doi:10.11887/j.cn.202406015

http://journal. nudt. edu. cn

面向辐射源识别的多尺度特征提取与特征选择网络

张顺生1*,丁宦城1,王文钦2

(1. 电子科技大学 电子科学技术研究院,四川 成都 611731;2. 电子科技大学 信息与通信工程院,四川 成都 611731)

摘 要:目前应用于辐射源识别的卷积神经网络对时序同相正交(in-phase and quadrature-phase,IQ)信号的处理有两种方式:一种方式是将其变换为图像,另一种方式是提取 IQ 时序数据的浅层特征。前一种方式会导致算法计算量大,而后一种方式会导致识别准确率低。针对上述问题,提出一种多尺度特征提取与特征选择网络。该网络以 IQ 信号为输入,经多尺度特征提取网络提取 IQ 信号的浅层特征和多尺度特征,采用特征选择网络降低多尺度特征的数据维度,通过自适应线性整流单元实现特征增强,使用单个全连接层对辐射源进行分类。在 FIT/CorteXlab 射频指纹识别数据集上,与 ORACLE、CNN-DLRF 和 IQCNet 对比实验表明,所提网络在一定程度上提高了识别准确率,降低了计算量。

关键词:辐射源识别;IQ 信号;多尺度特征提取;特征选择 中图分类号:TN92 文献标志码:A 文章编号:1001-2486(2024)06-141-08

Multi-scale feature extraction and feature selection network for radiation source identification

ZHANG Shunsheng¹*, DING Huancheng¹, WANG Wenqin²

(1. Research Institute of Electronic Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China;

2. School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China) Abstract: Convolutional neural networks currently applied to radiation source identification process the time-series IQ(in-phase and quadrature-phase) signals in two ways: one way transforms them into images, and the other way extracts shallow features of the IQ time-series data. The former way leads to a large computational effort of the algorithm, while the latter way leads to a low accuracy of the recognition rate. To address the above problems, a multi-scale feature extraction and feature selection network was proposed. After inputting the IQ signal, the shallow and multi-scale features of the IQ signal were extracted by the multi-scale feature extraction network. Then the data dimension of multi-scale features was reduced by the feature selection network. Feature enhancement was achieved by the adaptive linear rectification unit, and a single fully connected layer was used to classify the radiation source. Comparison experiments with ORACLE, CNN-DLRF and IQCNet on the FIT/CorteXlab radio frequency fingerprint recognition dataset show that the proposed network improves the recognition accuracy and reduces the computational effort to some extent.

Keywords: radiation source identification; IQ signal; multi-scale feature extraction; feature selection

在现代战争中,通过分析截获的辐射源脉冲 信号对不同的辐射源进行分类识别,是电子对抗、 电子情报和电子保障措施的关键环节。对辐射源 类型的正确识别是判断辐射源发射设备型号和功 能的基础^[1]。然而,随着信息化技术和新型装备 不断革新,辐射源信号的密度和复杂度大大提高, 传统基于特征参数的辐射源识别方法已经不能适 用于辐射源识别。

随着大数据和人工智能技术的发展,深度

学习凭借着可以实现不同层次的特征表示和知 识抽象^[2]的特点,已成功应用于计算机视 觉^[3-5]、辐射源识别^[6-11]、通信信号识别^[12-13] 等领域。其中,在辐射源识别领域,Qian等^[14] 将神经网络与基于稀疏表示的分类结合,根据 网络层的深度将提取的特征分为浅层和深层特 征。该方法通过增加网络的深度来提高识别准 确率,导致网络参数量较大;并且网络中没有对 特征进行进一步的分析,造成了特征冗余的问

收稿日期:2022-11-28

^{*}第一作者:张顺生(1980—),男,安徽安庆人,研究员,博士,博士生导师,E-mail:zhangss@uestc.edu.cn

引用格式:张顺生,丁宦城,王文钦. 面向辐射源识别的多尺度特征提取与特征选择网络[J]. 国防科技大学学报,2024,46(6): 141-148.

Citation: ZHANG S S, DING H C, WANG W Q. Multi-scale feature extraction and feature selection network for radiation source identification [J]. Journal of National University of Defense Technology, 2024, 46(6): 141 - 148.

