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飞行器智能流场建模方法研究进展

张　好，沈　洋，黄　伟，赵振涛，安　凯，刘双喜
（国防科技大学 空天科学学院，湖南 长沙　４１００７３）

摘　要：智能流场建模方法通过融合深度学习在特征提取与动态响应预测中的优势，以及在多学科设计
优化（ｍｕｌｔｉｄｉｓｃｉｐｌｉｎａｒｙｄｅｓｉｇｎｏｐｔｉｍｉｚａｔｉｏｎ，ＭＤＯ）架构中的创新潜力，已成为实现复杂流动系统高效建模与高
维性能提升的研究热点。本文从数据驱动方法与物理约束方法两方面系统梳理了智能流场建模的研究现

状，并指出了发展面临的三大关键挑战：高保真数据获取、复杂边界几何特征表达以及鲁棒物理约束的构建。

进一步地，展望了融合气动与多学科耦合效应的联合建模框架，或能通过多尺度物理信息嵌入与自适应优化

机制，革新下一代飞行器ＭＤＯ范式。提供了数据知识与物理机理的深度融合新思路，旨在推动智能流场建
模在航空航天等领域的跨学科创新。
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　　飞行器学科间耦合严重且高度非线性、建模
难度大、大规模计算效率低、准确预测难，与流场

特性密切相关，而高超声速流场的计算复杂性对

相关学科建模提出了严峻挑战，进而限制了多学

科 设 计 优 化［１］ （ｍｕｌｔｉｄｉｓｃｉｐｌｉｎａｒｙ ｄｅｓｉｇｎ
ｏｐｔｉｍｉｚａｔｉｏｎ，ＭＤＯ）的整体效率。高速流场建模
依赖 于 计 算 流 体 力 学 （ｃｏｍｐｕｔａｔｉｏｎａｌｆｌｕｉｄ
ｄｙｎａｍｉｃｓ，ＣＦＤ）的反复、大量高成本模拟，但是对

人工经验的依赖导致数值模拟的自动化实现困

难，这成为ＭＤＯ框架效率的重要瓶颈。
近年来，随着人工智能技术的蓬勃发展，具备

强大非线性拟合能力的深度学习作为其重要分

支，在图像处理［２－４］、自然语言处理［５］等领域取得

了突破性的进展，并逐渐在其他工业领域的应用

中展现出广泛潜力。为了探究深度学习技术与飞

行器ＭＤＯ结合的系统性创新架构，研究以深度
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学习代理模型为主体的流场建模方法至关重

要［６－８］。随着计算机技术的发展与 ＣＦＤ数据在
飞行器设计领域内的积累，智能流场建模展现出

巨大的发展空间。

智能流场建模往往通过深度学习算法来分

析和重构复杂流体力学现象。该方法通过端到

端学习直接建立几何、流场与目标性能间的隐

式映射关系，能够从大规模流场数据或物理方

程的约束中学习潜在模式，构建可以有效捕捉

复杂流动特征的模型，适用于 ＭＤＯ中的流场分
析任务［９］。

针对智能流场建模已有部分综述工作，如：

Ｆａｒｏｕｇｈｉ等［１０］着重于物理机理对科学计算的影

响，王泽等［１１］总结了基于数据驱动的气动热建模

方法，Ｗａｎｇ等［１２］、Ｈａｋｅｅｍ等［１３］和 Ｌｉｕ等［１４］先后

梳理了智能流场建模的技术发展现状、面临的挑

战并对未来发展进行了展望。本文在参考上述

工作的基础上，创新性地首先按照二维和三维

流场问题对基于数据驱动的方法进行了研究综

述，然后以强约束和弱约束对物理增强方法进

行了归纳总结，最后结合与 ＭＤＯ框架的耦合关
系对其进行了现有技术总结和展望。如表１所
示，根据精度表现、计算效率、数据需求、适用场

景以及核心特性（优势与局限）五个方面将经典

智能流场预测模型进行归纳整理，方便读者进

行对比选择。

表１　智能流场预测模型特点
Ｔａｂ．１　Ｃｈａｒａｃｔｅｒｉｓｔｉｃｓｏｆｉｎｔｅｌｌｉｇｅｎｔｆｌｏｗｆｉｅｌｄｐｒｅｄｉｃｔｉｏｎｍｏｄｅｌｓ

模型类型 精度表现 计算效率 数据需求 适用场景 核心特性

卷积神经网络
像素化损失

严重
架构内在高效 大量标签数据 流场识别

优势：高效局部特征提取

局限：非结构化适配差

点云网络 几何细节保留 采样策略敏感 足够密度点云 复杂几何边界
优势：几何泛化性强

局限：稀疏数据敏感

图卷积网络 图结构适配强 对稀疏图高效 明确拓扑关系 流场重构
优势：网络信息充分利用

局限：几何泛化性差

物理信息神经

网络
依赖训练设置 迭代效率低 无数据监督

微分方程求解

（正／逆向问题）
优势：物理可解释性

局限：复杂方程收敛难

神经算子 依赖数据分布 高效算子映射 场数据支撑 参数化场
优势：函数空间映射

局限：网格适配受限

１　数据驱动的智能流场建模方法

近年来，数据驱动的深度学习模型在流场建

模领域展现出革命性突破，其通过端到端非线性

映射能力突破了传统基于人工定义变量集与经验

闭合模型的局限性，显著提升了泛化构型的跨工

况预测性能［１５］。由于这类模型能够显著提升流

场响应速度，已在航空航天等领域获得了广泛关

注。随着ＣＦＤ数据量的快速增长，研究人员迫切
需要开发能够高效处理和分析复杂流场的工具，

以减少对显式物理建模的依赖。研究者们不仅对

基于数据驱动方法的二维流场建模进行了方法探

索，且尝试对更贴近于工业实际的三维流场建模

提供突破方案。

１．１　二维流场建模

在二维流场建模的研究中，深度学习方法已

取得了显著进展，尤其是在航空航天设计领域的

应用。近年来，卷积神经网络 （ｃｏｎｖｏｌｕｔｉｏｎａｌ
ｎｅｕｒａｌｎｅｔｗｏｒｋｓ，ＣＮＮ）作为基础模型被大规模地
应用于流场建模研究。Ｚｈａｎｇ等［１６］的研究展示

