho \\ \rho u \\ \rho e \end{pmatrix}_{i+1}^{1} = \begin{pmatrix} \rho \\ \rho u \\ \rho e \end{pmatrix}_{i+1}^{0} - \frac{\Delta t}{\Delta x} \begin{pmatrix} c_{i+1}^{0} M a_{i+1}^{0} \begin{pmatrix} \rho \\ \rho u \\ \rho e + p \end{pmatrix}_{i+1}^{0} + \begin{pmatrix} 0 \\ p \\ 0 \end{pmatrix}_{i+1}^{0} - c_{i}^{0} M a_{i}^{0} \begin{pmatrix} \rho \\ \rho u \\ \rho e + p \end{pmatrix}_{i}^{0} - \begin{pmatrix} 0 \\ p \\ 0 \end{pmatrix}_{i}^{0} \end{pmatrix} (17)$$

式中,密度 $\rho_{i+1}^1 = \rho_{i+1}^0 - \frac{\Delta t}{\Delta x} (\rho_{i+1}^0 - \rho_i^0) u_{i+1}^0$,将其代 入动量方程可得:

$$u_{i+1}^{1} =$$

$$\frac{(\rho u)_{i+1}^{0} - \frac{\Delta u}{\Delta x} \left[u_{i+1}^{0} (\rho u)_{i+1}^{0} + p_{i+1}^{0} - u_{i}^{0} (\rho u)_{i}^{0} - p_{i}^{0} \right]}{\rho_{i+1}^{0} - \frac{\Delta t}{\Delta x} (\rho_{i+1}^{0} - \rho_{i}^{0}) u_{i+1}^{0}}$$
(18)

由于
$$p_{i+1}^{0} = p_{i}^{0} u_{i+1}^{0} = u_{i}^{0}$$
,因此有:
$$u_{i+1}^{1} = \frac{u_{i+1}^{0}\rho_{i+1}^{0} - u_{i+1}^{0}\frac{\Delta t}{\Delta x}[(\rho_{i+1}^{0} - \rho_{i}^{0})u_{i+1}^{0}]}{\rho_{i+1}^{0} - \frac{\Delta t}{\Delta x}(\rho_{i+1}^{0} - \rho_{i}^{0})u_{i+1}^{0}} = u_{i+1}^{0}$$
(10)

同理将 ρ_{i+1}^1 、 u_{i+1}^1 代入能量方程可得 $p_{i+1}^1 = p_{i+1}^0$,符合 2.1 节的数值计算结果。

综上所述, Van Leer 格式以局部马赫数为依 据将对流通量分为正负两部分, 在全场超声速条 件下, 只有正通量参与流场参数更新, 对接触间断 问题, 虽然间断两侧密度不等致使密度参数随时 间推进发生变化, 产生了密度数值耗散, 但更新后 的密度参数对速度及压力参数无影响;在静止流 场或流场中存在亚声速区域时,由于在通量分裂 表达式中声速和压力、密度之间是非线性的,将更 新后的密度参数代入动量方程及能量方程,流场 的速度及压力参数发生改变,从而产生了速度波 动及压力波动。

Roe 格式计算接触间断时以密度波推动流场 参数更新,同时受流场速度影响,AUSM+格式计 算接触间断时同样以密度波推动流场参数更新, 同时受界面马赫数(半点马赫数)影响,因此在静 止流场中使用 Roe 格式及 AUSM+格式时,流场 参数无更新,自然无数值耗散产生;在非静止流场 中使用以上两种格式时,质量方程参数更新,导致 密度参数发生变换,产生密度数值耗散,但将更新 后的密度参数代入动量方程及能量方程,速度及 压力参数无变化。

同时,由以上公式推导可以看出,当初始间断的中心位于半节点 *i* + 1/2 处且全场为超声速条件时,点 *i* 位于间断的上游区域,根据双曲型方程扰动不向上游传播的特性,点 *i* 处流场参数不应随时间发生变化,因此一个时间步后,Van Leer 格式及 AUSM + 格式计算的接触间断流场,皆为点*i* + 1处的密度参数发生变化,点*i* 处流场参数无变化;而 Roe 格式计算的接触间断流场,点*i* 处的密度参数发生变化,这显然不符合双曲型方程扰动不向上游传播的特性,这或许与"红玉"现象出现的原因有关,有待进一步验证。