题。周鑫等^[15]通过离散傅里叶变换(discrete Fourier transform, DFT)将时序数据从时域转换 到频域,再借助图像处理技术,将多次 DFT 结果 拼接为二维频谱瀑布图,最后利用卷积神经网 络对这些二维频谱图进行分类识别。虽然此方 法通过将时序数据转化为频谱图,从图像角度 提升了数据的可识别性,但其多次转换过程中 计算量较大。崔天舒等^[16]提出了一种以时序同 相正交(in-phase and quadrature-phase, IQ)数据 作为网络输入,通过卷积神经网络提取信号中 的相关特征和时域特征,实现分类识别的方法。 该网络虽然提高了信息的利用率,减小了计算 量,但未充分提取 IQ 信号的多尺度深层特征。 Sankhe 等^[17]提出发射器特征是设备的硬件固有 的,通过提取这些固有特征来提高样本识别准确 率。该方法在人为引入硬件损伤后对16个通用 软件无线电外设(universal software radio peripheral, USRP) 设备的识别准确率可以达到 99.5%,然而,如果不人为引入硬件损伤其识别 准确率仅为35.96%,这种方法的识别准确率过 于依赖设备内部的硬件损伤,通用性不高。 Merchant 等^[18]指出符合相同标准的无线发射器 在每次传输中都会产生独特的、可重复的签名, 这些签名可以作为设备识别和验证的样本特 征。所提方法利用每次传输的误差信号作为特 征输入卷积神经网络(convolutional neural network, CNN), 获取了更高的识别率。但误差 信号的数据维度较高,导致网络的参数量庞大, 计算速度慢。

针对上述问题,本文提出一种基于多尺度特征 提取与特征选择网络(multi-scale feature extraction and feature selection network, MSFESNet)的辐射源 识别方法。该方法利用多个膨胀卷积提取 I 路、Q 路和 IQ 两路融合信号的多尺度特征信息,并且借 鉴 SKNet(selective kernel network)的非线性融合 方法,对多尺度特征信息进行选择和融合,在提取 IQ 信号更多特征的同时降低了网络参数量。

问题分析

本文针对通信辐射源,所使用的数据集为 FIT/CorteXlab 射频指纹识别数据集,该数据集的 调制类型均为正交相移键控(quadrature phase shift keying,QPSK),其时域波形和频域波形分别 如图1和图2所示。

上述数据集采用了 IQ 交替存储方式。在处 理 IQ 信号的时候,有两种常见的方法:一种是

Fig. 2 Frequency domain waveform of a QPSK signal

将 IQ 信号进行域变换,将其转换为图像数据再 输入神经网络进行训练,但是这种方法计算量 大,识别率低;另一种是直接利用卷积网络提取 IQ 信号的特征,免去了域变换操作,计算量较 小,但是大多数使用单一卷积核的单分支卷积 网络,只能提取固定尺度的特征,因此存在识别 准确率低的问题。

针对上述问题,本文提出了一种名为 MSFESNet的方法,该方法采用多分支、多卷积核 的方式提取 IQ 信号中不同尺度的特征,并将这些 不同尺度的特征进行非线性融合以减少计算量。 最终,使用该方法可以达到网络计算量小、特征利 用率高以及识别准确率高的效果。

2 多尺度特征提取与特征选择网络设计

2.1 整体网络结构设计

当前,辐射源识别网络通常由多个单一卷 积核的卷积层组成。如果卷积层数较少,则可 能无法有效地区分不同辐射源信号之间的差 异;而如果增加卷积层数,则会导致网络计算量 大的问题。

为解决上述问题,本文受 Inception 网络和 SKNet 网络启发设计了多尺度特征提取与特征选 择网络。该网络是一个多分支结构网络,每个分 支由常规卷积或膨胀卷积构成,以提取辐射源信 号中的不同尺度特征。这样可以在不增加网络深 度的情况下,使网络可以学习多尺度特征。然后, 对提取出的多尺度特征进行非线性特征融合(特征选择操作),以将多维特征数据转换为单维特征数据,从而减少网络计算量。MSFESNet 的整体结构如图3所示。