了ＣＮＮ在预测翼型升力系数中的应用，尽管该模
型未能实现对整个流场的全面预测，但其特征提

取方法为后续研究提供了重要启示。在此基础

上，Ｂｈａｔｎａｇａｒ等［１７］的研究进一步验证了使用

ＣＮＮ进行翼型流场建模的可行性，如图１所示，
该研究通过像素格式的距离场表示翼型几何形

状，成功应用于二维流场的预测。文献［１８－１９］
进行了类似的研究，也将输入翼型处理为像素化

图像，并采用ＣＮＮ进行翼型流场的预测与逆向设
计。Ｓｅｋａｒ等［１８］的研究表明，训练后的模型在面

对未见过的翼型时仍能保持较高的预测精度，展

现出ＣＮＮ强大的泛化能力，特别是在有限数据量
条件下表现优异。

·２·
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图１　基于像素的距离场被用于模型输入［１７］

Ｆｉｇ．１　Ｐｉｘｅｌｂａｓｅｄｄｉｓｔａｎｃｅｆｉｅｌｄｉｓｕｓｅｄａｓｍｏｄｅｌｉｎｐｕｔ［１７］

Ｄｕｒｕ等［２０］的研究继续采用距离场作为输入

特征，通过建立如图２所示的ＣＮＮ架构有效预测
了跨声速翼型的流场，展现了模型在多种工况下

的强适应性和稳健性。随后，其他多项研究［２１－２６］

进一步验证了 ＣＮＮ在不同工况条件下的预测准
确性，证明了其在变工况场景中的推测能力。Ｈｕｉ
等［２７］则针对ＲＡＥ２８２２翼型，基于ＣＮＮ识别自由

网格变形参数化设计特征，训练模型不仅提高了

气动外形设计的效率，还为设计过程提供了更具

解释性的输出，有力支持于气动优化。Ｔｈｕｅｒｅｙ
等［２８］通过将流场投影至均匀笛卡儿网格，提出了

基于ＵＮｅｔ神经网络（一种多个ＣＮＮ模块组成的
编码器－解码器架构）的图像到图像的端到端映
射方法，建立了翼型几何、流动条件与速度场、压

力场之间的关联映射。

然而，以上针对像素化的ＣＮＮ方法在处理非
结构网格时，插值操作会导致精度的损失。处理

二维复杂边界条件或三维流场时，像素化方法由

于无法准确捕捉几何特征的细节，会严重阻碍模

型的泛化表现。Ｃｈｅｎ等［２９］则继续基于 ＵＮｅｔ神
经网络，提出了一种基于坐标变换的流场预测方

法，如图３所示。相较于直接的像素化方法，该技
术通过自适应坐标变换保留了近壁面区域的流场

细节。Ｈｕ等［３０］提出 ＭｅｓｈＣｏｎｖ算子，构建了更
具鲁棒性的网格空间信息表示能力的模型，实现

了网格而非传统像素化的流场重构模式。

图２　基于像素距离场输入的流场预测ＣＮＮ架构［２０］

Ｆｉｇ．２　ＣＮＮａｒｃｈｉｔｅｃｔｕｒｅｆｏｒｆｌｏｗｆｉｅｌｄｐｒｅｄｉｃｔｉｏｎｂａｓｅｄｏｎｐｉｘｅｌｄｉｓｔａｎｃｅｆｉｅｌｄｉｎｐｕｔ［２０］

图３　基于坐标变换输入的ＵＮｅｔ架构［２９］

Ｆｉｇ．３　ＵＮｅｔａｒｃｈｉｔｅｃｔｕｒｅｂａｓｅｄｏｎｃｏｏｒｄｉｎａｔｅｔｒａｎｓｆｏｒｍａｔｉｏｎｉｎｐｕｔ［２９］

　　为了更有效地捕捉流场结构，学者们［３１－４０］研

究探索了ＣＮＮ以外的深度学习模型在流场建模
中的应用。Ｗａｎｇ等［３１］训练了一个变分自动编码

器（ｖａｒｉａｔｉｏｎａｌａｕｔｏｅｎｃｏｄｅｒ，ＶＡＥ），其中编码器将

流场图像提取为潜在特征，并结合解码器将潜在

特征转换为生成的流场图像。进一步结合多层感

知机（ｍｕｌｔｉｌａｙｅｒｐｅｒｃｅｐｔｒｏｎ，ＭＬＰ）结构，连接翼型
控制点输入和上述提取的潜在特征，实现在翼型

·３·
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周围流动空间的准确预测与快速收敛，其预测效

果如图４所示。Ｌｉｕ等［３２］基于相似的思路，将翼

型的类别 －形状变换（ｃｌａｓｓｓｈａｐｅｔｒａｎｓｆｏｒｍａｔｉｏｎ，
ＣＳＴ）参数与全连接神经网络结合，用于气动设计
优化。相对于此前的ＣＮＮ模型研究，这种设计使