2.3 二维接触间断问题

上文给出了三种不同类型的迎风格式在一维 接触间断中的数值计算结果,并通过公式推导对 不同计算结果出现的原因进行了分析。为了加深 对不同迎风格式下接触间断的认识,给出以下二 维算例。

在二维问题中,将初始接触间断放置于 x 方向为超声速的均匀流场中,设置计算区域为 $[0,2] \times [-2,2]$,网格量为 200 × 400。将间断放 置于 y = 0 处,初始流动参数为:

$$(\rho, u, v, p) = \begin{cases} (\rho_1, u, v, p), \ 0 \le y \le 2\\ (\rho_2, u, v, p), \ -2 \le y < 0 \end{cases}$$
(20)

其中, $\rho_1 = 4$, $\rho_2 = 1$,u = 2,v = 0,p = 1/1.4。左右边 界给定超声速出入口边界条件,上下边界为一阶 外推。

在本节中,首先使用一阶迎风格式进行计算, 同样选用 Van Leer、Roe、AUSM + 三种迎风格式, 时间步长按 CFL = 0.5 计算,计算终止时刻 t_{store} = 1.5。计算结果表明,当使用 Roe 格式或 AUSM + 格式时,流场参数都能保持初始值不变,因此本节 只给出了使用 Van Leer 格式的计算结果。图 8 是空间离散采用五阶 WENOZ 格式^[24]的计算结 果,此时时间离散采用具有总变差减小(total variation diminishing, TVD) 性质的三阶 Runge-Kutta 格式^[25]。图 8 给出了单接触间断下计算终 止时流场的相对压力误差($\delta p = 1.4\Delta p$)分布云图 及涡量($w_{z} = \partial v / \partial x - \partial u / \partial y$)分布云图。因为初始 流场速度为常数,涡量为0,因此图8给出的涡量 分布云图也代表了流场的误差分布。从图中可以 看出,在计算过程中 Van Leer 迎风格式不能完好 地保持间断,在间断两侧会有误差产生,误差分别 以当地声速沿 γ 方向向两侧进行传播,在x方向 超声速气流的作用下形成以特征线为边界的误差 分布范围。

(a) 压力误差分布云图(a) Cloud map of pressure error distribution

Fig. 8 Cloud map of flow field parameter distribution at t = 1.5 (single contact discontinuity)

为进一步研究二维接触间断对流场结构的影

响,设计了同时存在两个间断的流场算例。初始 流场参数设置为:

$$(\rho, u, v, p) = \begin{cases} (\rho_1, u, v, p), & -0. \ 1 \leq y \leq 0. \ 1 \\ (\rho_2, u, v, p), & \notin t \end{cases}$$
(21)

其中, $\rho_1 = 4.0$, $\rho_2 = 1.0$,u = 2.0,v = 0,p = 1/1.4。

图9给出了双接触间断下,在计算时间 *t* = 1.5时的流场压力误差分布云图及涡量分布云 图。从图中可以看出两个间断所产生的误差在相 互干扰过程中会改变每个间断的误差分布范围, 且会产生复杂的小尺度结构。

(a) 压力误差分布云图

(b) Cloud map of vorticity distribution

图 9 t = 1.5 时的流场参数分布云图(双接触间断)
 Fig. 9 Cloud map of flow field parameter distribution at t = 1.5(double contact discontinuity)

以上算例可以看成是 y 方向的一维静止接触 间断与 x 方向超声速自由流的组合问题,因为 y 方向速度为0,此时 Roe 格式和 AUSM + 格式对接 触间断数值耗散为0,表现为流场参数保持初始 值不变。而 Van Leer 格式在对接触间断有密度 数值耗散的同时,其在间断从初始数学上的间断 变成有厚度的数值剪切层时诱导出的数值误差相 互干扰,会生成复杂的非物理小尺度结构,从而影 响流场的结构分布。

3 线性分布流场

第2节给出了使用不同迎风格式数值模拟接触间断问题所得到的计算结果,并通过公式推导 对不同结果出现的原因进行了理论分析。本节继 续给了以上三种迎风格式在流场参数线性分布的 流场中的计算结果。