从图3可以看出,该网络主要分为特征提取 层、特征选择层和分类层三部分。其中,一维卷积 (16,3,1)表示使用通道数为16、卷积核大小为 3、步长为1的一维卷积。

● 表示特征首尾拼接操作

图 3 MSFESNet 整体结构 Fig. 3 MSFESNet overall structure

2.2 特征提取层结构设计

特征提取层将特征提取分为两步,依次提取 数据的浅层特征和多尺度特征。利用一维卷积层 (one-dimensional convolutional layer,Conv1d)分别 提取 I 路数据、Q 路数据和 IQ 特征数据的浅层特 征,多个卷积层间采用最大池化(max-pooling)来 减小数据维度;然后将提取到的浅层特征分别输 入多尺度特征提取网络,以提取数据的多尺度特 征,即深层特征;最后将浅层特征与深层特征使用 拼接函数(contact)进行首尾连接,提高特征利用 率。多尺度特征提取网络(multi-scale feature extraction network, MSFENet)是特征提取层的核 心网络。

该网络是在 Inception v2^[19]模块的基础结构 上将部分常规一维卷积替换为一维膨胀卷积,使 用常规一维卷积提取数据中的浅层特征,一维膨 胀卷积提取数据中的多尺度特征,提高网络的特 征提取能力。MSFENet 结构如图 4 所示。

图4中一维卷积(16,3,1,1)表示使用通道 数为16、卷积核大小为3、步长为1、膨胀率为1的 一维卷积。其余的部分,如一维卷积(16,3,1, 2)、一维卷积(16,3,1,5)等操作与一维卷积 (16,3,1,1)同理。

2.3 特征选择层结构设计

在特征选择层,首先利用特征选择网络对特征提取层提取到的多尺度特征进行特征选择与特征融合。经过特征选择层可以大大降低特征数据的维度,以便减少后续网络的计算量,从而提高网络的计算速度。多尺度特征选择网络(multi-scale feature selection network, MSFSNet)是特征选择层的核心网络,其是借鉴 SKNet 的非线性聚合方法设计的。多尺度特征选择网络如图5所示。

图 5 多尺度特征选择网络 Fig. 5 Multi-scale feature selection network

从图 5 可知, 网络首先将多维特征数据按位 相加, 再通过一维全局平均池化层(onedimensional average pooling layer, AvgPool1d-1)、 全连接层和 Softmax 激活函数计算出每个特征在 整体特征中的比例系数, 最后将比例系数乘以对 应的原始特征得到新的特征。

2.4 分类层结构设计

在分类层中,首先采用自适应参数化修正 线性单元(adaptively parametric rectifier linear unit, APReLU) 替换线性整流函数 ReLU,该操作 会计算出每个样本特征的权重系数,将权重系 数乘以对应的样本特征,可以对样本特征进行 特征增强。

然后采用平展层(flatten)将多维特征压平成 一维,使用全连接层(dense)将学到的"分布式特 征表示"映射到样本标记空间。最后采用 Softmax 激活函数将多个神经元的输出映射到(0,1)区间 内对样本进行识别。

3 对比实验

3.1 对比网络选择

本文设计了单一尺度特征提取和特征选择网络(single-scale feature extraction and feature selection network,SFESNet),该网络将多尺度特征提取网络中卷积层的膨胀率设置为1,其余部分与MSFESNet完全相同,所以SFESNet不具有提取数据中多尺度特征的能力。通过MSFESNet与SFESNet在相同数据集上的对比实验,验证MSFESNet中多尺度特征提取网络可以有效地提高识别准确率。表1是MSFESNet的网络结构,数据输入尺寸为600×3。

表	1 N	ISFESN	let 网络约	结构
Tab. 1	MSF	FESNet	network	structure

名称	输入尺寸	尺寸	卷积核数	膨胀率
Conv1d-1	600×3	3	16	1
Conv1d-2	600×3	3	16	1
AvgPool1d-1	600×3	2	16	
MSFENet	300×3	3	16	不等于1
MSFSNet	300 × 18	3	16	1
APReLU	300×3		16	
contact	300×3			
flatten	900 × 1			
dense	900			