得它们的泛化能力在参数化范围之外的场景中表

现受限。然而，这些模型的有效性依赖于具体的

参数化方法，因此应用场景受到限制，无法适应更

为复杂、非参数化的几何形状和广泛的流场建模

需求。

图４　基于ＶＡＥ模型的流场预测展示［３１］

Ｆｉｇ．４　ＥｘｈｉｂｉｔｉｏｎｏｆｆｌｏｗｆｉｅｌｄｐｒｅｄｉｃｔｉｏｎｂａｓｅｄｏｎｔｈｅＶＡＥｍｏｄｅｌ［３１］

　　在直接输入几何形状的建模研究方面，学者
们［３３－３６］研究采用了实际的形状几何作为模型输

入，利用自动编码器（ａｕｔｏｅｎｃｏｄｅｒ，ＡＥ）基础框架
或类似的全连接神经网络结构，实现了翼型的准

确表达。相较于此前普遍采用的像素图像表达，

这些方法因其在建模质量和计算效率上的优势而

被广泛认可。Ｗａｎｇ等［３３］提出联合 ＶＡＥ和生成
对抗网络（ｇｅｎｅｒａｔｉｖｅａｄｖｅｒｓａｒｉａｌｎｅｔｗｏｒｋ，ＧＡＮ）的
端到端翼型生成优化框架，利用ＶＡＥ将翼型坐标
序列压缩为低维潜变量，捕捉几何与气动特征的

隐式关联，利用 ＧＡＮ通过对抗训练生成平滑翼
型。Ｗｕ等［３４］在翼型气动系数的预测中，也直接

利用几何坐标作为全连接神经网络的输入，展现

了较高水平的预测精度。此外，Ｄｅｎｇ等［３５］设计

了改进的视觉变换器（ｖｉｓｉｏｎｔｒａｎｓｆｏｒｍｅｒ，ＶｉＴ）用
于超临界翼型跨声速流场预测，首次将 ＶｉＴ的全
局注意力机制与编码器 －解码器结构结合，显著
提升了对激波、分离流等复杂流动特征的捕捉能

力。采用几何编码与激波优化的协同设计，构建

端到端预测框架，直接输入翼型几何与流动条件，

并通过预训练－微调框架，为实际工程中数据稀
缺问题提供了新思路。Ｗａｎｇ等［３６］提出了组合自

编码器（ｃｏｍｂｉｎｅｄａｕｔｏｅｎｃｏｄｅｒ，ＣＡＥ）网络架构设
计，将几何编码与流动条件融合作为输入，直接预

测气动系数与压力分布。ＣＡＥ通过分离几何特
征提取（ＡＥ）与物理量预测（ＭＬＰ），简化了模型
复杂度；通过在大规模数据集上预训练 ＡＥ模块，
并在小数据集上微调ＭＬＰ模块，显著提升了小样
本场景下的泛化能力。

另外，基于点云的方法通过直接利用网格点

数据，准确表达几何边界的同时，避免了插值的精

度损失，具有更加灵活的数据处理形式，在二维问

题的研究［３７－４１］中表现优异，也更有潜力拓展到三

维流场预测。Ｋａｓｈｅｆｉ等［３７－３８］提取网格点坐标信

息作为点云以表示流场空间，展现了超越之前流

场建模研究的形状泛化能力，所形成的对不同几

何体的预测如图５（ａ）所示，良好的泛化能力意味
着单个模型可以用于多种场景的流场预测。为了

更完整地表达几何关系，有研究［３９－４１］不仅输入点

云还输入点间拓扑关系，如 Ｃｈｅｎ等［３９］提出将图

神经网络（ｇｒａｐｈｎｅｕｒａｌｎｅｔｗｏｒｋ，ＧＮＮ）直接应用于
贴体三角形网格，而非传统的规则像素网格。

Ｓｔｒｎｉｓｃｈ等［４０］也提出基于 ＧＮＮ直接处理大规模
变尺寸二维点云的学习框架，如图５（ｂ）所示成功

·４·
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（ａ）小规模点云［３７］

（ａ）Ｓｍａｌｌｓｃａｌｅｐｏｉｎｔｃｌｏｕｄ［３７］

（ｂ）大规模点云［４０］

（ｂ）Ｌａｒｇｅｓｃａｌｅｐｏｉｎｔｃｌｏｕｄ［４０］

图５　点云模型在流场预测中的形状泛化能力
Ｆｉｇ．５　Ｓｈａｐｅｇｅｎｅｒａｌｉｚａｔｉｏｎａｂｉｌｉｔｙｏｆｐｏｉｎｔｃｌｏｕｄ

ｍｏｄｅｌｉｎｆｌｏｗｆｉｅｌｄｐｒｅｄｉｃｔｉｏｎ

预测绕翼型的流场分布，验证了方法的几何泛化

能力。Ｌａｎ等［４１］基于ＧＮＮ的深度学习框架，利用
大规模点云数据预测叶栅跨声速流场。通过多层

图结构，模型能够同时捕捉流场的激波分布和边

界层分离，并直接处理非结构化点云数据。相较

于传统ＣＦＤ方法，该框架在保证精度的同时，预
测速度提升了近４倍，体现了数据驱动模型在加
速复杂流场模拟中的潜力。Ｘｉｅ等［４２］提出了一种

结合图卷积网络（ｇｒａｐｈｃｏｎｖｏｌｕｔｉｏｎａｌｎｅｔｗｏｒｋ，
ＧＣＮ）和循环神经网络（ｒｅｃｕｒｒｅｎｔｎｅｕｒａｌｎｅｔｗｏｒｋ，
ＲＮＮ）的新型降阶模型，用于预测圆柱体周围的
非结构化瞬态流场序列。