设置无量纲计算区域为[0,1]×[0,1],网格 量为100×100。给定流场密度参数为线性分布, 初始参数为:

(ρ,u,v,p) = (1+y,0,0,1/1.4) (22)
 边界给初始值,即理论值。计算终止时刻
 t_{stop} = 2.0,时间步长按 CFL = 0.5(通量无分裂时
 CFL = 0.1)计算。

首先使用一阶迎风格式进行计算,图 10、 图 11在给出 Van Leer、Roe、AUSM + 三种迎风格 式计算结果的同时,给出了对流通量无分裂时的 计算结果。计算结果表明,在密度成线性分布的 静止流场中,Roe、AUSM + 格式及通量无分裂计 算方法都能保持流场不变,而 Van Leer 格式的计 算结果有较大误差产生,且该误差随计算时间增 加而逐渐增大。

考虑到所用空间离散格式为一阶迎风格式, 而此时流场为二阶精度流场,使用一阶格式计算 二阶流场可能会产生误差,因此进一步使用二阶 迎风 MUSCL 格式、五阶 WCNS 格式^[26]和五阶 WENO 格式^[27]对流场进行了数值模拟,计算结果 如图 12 所示。

Fig. 12 Density absolute error clouds of Van Leer scheme

从图 12(a)的计算结果可以看出,此时 Van Leer 格式也能保持流场不变。以二阶迎风

MUSCL格式为例, MUSCL格式的重构对象是原 始变量,这样对 γ 方向密度线性分布的流场,界面 *i* + 1/2 处重构得到的左右原始变量相同,即 $\boldsymbol{q}_{j+1/2}^{\mathrm{L}} = \boldsymbol{q}_{j+1/2}^{\mathrm{R}}$,其中 $\boldsymbol{q} = (\rho, u, v, p)^{\mathrm{T}}$,上标 L、R 分 别代表半节点的左侧及右侧。在速度为0的条件 下,界面处的正负通量数值相等,符号相反,因此 界面处对流通量为 0, 即 $F_{i+1/2} = F_{i+1/2}^+ + F_{i+1/2}^- =$ $F(q_{i+1/2}^{L}) + F(q_{i+1/2}^{R}) = 0$, 流场参数随时间推进 无更新。五阶 WCNS 格式与 MUSCL 格式类似, 重构对象为原始变量,在本算例中,原始变量的一 阶导数为1,二阶导数为0,此时由 $q_{i+1/2}^{L} = q_i +$ $f_{\rm L}/2 + s_{\rm L}/8$ 、 $q_{i+1/2}^{\rm R} = q_{i+1} - f_{\rm R}'/2 + s_{\rm R}'/8$ 可得 $q_{i+1/2}^{L} = q_{i+1/2}^{R}$,其中 f_{L} , f'_R为不同子模板上原始变 量一阶导数的加权值,s_L、s_B为不同子模板上原始 变量二阶导数的加权值。其与二阶迎风 MUSCL 格式相同,此时界面处通量为 $F_{i+1/2} = F_{i+1/2}^+$ + $F_{i+1/2}^{-} = F(q_{i+1/2}^{L}) + F(q_{i+1/2}^{R}) = 0$, 流场参数无 更新。

从图 12(c)的计算结果可以看出,尽管采用 了五阶 WENO 格式,流场仍产生了数值误差,这 是因为文中所用五阶 WENO 格式空间重构的对 象为对流通量。若流场为超声速流场,则每一节 点上流场负通量为0,正通量的一阶导数为常数, 可保证 $F_{j+1/2} - F_{j-1/2} = F_{j+1/2}^{+} = 0$,此时使 用五阶 WENO 格式与 Van Leer 格式计算密度沿 y方向为线性分布的流场,流场无误差产生。若流 场为亚声速流场或静止流场,在 Van Leer 表达式 中声速和压力、密度之间是非线性的,此时流场正 负通量的一阶导数为密度的函数。以通量的第一