本文选取网络深度、卷积核大小和通道数不同 的 IQ 卷 积 神 经 网 络^[16] (convolutional neural network structure based on IQ correlation features, IQCNet)、ORACLE^[17] (optimized radio classification through convolutional neural networks)、CNN-DLRF^[18] (deep learning for RF device fingerprinting in cognitive communication networks)、长短期记忆 (long short-term memory, LSTM) 网 络 ^[20]、 CLSTM^[21] (convolutional neural network long shortterm memory)与 MSFESNet 在相同数据集上进行 实验,以验证 MSFESNet 可以在一定程度上提高 识别准确率,降低计算量。

3.2 数据集

对比实验所使用的数据集为 FIT/CorteXlab 实验室通过 22 台通用软件无线电外设产生的射 频指纹识别数据集。22 台设备中,21 台作为发射 机,1 台作为接收机,接收机的接收频段为 433 MHz,接收机采样速率为5 MSample/s。该数

· 145 ·

据集由3种数据传输形式和2种信号发射方式组成。3种数据传输形式分别是:数据序列固定不变,通过QPSK调制的固定数据,称为固定包;数据序列随机变化,通过QPSK调制的随机数据,称为随机包;数据序列为噪声,且没有经过调制的随机噪声数据,成为噪声包。2种信号发射方式分别是:通过固定信号幅度模拟发射机发射功率固定的普通模式;发射机不移动的情况下,改变信号幅度的变功率模式,其模拟的功率变换范围为20dB^[16]。

由上述描述可知,可通过固定功率和改变功 率发送固定包、随机包、噪声包获取6种不同场景 的实验数据集。采集数据的过程中,分别控制 21 台发射机周期地发送不同信号,每个周期发送 600 个 IQ 数据点,1 台接收机接收相应的信号,并 对接收的信号进行编号存储^[18]。

本文所使用数据集的数据形式为复数。因为 本文所设计的网络只能处理实数数据,所以对该 数据集进行预处理操作。首先使用 MATLAB 读 取 FIT/CorteXlab 射频指纹识别数据集;然后将数 据中的 I、Q 分别取出,这时 I、Q 数据为实数数据; 最后将 I、Q 数据进行 $\sqrt{i^2 + q^2}$ 运算(i、q 为 I、Q 数 据中的对应数据点),得到 IQ 数据, IQ 数据包含 了调制信号的能量信息。

考虑到 I、Q 数据中分别含有各自的幅度和相 位信息,而 IQ 数据中含有调制信号的能量信息, 所以将预处理后的 I、Q、IQ 作为网络输入,这样操 作可以使网络学习到更加丰富的特征,以提高辐 射源识别准确率。

3.3 评估方法

采用识别准确率对网络模型的泛化性能进行 评估。对于分类问题,根据真实值和预测值的结 果,可以将整个样本集分为真正例(true positive, TP)、伪正例(false positive, FP)、真反例(true negative,TN)和伪反例(false negative,FN)。识别 准确率定义为:

 $A = (T_{\rm P} + T_{\rm N})/(T_{\rm P} + T_{\rm N} + F_{\rm P} + F_{\rm N})$ (1) 其中: $T_{\rm P}$ 表示实际为正例、判定也为正例的次数,即表示判定为正例且判定正确的次数; $F_{\rm P}$ 表示实际为负例却判定为正例的次数,即表示 判定为正例但判断错误的次数; $T_{\rm N}$ 表示实际为 负例、判定也为负例的次数,即表示判定为负例 且判定正确的次数; $F_{\rm N}$ 表示实际为正例却判定 为负例的次数,即表示判定为负例但判断错误 的次数。

3.4 实验流程

整体实验采用多次随机实验取平均值的方法 获得最终识别准确率。单次实验流程为:首先将 数据集打乱,使数据集变得无序。将数据集进行 乱序处理后,将其中的70%作为训练集、10%作 为验证集、20%作为测试集。使用训练集中的样 本对网络进行训练,每训练完一轮则使用验证集 中的样本进行验证,选择验证结果最好的网络参 数作为最终的网络参数。最后使用测试集对训练 好的网络进行测试,以测试集上的识别准确率作 为最终的识别准确率。多次实验中,网络第40轮 训练时的损失值都会趋于平稳,因此文中所有实 验的训练轮次都设置为40,实验流程如图6 所示。