综上所述，基于数据驱动的智能流场建模方

法已成为备受关注的研究方向。尽管目前的研究

主要集中在二维翼型的预测上，但通过引入新模

型和不同的几何表达方式，已有研究推动了更复

杂流场建模场景的探索。这些研究不仅验证了模

型在预测精度和适应性方面的潜力，也为飞行器

复杂流场建模的发展提供了新的思路。

１．２　三维流场建模

在飞行器设计优化中，具有形状泛化能力的

三维流场模型需求尤为突出，然而现有的流场建

模研究大多集中于二维对象。二维流场建模难以

向三维拓展的主要原因在于维度扩展带来了指数

级增长的数据处理规模。单个飞行器形状及其流

场数据量极为庞大，现有模型难以构建通用的三

维几何特征提取模式。具体的技术瓶颈在于，参

考ＣＦＤ数值模拟，网格的数量和质量对于获得准
确的流场计算至关重要，而主流的像素化几何表

达难以通过合理的计算资源满足这一需求。这一

限制导致三维流场建模未能从 ＣＮＮ等模型技术
的快速发展中获得同等的进展。尽管目前针对三

维流场建模的研究较为有限，但它们为未来工业

级复杂流场建模的探索提供了重要的启示。

在当前有限的研究中，Ｌｉ等［４３］通过图６所示
的ＳＡＨＦＮｅｔ架构预测三维飞行器的表面热通
量，该模型通过表面图像合并局部表面坐标来增

强特征构造。由图６可以观察到模型通过多个层
级的融合设计，提取了飞行器的全局形状，在最终

的测试结果中展现了一定的形状泛化性能。

Ｓａｂａｔｅｒ等［４４］开发了全连接神经网络模型的飞行

器气动预测方法，旨在通过减少ＣＦＤ仿真的计算
成本来快速预测飞机表面压力分布。此工作主要

处理同一形状下，不同位置、不同工况时的流动特

性。因为模型的输入是飞行器几何离散坐标，彼

此之间相互孤立，不具备全局几何提取的结构，因

而缺乏对其他飞行器形状的应用能力。

基于点云网络的研究在三维场景上展现出优

异的适用性，如Ｘｉｏｎｇ等［４５］提出了一种基于点云

深度神经网络的气动预测模型，输入 ＯＮＥＲＡＭ６
机翼表面形状的三维点云数据进行训练，模型不

仅能提取三维翼型的几何特征，而且能经过分支

输入工况变量马赫数和攻角，实现不同飞行条件

下的气动预测。通过将模型应用于气动形状优

化，验证了模型的有效性。Ｓｈｅｎ等［４６］针对数据

驱动深度学习模型在飞行器表面流场的高维数据

处理问题，提出了能有效提取飞行器形状特征的

深度学习建模方法，如图７所示。通过设计图８
所示的基于ＰｏｉｎｔＮｅｔ＋＋模型的飞行器表面流场
预测框架，解决了不同构型下流场建模的统一性

问题。针对模型训练过程中样本标签不足的问

题，继而提出了 ＰｏｉｎｔＮｅＸｔＲｅｇ框架［４７］，并通过小

样本迁移学习，针对三维飞行器几何外形进行了

跨设计维度的预测研究。另外，通过将来流物理

·５·
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图６　ＳＡＨＦＮｅｔ网络架构［４３］

Ｆｉｇ．６　ＳＡＨＦＮｅｔｎｅｔｗｏｒｋａｒｃｈｉｔｅｃｔｕｒｅ［４３］

图７　表面流场模型设计方法
Ｆｉｇ．７　Ｄｅｓｉｇｎｍｅｔｈｏｄｏｌｏｇｙｆｏｒｓｕｒｆａｃｅｆｌｏｗｆｉｅｌｄｍｏｄｅｌｉｎｇ

信息融入ＰｏｉｎｔＮｅＸｔＲｅｇ框架，针对单一目标飞行
器实现了对不同来流条件下表面压力场的更精确

预测，进一步验证了此框架的有效性［４８］。进一

步，Ｓｈｅｎ等针对深度学习模型在高速流动干扰中
长距离推理能力缺失问题，提出了如图９所示可
推广至空间流场的通用模型设计方法。通过采用

改进的注意力机制对流场空间特征解耦，实现了

长距离信息传播，使得模型能够在稀疏流场数据

上进行训练，捕捉包括激波在内的长距离复杂流

动现象，展现突出的准确性和泛化能力［４９］。

图８　基于ＰｏｉｎｔＮｅｔ＋＋深度学习模型的飞行器表面流场预测框架［４６］

Ｆｉｇ．８　ＡｉｒｃｒａｆｔｓｕｒｆａｃｅｆｌｏｗｆｉｅｌｄｐｒｅｄｉｃｔｉｏｎｆｒａｍｅｗｏｒｋｂａｓｅｄｏｎＰｏｉｎｔＮｅｔ＋＋ｄｅｅｐｌｅａｒｎｉｎｇｍｏｄｅｌ［４６］