项元素为例,此时 $F_{j}^{+}(1) = \frac{\sqrt{\gamma p}}{4} \sqrt{\rho} = \frac{\sqrt{\gamma}}{4} \sqrt{1+\gamma},$

$$(\mathbf{F}_{j}^{+})'(1) = \frac{\sqrt{\gamma}}{8\sqrt{1+\gamma}}, \, \text{K} \& \mathbb{W} \ \mathbf{F}_{j+1/2} = \mathbf{F}_{j-1/2},$$

流场参数有更新。

从以上计算结果可以看出, Roe 格式和 AUSM + 格式能够保持初始流场参数的线性分布 不变,而 Van Leer 格式在空间重构对象为原始变 量时可以保持流场参数线性分布不变,在空间重 构对象为对流通量时则会有误差产生,破坏流场 的结构分布。

4 结论

对三种迎风格式在接触间断中的数值耗散问 题进行了数值实验,并通过公式推导对不同流场 参数下数值耗散产生的机理进行了分析。以 Roe 格式为代表的 FDS 格式及以 AUSM +格式为代表 的混合格式,在接触间断问题中存在密度数值耗 散,其耗散受密度差推动产生,同时受流场速度 (马赫数)影响,但因为此时其质量方程和动量方 程、能量方程为解耦关系,所以更新后的密度参数 对速度及压力参数无影响。以 Van Leer 格式为 代表的 FVS 格式在计算接触间断问题时,不仅存 在密度数值耗散,在流场静止或流场内存在亚声 速区域条件下,密度耗散的产生还会诱导出速度 扰动误差及压力扰动误差,该扰动误差对格式的 数值耗散大小无影响,但对流场结构的影响无法 忽略。特别地,对 L-F 分裂格式,局部 L-F 分裂会 出现以上非物理振荡误差,全局 L-F 分裂则不会 产生非物理振荡现象。因此,文章中的 FVS 格式 不包括全局 L-F 分裂格式。

FVS 格式在计算一维接触间断问题时产生的 诱导数值误差在二维接触间断问题中表现为复杂 小尺度结构,若二维接触间断存在于复杂结构流 场中,复杂小尺度结构的产生必会对流场结构分 析带来困难。此外在空间重构对象为对流通量 时,使用 FVS 格式计算密度线性分布的流场,会 破坏流场参数原有的梯度,产生较大的数值误差, 在高阶格式条件下,误差大大减小,但并未消除, 使得流场的计算精度难以达到二阶。在空间重构 对象为原始变量时,使用 FVS 格式可以很好地保 持流场梯度。

参考文献(References)

- ZHANG H B, ZHANG F, LIU J. A simple extended compact nonlinear scheme with adaptive dissipation control [J]. Communications in Nonlinear Science and Numerical Simulation, 2020, 84: 105191.
- [2] HU Z, ZHANG X Y, CUI W C, et al. A simple method of depressing numerical dissipation effects during wave simulation within the Euler model [J]. Acta Oceanologica Sinica, 2020, 39(1): 141-156.
- [3] KALITA P, DASS A K, HAZARIKA J. A new approach for numerical-diffusion control of flux-vector-splitting schemes for viscous-compressible flows [J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2021, 31(1): 497-518.
- [4] 刘巍,张理论,王勇献,等. 计算空气动力学并行编程基础[M].北京:国防工业出版社,2013.
 LIU W, ZHANG L L, WANG Y X, et al. Foundations of computational aerodynamics parallel programming [M].
 Beijing: National Defense Industry Press, 2013. (in Chinese)
- [5] 阎超,张智,张立新,等. 上风格式的若干性能分析[J].
 空气动力学学报,2003,21(3):336-341.
 YAN C, ZHANG Z, ZHANG L X, et al. Characteristic

analysis of the upwind scheme [J]. Acta Aerodynamica Sinica, 2003, 21(3): 336-341. (in Chinese)