图 6 单次实验流程 Fig. 6 Single experiment flowchart

3.5 实验条件

所有实验所用计算机的操作系统为 Ubuntu18.04.4 LTS,内存为128 GB,CPU为Intel i7 – 9700k CPU @ 3.60 GHz,GPU为NVIDIA GeForce RTX 2080Ti,CUDA版本为10.1,编程语 言为Python 3.7,深度学习框架为tensorflow2.3。

在训练前对数据集进行乱序处理,每次训练 数据大小为1024;损失函数为交叉熵,优化器为 自适应矩估计(adaptive moment estimation, Adam)。学习率采用可变学习率,当损失函数的 计算结果再训练3轮后仍保持不变,则修改学习 率为原来的0.7倍,初始学习率设置为0.001。

交叉嫡损失函数定义如下:

$$C = -\frac{1}{N} \sum_{x} \left[y \ln \hat{y} + (1 - y) \ln(1 - \hat{y}) \right]$$
(2)

式中,x 表示样本,y 表示真实标签,N 表示样本总数,ŷ 表示预测的结果。

3.6 识别准确率

相对于其他网络结构, MSFESNet 最大的特 点是具有多尺度特征提取网络可以提取数据的多 尺度特征。

首先选取具有多尺度特征提取网络的 MSFESNet 和不具有多尺度特征提取网络的 SFESNet 进行比较验证,网络的输入数据为长度 为600的时间序列,分别是固定包、随机包、噪声 包、变功率固定包、变功率随机包、变功率噪声包。 实验结果如图7所示。

network on recognition accuracy

由图 7 可知,在 6 种场景下, MSFESNet 和 SFESNet 在相同数据上表现出来的趋势是一致 的。但是从图中可以很明显地看出 MSFESNet 在 数据集上的平均识别准确率高于 SFESNet。其中 MSFESNet 在 6 种场景下的平均识别准确率为 94.71%,而 SFESNet 的平均识别准确率为 89.6%,前者比后者高 5.11%,证明多尺度特征 提取网络有利于提高识别准确率。

图 8 展示了 MSFESNet 与 IQCNet(8,32,3)、 ORACLE、CNN-DLRF、LSTM、CLSTM 对比网络在 6 种场景下的识别准确率。由图 8 可知: MSFESNet的平均识别准确率最高。在6种场景 下, MSFESNet、ORACLE、CNN-DLRF、IQCNet(8, 32,3)、LSTM、CLSTM 的平均识别准确率分别为 94.71%、61.71%、72.09%、91.67%、91.76%、 93.13%, MSFESNet 的平均识别率相对后5 者分 别高 33%、22.62%、3.04%、2.95%、1.58%。可 以看出:与ORACLE、CNN-DLRF、IQCNet(8,32,3)、LSTM、CLSTM相比,本文所提网络在识别准确率方面有一定的优势。

图 8 MSFESNet 与对比网络识别准确率的比较

Fig. 8 Recognition accuracy comparison between MSFESNet and contrast network

3.7 计算复杂度

本文所提网络由一维卷积构成,因此网络的 计算时间复杂度可以表示为:

$$T = O\left(\sum_{l=1}^{D} M_{l} \cdot K_{l}\right)$$
(3)

式中,D表示网络所具有的卷积层数,M_l表示第*l* 个卷积层输出特征图的长度,K_l表示第*l* 个卷积 层的边长(卷积核的大小)。

以本文所设计的网络为例,因为在文中将辐 射源识别网络划分为特征提取层、特征选择层、分 类层三个部分进行叙述,所以分析计算复杂度依 然按照这三个部分进行分析。特征提取层(多分 支结构)中的2个分支为单个卷积层,另外2个分 支堆叠了2个卷积层,其中每个卷积层的特征图 长度、卷积核数都是1200、3,因此特征提取部分 的计算复杂度为 $T_{fe} = 6 \times 1200 \times 3 = 21600$ 。特 征选择层有6个单个卷积层,每个卷积层的特征 图长度、卷积核数都是1200、1,同上计算出特征 选择部分的计算复杂度为 $T_{fs} = 7200$ 。分类层由 4个卷积层堆叠构成,4个卷积层的特征图长度、 卷积核数都是1200、3,同上可得,分类层的计算 复杂度为 $T_e = 14400$ 。