图９　空间流场模型设计方法［４９］

Ｆｉｇ．９　Ｄｅｓｉｇｎｍｅｔｈｏｄｏｌｏｇｙｆｏｒｓｐａｔｉａｌｆｌｏｗｆｉｅｌｄｍｏｄｅｌｉｎｇ［４９］

　　通过充分利用图１０所示的网格拓扑关系，
Ｍａｓｓｅｇｕｒ团队设计了多网格图卷积自编码器［５０］，

通过层次化图结构融合多尺度流场特征，在三维

非结构化网格上完成稳态流场端到端预测。

Ｈｉｎｅｓ等［５１］采用 ＧＮＮ对三维飞行器表面压力场

图１０　以节点特征和边权重的图形式表征网格［５０］

Ｆｉｇ．１０　Ｍｅｓｈｒｅｐｒｅｓｅｎｔｅｄａｓａｇｒａｐｈｗｉｔｈｎｏｄｅ

ｆｅａｔｕｒｅｓａｎｄｅｄｇｅｗｅｉｇｈｔｓ［５０］

进行建模，在保留非结构化网络拓扑属性的同时，

实现了关于６个参数的外推预测并且涉及几何控
制点的微小变形。但现有图学习方法受限于邻域

节点拓扑关系的显式建模需求，其计算复杂度随

·６·
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网格规模呈指数增长，难以实现对复杂几何的泛

化。Ｚｈａｎｇ等［５２］提出一种基于残差图卷积网络

的初始流场设定方法，通过将网格转化为图结构

并设计改进的图神经网络，实现对任意类型网格

的流场预测。该方法并非直接替代 ＣＦＤ，而是作
为辅助工具为其提供高质量初始场，在保证计算

精度的同时提升收敛效率。

也有部分学者［５３－５４］结合场反演与符号回归

方法，尝试将显示的数学理论公式赋予抽象的数

据知识形式，即将黑箱的数据驱动模型白箱化。

如Ｓｕｎ等［５３］提出了一套覆盖数据生成、特征构

建、模型训练到部署验证的完整数据驱动湍流建

模流程。与传统基于 ＲＡＮＳ（Ｒｅｙｎｏｌｄｓａｖｅｒａｇｅｄ
ＮａｖｉｅｒＳｔｏｋｅｓ）方程的方法相比，该框架通过场反
演与符号回归的结合，提升了模型分离流、失速特

性下的复杂流动预测能力，显著改善了三维高升

力构型的失速预测精度。这一流程的标准化为数

据驱动模型从理论到工程应用的转化提供了范

式。Ｚｈａｎｇ等［５４］同样使用场反演与符号回归的

结合修正，并采用迁移策略，验证了修正项在不同

湍流模型间的可移植性。该方法突破了传统数据

驱动模型局限于单一方程框架的瓶颈，为复杂构

型的多场景应用奠定基础。

上述流场建模研究在三维空间中的成功拓展

均源自其对飞行器形状在模型中的特征表达创

新，分析认为具有如下特点：

１）模型的主要输入为飞行器表面的几何特
征，通过集中学习这些表面特征来捕捉关键的流

场信息。这一设计策略显著不同于二维流场建模

方法，后者通常依赖大量空间内的流场数据和

ＣＦＤ的精细网格。相比之下，三维流场建模设计
中倾向于减少对大规模网格的依赖，目的是使计

算成本可控，但需要同时兼顾对复杂三维形状的

敏感性。

２）模型展示了对不同形状进行泛化的能力。
这一能力可能得益于模型在训练过程中建立了全

局几何特征表达，即通过捕捉飞行器整体的几何

结构，模型能够学习形状与流场间的潜在映射关

系。这种全局性的特征提取策略在复杂构型下尤

为有效，因为它避免了对局部流场数据的过度依

赖，提升了模型在不同构型下的适应性。

３）尽管模型表现出一定的形状泛化能力，但
当训练样本数量有限时，模型在未见形状上的预测

精度显著下降。这表明深度学习模型在三维飞行

器形状建模中，仍然需要大量高质量样本来支撑其

泛化能力，特别是在构型形状变化较大的情况下。

数据驱动模型在流场预测中体现出高精度、

高效性和强泛化性。然而，模型对高质量数据的

依赖及“黑箱”特性仍是工业落地的关键挑战。

实现从经验驱动向数据－物理混合驱动的范式转
变，其与白箱化的可解释性增强技术和物理约束

的协同将是未来突破方向。

２　物理约束的智能流场建模方法

近年来，智能流场预测方法逐渐从纯数据驱

动转向与物理约束的融合范式，在提升预测精度

的同时增强模型鲁棒性和数据效率，为复杂流体

动力学问题提供了更可靠的解决方案。

２．１　强物理约束

物理 信 息 神 经 网 络［５５］（ｐｈｙｓｉｃｓｉｎｆｏｒｍｅｄ
ｎｅｕｒａｌｎｅｔｗｏｒｋｓ，ＰＩＮＮ）作为一种新兴技术，已在流
场建模领域引起了广泛关注。ＰＩＮＮ通过将流体
力学的基本物理定律融入神经网络的损失函数，

显著增强了模型的物理一致性。

图１１　基于ＰＩＮＮ的欧拉方程求解原理［５８］

Ｆｉｇ．１１　ＳｃｈｅｍａｔｉｃｏｆＰＩＮＮｆｏｒｔｈｅＥｕｌｅｒｅｑｕａｔｉｏｎｓ［５８］

许多研究利用ＰＩＮＮ针对经典的层流和湍流
问题进行了稀疏数据条件下的流体动力学模

拟［１０］。例如：Ｒａｏ等［５６］扩展 ＰＩＮＮ至低雷诺数下
瞬态圆柱绕流的模拟，通过时间域离散化与空间

域联合采样，捕捉流场随时间的演化特性，展示了

ＰＩＮＮ在层流模式下的精确建模能力，并证明了其
与传统 ＣＦＤ结果的一致性。Ｈｕ等［５７］以绕圆形

和椭圆粒子的流动案例进一步扩展了 ＰＩＮＮ对不
同二维几何的适应性。Ｍａｏ等［５８］基于ＰＩＮＮ的框
架求解高速空气动力学中的欧拉（Ｅｕｌｅｒ）方程（见
图１１），覆盖了一维接触间断、二维斜激波正向问
题和密度梯度重构、参数辨识的逆问题。通过将

欧拉方程及初／边值条件嵌入损失函数，仅需少量
随机分布点即可捕捉激波位置，但正向问题精度仍

低于传统数值方法。Ｒｅｎ等［５９］将 ＰＩＮＮ扩展至可
压缩定常流动的高雷诺数跨声速圆柱绕流场景，并

对薄边界层域进行了采样及硬约束化改进，针对需

·７·
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二阶导数的ＲＡＮＳ方程与仅一阶导数的Ｅｕｌｅｒ方程
设计梯度权重因子，分别构建了 ＰＩＮＮＲＡＮＳ与
ＰＩＮＮＥｕｌｅｒ方法。这些研究共同表明了ＰＩＮＮ在不
同流体流动形式下的强适应性和广泛应用潜力。