- [6] STEGER J L, WARMING R F. Flux vector splitting of the inviscid gasdynamic equations with application to finitedifference methods [J]. Journal of Computational Physics, 1981, 40(2): 263 - 293.
- [7] VAN LEER B. Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method[J].
 Journal of Computational Physics, 1979, 32(1): 101 – 136.
- [8] ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes [J]. Journal of Computational Physics, 1981, 43(2): 357 - 372.
- [9] TORO E F, SPRUCE M, SPEARES W. Restoration of the contact surface in the HLL-Riemann solver [J]. Shock Waves, 1994, 4: 25 - 34.
- [10] KITAMURA K, SHIMA E. A new pressure flux for AUSMfamily schemes for hypersonic heating computations [C]// Proceedings of the 20th AIAA Computational Fluid Dynamics Conference, 2011.
- [11] EDWARDS J R. A low-diffusion flux-splitting scheme for Navier-Stokes calculations [J]. Computers & Fluids, 1997, 26(6): 635-659.
- [12] SOD G A. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws[J]. Journal of Computational Physics, 1978, 27(1): 1-31.
- [13] LAX P D. Weak solutions of nonlinear hyperbolic equations and their numerical computation [J]. Communications on Pure and Applied Mathematics, 1954, 7(1): 159-193.
- [14] SHU C W, OSHER S. Efficient implementation of essentially non-oscillatory shock-capturing schemes [J]. Journal of Computational Physics, 1988, 77(2): 439-471.
- [15] LAX P D, LIU X D. Solution of two-dimensional Riemann problems of gas dynamics by positive schemes [J]. SIAM Journal on Scientific Computing, 1998, 19(2): 319-340.
- [16] ZOU D Y, XU C G, DONG H B, et al. A shock-fitting technique for cell-centered finite volume methods on unstructured dynamic meshes [J]. Journal of Computational Physics, 2017, 345: 866-882.
- [17] CHANG S, BAI X, ZOU D, et al. An adaptive discontinuity fitting technique on unstructured dynamic grids [J]. Shock Waves, 2019, 29: 1103 – 1115.
- [18] 常思源,白晓征,崔小强,等.一种改进的非定常激波装 配算法[J]. 航空学报,2020,41(2):123498.
 CHANG S Y, BAI X Z, CUI X Q, et al. An improved unsteady shock-fitting algorithm [J]. Acta Aeronautica et Astronautica Sinica, 2020,41(2):123498. (in Chinese)
- [19] 刘君,韩芳. 有关有限差分高精度格式两个应用问题的 讨论[J]. 空气动力学学报, 2020, 38(2): 244-253.
 LIU J, HAN F. Discussions on two problems in applications of high-order finite difference schemes [J]. Acta Aerodynamica Sinica, 2020, 38(2): 244-253. (in Chinese)
- [20] 刘君,韩芳,魏雁昕.特定条件下高阶 WENO 格式计算 结果误差[J].航空学报,2022,43(2):225-234.
 LIU J, HAN F, WEI Y X. Numerical errors of high-order WENO schemes under specific conditions [J]. Acta

Aeronautica et Astronautica Sinica, 2022, 43(2): 225 - 234. (in Chinese)

- [21] JOHNSEN E. On the treatment of contact discontinuities using WENO schemes [J]. Journal of Computational Physics, 2011, 230(24): 8665-8668.
- [22] HE Z W, ZHANG Y S, LI X L, et al. Preventing numerical oscillations in the flux-split based finite difference method for compressible flows with discontinuities [J]. Journal of Computational Physics, 2015, 300: 269 – 287.
- [23] 谢文佳. 低耗散且强稳定激波捕捉格式的分析、设计与应用研究[D]. 长沙:国防科技大学,2014.
 XIE W J. Towards accurate and robust shock-capturing schemes for hypersonic flow computations [D]. Changsha: National University of Defense Technology, 2014. (in

Chinese)

- [24] BOGERS R, CARMONA M, COSTA B, et al. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws [J]. Journal of Computational Physics, 2008, 227(6): 3191-3211.
- [25] GOTTLIEB S, SHU C W. Total variation diminishing Runge-Kutta schemes [J]. Mathematics of Computation, 1998, 67(221): 73-85.
- [26] DENG X G, ZHANG H X. Developing high-order weighted compact nonlinear schemes [J]. Journal of Computational Physics, 2000, 165(1): 22 - 44.
- [27] JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes [J]. Journal of Computational Physics, 1996, 126(1): 202 - 228.

(编辑: 王颖娟, 罗茹馨)