综上可知,本文所设计的网络计算复杂度为 $T_{total} = T_{fe} + T_{fs} + T_{e} = 43 200$ 。使用相同方式计算 其他对比网络的计算复杂度,如表 2 所示。

表 2 网络模型计算复杂度

Tab. 2 Network model ca	lculation complexity
网络	计算复杂度
$IQCNet^{[16]}(8, 32, 3)$	172 800
ORACLE ^[17]	816 384
CNN-DLRF ^[18]	347 456
MSFESNet	43 200
LSTM ^[20]	685 498
CLSTM ^[21]	1 282 946

由表2可知,与其他网络相比,本文所设计的 MSFESNet 具有最低的计算复杂度。除此之外, 本文在相同的软硬件平台上使用相同数据对所有 网络进行了训练。不同网络的模型参数数量与训 练时间如表3所示。

表 3 网络模型参数数量及训练时间

Tab. 3	Network	model	parameters	and	training	time
--------	---------	-------	------------	-----	----------	------

网络	参数数量	训练时间/s
IQCNet ^[16] (8,32,3)	22 773	397
ORACLE ^[17]	7 584 367	1 329
CNN-DLRF ^[18]	334 373	227
MSFESNet	137 949	136
LSTM ^[20]	200 853	602
CLSTM ^[21]	1 612 053	501

从表3中可以看出,本文所提网络与其他网 络相比,在相同的软硬件平台上对同一数据进行 一轮训练所需的时间是最少的,仅需136 s。

结论

本文提出基于多尺度特征提取与特征选择网 络的辐射源识别方法。该方法通过多尺度特征提 取网络提取辐射源信号中的浅层特征和多尺度特 征,再通过特征选择网络对浅层特征和多尺度特 征进行降维和特征选择操作,这样既可以充分利 用辐射源信号的浅层特征和多尺度特征,提高辐 射源识别准确率,又能降低网络参数数量、减小网 络运算时间。

参考文献(References)

[1] 徐涛,刘章孟,郭福成.基于高维重频特征的雷达辐射源 识别方法[J]. 现代雷达, 2022, 46(4): 1-7. XU T, LIU Z M, GUO F C. A radar radiation source identification method based on high-dimensional re-frequency features [J]. Modern Radar, 2022, 46 (4): 1 - 7. (in Chinese)