为了提升 ＰＩＮＮ对复杂几何的适应性，
Ｋａｓｈｅｆｉ等［６０］提出使用基于点云的 ＰｏｉｎｔＮｅｔ网络
捕捉不规则计算区域的几何特征，克服了传统

ＰＩＮＮ无法将几何信息融入输出的限制，通过单次
训练即可解决多组高差异性不规则几何的流动问

题，并支持对未见几何的预测；其在后续研究［６１］

中进一步结合 ＫＡＮ（ＫｏｌｍｏｇｏｒｏｖＡｒｎｏｌｄｎｅｔｗｏｒｋ）
提升了多孔介质问题在稀疏观测数据下的预测精

度。Ｋａｎｇ等［６２］提出了一种结合物理信息驱动的

ＰｏｉｎｔＮｅｔ与二次残差网络的集成算法，通过引入
物理守恒原理约束神经网络训练，显著提升了血

流动力学参数的预测精度，首次实现了从稀疏点

云到四维血流动力学参数的直接映射。Ｐｅｎｇ等［６３］

提出将ＧＣＮ与 ＰＩＮＮ结合，ＧＣＮ基于非结构化网
格节点间的邻域关系建模热对流场，ＰＩＮＮ通过嵌
入控制方程至损失函数强化物理约束。这一协同

机制既保留了ＧＣＮ对复杂几何的适应性，又通过
物理规律提升预测精度、减少对数据的依赖。Ｓｈａｏ
等［６４］基于ＯｐｅｎＦＯＡＭ模拟提出ＰＩＧＮＮＣＦＤ模型，
通过物理信息图神经网络＋非结构网格建模，解决
了传统ＣＦＤ计算效率低、数据驱动模型受限于规
则网格的难题，程序流程如图１２所示。

图１２　ＰＩＧＮＮＣＦＤ模型程序流程［６４］

Ｆｉｇ．１２　Ｆｌｏｗｃｈａｒｔｃｏｒｒｅｓｐｏｎｄｉｎｇｔｏｔｈｅ

ｐｒｏｇｒａｍｏｆｔｈｅＰＩＧＮＮＣＦＤ［６４］

针对翼型，在采取像素化输入的 ＰＩＮＮ研究
方面，Ｋａｎ等［６５］首次将交叉注意力机制与 ＰＩＮＮ
结合，选择性地聚焦目标信息的关键维度，增强复

杂流场特征的捕捉能力，确保预测结果符合物理

规律，同时增强模型的可解释性；结合图像信息融

合模块，从飞机几何图像中提取多尺度特征，与飞

行状态参数融合，提升预测精度。Ｌｉｕ等［６６］利用

ＣＮＮ从翼型图像中提取特征，将形状压缩为６个
低维参数，显著降低设计空间维度；采用 ＰＩＮＮ
模型替代 Ｘｆｏｉｌ，解决传统方法的不稳定性，提升
气动预测的鲁棒性，基于近端策略优化的深度

强化学习（ｄｅｅｐｒｅｉｎｆｏｒｃｅｍｅｎｔｌｅａｒｎｉｎｇ，ＤＲＬ）框
架，整合参数降维与性能评估模块，实现端到端

优化。ＣＮＮＰＩＮＮＤＲＬ的深度融合，为高维气动
优化问题提供了高效、稳定的智能解决方案，推

动了数据 －物理融合驱动设计范式在航空航天
领域的应用。

但是对于飞行器的复杂翼型绕流问题，传统

ＰＩＮＮ面临难以捕捉翼型前缘附近的局部剧烈流
动速度梯度突变且对壁面边界条件处理不稳定的

挑战。研究者们多提出高效求解架构，采用端到

端训练策略，直接输出流场分布，避免传统 ＣＦＤ
的网格依赖性。Ａｎｇ等［６７］提出了一种基于 ＰＩＮＮ
的翼型绕流场代理模型，用于预测不同攻角下的

压力与速度分布，并通过物理约束优化模型精度。

刘霞等［６８］把ＰＩＮＮ与ＣＦＤ仿真结果进行融合，在
流场抽样点处的损失函数中增加偏差值，从而提

高了神经网络的建模精度，并于 ＮＡＣＡ００１２翼型
上进行了测试。Ｈａｒｍｅｎｉｎｇ等［６９］通过数据辅助训

练与物理约束的深度融合，为翼型分离流动的高

效预测提供了新范式，推动了 ＰＩＮＮ在复杂气动
问题中的工程化应用。Ｃａｉ等［７０］通过不显式施加

边界条件，仅通过数据驱动与方程残差联合优化，

增强模型对不完整或噪声数据的鲁棒性，并在

ＮＡＣＡ００１２翼型绕流 ＣＦＤ数据中进行了验证。
Ｓａｒｋｅｒ［７１］提出多保真物理信息神经网络，整合
低－高保真仿真数据，通过子网络分层建模多尺
度物理特征，结合自动编码器进行流形对齐，消除

多源数据间的模态差异，提升跨保真度预测的一

致性，显著降低高保真飞行器流场计算需求。

Ｈｕａｎｇ等［７２］提出了一种物理信息神经网络压缩

机制，通过融合知识蒸馏与自适应剪枝技术，解决

了深度学习模型在翼型流场预测中参数冗余与实

时性不足的问题。

关于翼型的设计应用，Ｓｕｎ等［７３］将翼型坐标

和设计参数作为如图１３所示 ＰＩＮＮ模型的输入，

·８·
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通过自适应采样搭配点确保ＮａｖｉｅｒＳｔｏｋｅｓ方程在
全局搜索空间内近似满足，并利用 ＰＩＮＮ的自动
微分特性计算升阻比关于形状参数的梯度，然后

