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Research progress on intelligent flow field modeling
method for aircraft

ZHANG Hao, SHEN Yang, HUANG Wei" , ZHAO Zhentao, AN Kai, LIU Shuangxi
(College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China)

Abstract; Intelligent flow field modeling methods, by integrating the strengths of deep learning in feature extraction and dynamic response
prediction with architectural innovation potential in MDO ( multidisciplinary design optimization) , have emerged as research hotspot for achieving
efficient modeling of complex flow systems and enhancing high-dimensional performance. The state-of-the-art in intelligent flow field modeling was
systematically reviewed from two perspectives; data-driven approaches and physics-constrained methodologies. Three critical challenges, including
acquisition of high-fidelity data, representation of complex boundary geometries, and establishment of robust physical constraints, were identified.
Furthermore, a joint modeling framework that integrated aerodynamics and multidisciplinary coupling effects was expected to revolutionize the next
generation of aircraft MDO paradigm through multi-scale physical information embedding and adaptive optimization mechanisms. A new idea for the
deep integration of data knowledge and physical mechanisms was provided, aiming to inspire interdisciplinary innovations for intelligent flow field
modeling in aerospace and other fields.
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Fig.1 Pixel based distance field is used as model input™”
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Fig.2 CNN architecture for flow field prediction based on pixel distance field input'®
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Fig.3 U-Net architecture based on coordinate transformation input®’
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Fig.4 Exhibition of flow field prediction based on the VAE model™"’
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model in flow field prediction
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