- [2] LECUN Y, BENGIO Y, HINTON G. Deep learning [J]. Nature, 2015, 521: 436-444.
- [3] 黄界生. 基于深度学习的计算机视觉中图像检索算法研 究[J]. 信息技术与信息化, 2022(9): 181-184. HUANG J S. Research on image retrieval algorithm in computer vision based on deep learning [J]. Information Technology and Informatization, 2022 (9): 181 - 184. (in Chinese)
- [4] 杜宇宁, 刘其文. 深度学习框架在计算机视觉领域的应 用[J]. 中国安防, 2022(5): 34-40. DU Y N, LIU Q W. Application of deep learning framework in computer vision [J]. China Security & Protection, 2022(5): 34 - 40. (in Chinese)
- [5] 卢宏涛,罗沐昆.基于深度学习的计算机视觉研究新进 展[J]. 数据采集与处理, 2022, 37(2): 247-278. LU H T, LUO M K. Survey on new progresses of deep learning based computer vision [J]. Journal of Data Acquisition and Processing, 2022, 37(2): 247 - 278. (in Chinese)
- [6] KONG M X, ZHANG J, LIU W F, et al. Radar emitter identification based on deep convolutional neural network [C]// Proceedings of the 2018 International Conference on Control, Automation and Information Sciences (ICCAIS), 2018: 309 - 314.
- 殷雪凤,武斌.基于深度学习的雷达辐射源识别算 [7] 法[J]. 航天电子对抗, 2021, 37(1):7-11. YIN X F, WU B. Radar emitter identification algorithm based on deep learning [J]. Aerospace Electronic Warfare, 2021, 37(1): 7 – 11. (in Chinese)
- [8] 赵妮. 基于深度学习的雷达辐射源智能识别[D]. 成都: 电子科技大学,2022. ZHAO N. Intelligent recognition of radar emitter based on deep learning [D]. Chengdu: University of Electronic Science and Technology of China, 2022. (in Chinese)
- XIAO Z L, YAN Z Y. Radar emitter identification based on [9] feedforward neural networks [C]//Proceedings of the 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), 2020: 555 -558
- WANG X B, HUANG G M, MA C S, et al. Convolutional [10] neural network applied to specific emitter identification based on pulse waveform images [J]. IET Radar, Sonar & Navigation, 2020, 14(5): 728-735.
- [11] HANNA S S, CABRIC D. Deep learning based transmitter identification using power amplifier nonlinearity [C]// Proceedings of the 2019 International Conference on Computing, Networking and Communications (ICNC), 2019:674-680.
- [12] 何遵文, 侯帅, 张万成, 等. 通信特定辐射源识别的多特 征融合分类方法[J]. 通信学报, 2021, 42(2): 103 -112.

HE Z W, HOU S, ZHANG W C, et al. Multi-feature fusion classification method for communication specific emitter identification [J]. Journal on Communications, 2021, 42(2): 103 - 112. (in Chinese)

张磊, 吴颖. 基于深度学习算法的 HPLC 通信信号自动调 [13] 制识别研究[J]. 通信电源技术, 2020, 37(10): 46-48. ZHANG L, WU Y. Research on automatic modulation recognition of HPLC communication signal based on deep learning algorithm [J]. Telecom Power Technology, 2020, 37(10): 46 - 48. (in Chinese)

- [14] QIAN Y H, QI J, KUAI X Y, et al. Specific emitter identification based on multi-level sparse representation in automatic identification system [J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 2872 - 2884.
- [15] 周鑫,何晓新,郑昌文.基于图像深度学习的无线电信号 识别[J].通信学报,2019,40(7):114-125.
 ZHOU X, HE X X, ZHENG C W. Radio signal recognition based on image deep learning [J]. Journal on Communications, 2019, 40(7):114-125. (in Chinese)
- [16] 崔天舒,黄永辉,沈明,等.面向射频指纹识别的高效 IQ 卷积网络结构[J].国防科技大学学报,2022,44(4): 180-189.

CUI T S, HUANG Y H, SHEN M, et al. High-efficiency IQ convolutional network structure for radio frequency fingerprint identification [J]. Journal of National University of Defense Technology, 2022, 44(4): 180 – 189. (in Chinese)

[17] SANKHE K, BELGIOVINE M, ZHOU F, et al. ORACLE: optimized radio classification through convolutional neural networks [C]//Proceedings of the IEEE INFOCOM 2019IEEE Conference on Computer Communications, 2019: 370 – 378.

- [18] MERCHANT K, REVAY S, STANTCHEV G, et al. Deep learning for RF device fingerprinting in cognitive communication networks[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 160-167.
- [19] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the Inception architecture for computer vision [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 2818 – 2826.
- [20] 刘括然、基于 LSTM 的雷达辐射源识别技术[J]. 舰船电子工程, 2019, 39(12):92-95.
 LIU K R. Radar emitter recognition technology based on LSTM[J]. Ship Electronic Engineering, 2019, 39(12):92-95.(in Chinese)
- [21] 许全,谭守标,孙翔,等. 基于 1D-CNN-LSTM 的特定辐射源识别方法[J].现代计算机,2022,28(12):30-34,55.
 - XU Q, TAN S B, SUN X, et al. Specific emitter identification method based on 1D-CNN-LSTM [J]. Modern Computer, 2022, 28(12): 30 – 34, 55. (in Chinese)