通过优化实现了高效气动设计。Ｗｏｎｇ等［７４］提出

了一种基于低可信度流场数据与物理残差融合的

混合驱动模型，利用低可信度数据提供初始流场

分布、物理残差优化细节特征，用于高雷诺数

（Ｒｅ＝１０×１０６）下翼型的逆向设计。Ｃａｏ等将翼
型形状参数与流动条件整合为高维输入，使单一

模型覆盖工程中所有可能的无黏流场景［７５］；通过

坐标变换将物理空间流动问题映射到规则计算空

间［７６］，简化ＰＩＮＮ对复杂几何的建模难度，提升训
练稳定性，实现了多参数耦合场景下的高效流动

预测与逆向设计。

图１３　基于ＰＩＮＮ的代理模型网络架构［７３］

Ｆｉｇ．１３　ＮｅｔｗｏｒｋａｒｃｈｉｔｅｃｔｕｒｅｕｓｅｄｔｏｃｏｎｓｔｒｕｃｔａＰＩＮＮｂａｓｅｄｓｕｒｒｏｇａｔｅｍｏｄｅｌ［７３］

　　尽管ＰＩＮＮ在众多物理现象建模和应用中展
现出潜力，但其训练过程仍面临显著挑战［７７］，例

如：不同损失项的梯度量级差异大，导致训练不稳

定；自动微分 ＣＦＤ方程的高阶导数时，计算复杂
度随维度指数增长；噪声与稀疏数据的敏感性；传

统ＰＩＮＮ通过损失函数软约束间接引导网络满足
边界条件，但对于复杂几何形状、高阶边界条件、

多物理场耦合场景难以严格保证满足。当前阶段

的ＰＩＮＮ在解决许多前向问题时，其精度和效率
仍不及传统数值方法，短期内难以胜任 ＭＤＯ中
高频次的流场分析任务。

２．２　弱物理约束

算子学习（ｏｐｅｒａｔｏｒｌｅａｒｎｉｎｇ）是深度学习在物
理建模领域的新兴方向，其核心目标是学习无限

维函数空间之间的映射关系，以替代传统数值方

法求解偏微分方程［７８］（ｐａｒｔｉａｌｄｉｆｆｅｒｅｎｃｅｅｑｕａｔｉｏｎ，
ＰＤＥ）。目前主流方法包括ＤｅｅｐＯＮｅｔ［７９］和傅里叶
神经算子［８０］（Ｆｏｕｒｉｅｒｎｅｕｒａｌｏｐｅｒａｔｏｒ，ＦＮＯ），Ｌｕ
等［８１］在应用层面针对这两个神经算子进行了对

比测试。其中，ＤｅｅｐＯＮｅｔ采用分支网络（Ｂｒａｎｃｈ
Ｎｅｔ）编码输入函数，通过主干网络（ＴｒｕｎｋＮｅｔ）在
任意坐标点生成输出函数值。其优势在于解空间

查询的灵活性，但输入函数需在预定义网格上均

匀采样，且训练与测试需保持相同观测网格，往往

限制了其对不同几何的适应性。ＦＮＯ作为神经
算子家族［８２］的代表，通过快速傅里叶变换（ｆａｓｔ
Ｆｏｕｒｉｅｒｔｒａｎｓｆｏｒｍ，ＦＦＴ）将输入映射至频域，利用

低维谱空间实现高效核积分。虽然 ＦＮＯ在均匀
网格大数据场景下计算效率显著，但其频域操作

导致无法处理不规则网格，且对几何拓扑变化

敏感。

针对算子方法存在对新几何结构外推能力不

足的问题，Ｌｉ等［８３］提出一种基于 Ｔｒａｎｓｆｏｒｍｅｒ的
算子框架，通过自注意力捕捉输入函数内部的全

局模式，并通过交叉注意力建模输入函数与任意

查询位置之间的动态关系，无须预设网格结构或

采样模式，适用于不规则或随机采样的输入。

Ｈａｏ等［８４］利用Ｔｒａｎｓｆｏｒｍｅｒ的大规模参数空间，首
次实现对不规则网格和多输入函数的统一建模。

Ｓｈｉｈ等［８５］首次从理论上建立了如图 １４所示以
Ｔｒａｎｓｆｏｒｍｅｒ作为神经算子的通用逼近定理，证明
了其能够近似无限维函数空间中任意连续的非线

性偏微分方程解算子，为Ｔｒａｎｓｆｏｒｍｅｒ在ＰＤＥ求解
中的有效性提供了数学基础。论文通过理论证明

和多个低正则性案例验证了 Ｔｒａｎｓｆｏｒｍｅｒ的通用
逼近性与精度优势。通过灵活编码初始条件、边

界条件和外力项作为输入，Ｔｒａｎｓｆｏｒｍｅｒ无须针对
不同条件重新训练模型即可直接预测对应解。这

种能力在传统数值方法和现有神经算子中难以实

现，尤其适用于多场景工程问题。Ｂｏｙａ等［８６］提

出了物理信息 Ｔｒａｎｓｆｏｒｍｅｒ神经算子（ｐｈｙｓｉｃｓ
ｉｎｆｏｒｍｅｄＴｒａｎｓｆｏｒｍｅｒｎｅｕｒａｌｏｐｅｒａｔｏｒ，ＰＩＮＴＯ），
ＰＩＮＴＯ采用完全基于物理损失残差的训练方式，
摆脱了对大规模仿真或观测数据的依赖，相比传

·９·
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统神经算子需要数据 ＋物理损失的混合训练模
式，这一创新显著降低了数据获取成本。通过引

入基于交叉注意力的迭代核积分算子单元，将

ＰＤＥ解的域点动态映射为与初始／边界条件相关
的表示向量。这种机制使模型能自适应不同边界

条件，无须针对新条件重新训练，突破了现有方法

需重复训练的瓶颈，并实现了在训练时间步之外

的高精度预测。

图１４　基于Ｔｒａｎｓｆｏｒｍｅｒ架构的算子逼近模型［８５］

Ｆｉｇ．１４　Ｔｒａｎｓｆｏｒｍｅｒａｒｃｈｉｔｅｃｔｕｒｅｔｏａｐｐｒｏｘｉｍａｔｅ

ｔｈｅｏｐｅｒａｔｏｒ［８５］

在应用层面，对于复杂几何与通用性提升的

算子学习研究工作已大量开展。Ｓｅｒｒａｎｏ等［８７］利

用基于坐标的输入突破传统神经算子对网格离散

化的依赖，支持非凸域、多孔介质等任意几何形状

的流场预测，给神经算子在实际工程中的几何适

应性问题提供了解决方案。Ｓｈｕｋｌａ等［８８］通过将

翼型变形控制点参数输入分支网络，首次实现了

以ＤｅｅｐＯＮｅｔ作为高效代理模型的气动优化，与梯
度优化算法的结合，验证了其在最大化升阻比任

务中的鲁棒性；将ＤｅｅｐＯＮｅｔ应用于高超声速乘波
器气动热预测，模型在未知攻角下的热流分布预

测精度与ＣＦＤ相当，但计算速度提升千倍以上。
Ｌｉｕ等［８９］针对超临界翼型，提出如图 １５所示
ＤｅｅｐＯＮｅｔＭＬＰＶＡＥ复合架构，实现高效流场特
征建模。在ＶＡＥ中引入了物理约束，将几何参数

化输入ＤｅｅｐＯＮｅｔＭＬＰ，并采用自适应潜在空间优
化策略平衡重构精度与模型泛化性，为气动外形

优化提供了实时流场预测工具。Ｈｅ等［９０］将

ＤｅｅｐＯＮｅｔ框架扩展至参数化三维几何的场预测
任务，输入不仅包含几何的显式网格坐标，还通过

符号距离函数（ｓｉｇｎｄｉｓｔａｎｃｅｆｕｎｃｔｉｏｎ，ＳＤＦ）编码隐
式形状拓扑。ＳＤＦ作为附加输入注入主干网络，
增强了模型对复杂几何边界条件的捕捉能力，解

决了传统方法在非结构化网格上的精度瓶颈。

Ｐａｒｋ等［９１］首次将点云处理框架 ＰｏｉｎｔＮｅｔ集成到
ＤｅｅｐＯＮｅｔ中，直接处理非参数化三维几何点云，
无须网格参数化或重训练。ＤｏＭＩＮＯ模型［９２］同

样采用点云，但通过局部几何信息的动态融合捕

捉多尺度流动现象。

参考ＤｅｅｐＯＮｅｔ结构，Ｘｉｏｎｇ等［９３］提出双分支

网络架构，将神经算子用于自由流条件的泛化建

模，结合ＣＮＮ从翼型图像提取几何特征，实现跨
模态信息的高效融合。Ｌｉ等［９４］提 出 了 由

ＳｈａｐｅＮｅｔ和 ＨｙｐｅｒＮｅｔ两个子网络组成的隐式解
码器。其中 ＳｈａｐｅＮｅｔ基于隐式神经表示，将空间
坐标映射到物理场，直接处理非结构化网格数据；

ＨｙｐｅｒＮｅｔ则生成 ＳｈａｐｅＮｅｔ的权重参数，通过条件
输入（攻角、马赫数）动态调整模型，支持多工况

预测。

Ｄｅｎｇ等［９５］提出了一种结合贴体网格变换与

深度学习技术的非定常流场时序预测方法，通过

融合ＵＮｅｔ与ＦＮＯ的优势，实现了复杂流动场景
下的高效高精度预测。Ｌｉ等［９６］提出了如图１６所
示几何变形与谱算子结合的 ＧｅｏＦＮＯ框架，通过
可学习的变形网络将不规则物理域映射到潜在空

间的均匀网格，这种物理域到潜在域的坐标变换

既保留了 ＦＦＴ的计算效率，又支持复杂几何，避
免了直接插值的信息损失。另外，此团队在文

献［９７－９８］中分别研究了 ＧｅｏＦＮＯ潜在空间映
射对非周期条件的兼容性，以及利用图结构处理

图１５　ＤｅｅｐＯＮｅｔＭＬＰＶＡＥ模型框架示意图［８９］

Ｆｉｇ．１５　ＳｋｅｔｃｈｏｆｔｈｅＤｅｅｐＯＮｅｔＭＬＰＶＡＥｍｏｄｅｌｆｒａｍｅｗｏｒｋ［８９］
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图１６　几何感知的傅里叶神经算子（ＧｅｏＦＮＯ）：一种具有几何形变的ＦＮＯ框架［９６］

Ｆｉｇ．１６　ＧｅｏｍｅｔｒｙａｗａｒｅＦｏｕｒｉｅｒｎｅｕｒａｌｏｐｅｒａｔｏｒ（ＧｅｏＦＮＯ）：ａＦＮＯｆｒａｍｅｗｏｒｋｗｉｔｈｇｅｏｍｅｔｒｉｃｄｅｆｏｒｍａｔｉｏｎ［９６］

输入后将其映射到潜在规则网格上应用 ＦＮＯ进
行快速傅里叶变换的可行性。

Ｗｕ等［９９］在变形基础上引入物理注意力机制

的Ｔｒａｎｓｏｌｖｅｒ算子模型，通过将离散化的计算域
自适应地划分为可学习的柔性形状切片，使相同

物理状态的网格点归入同一切片，实现了几何自

适应的物理建模。Ｓｕｎ等［１００］首次将多模态学习

引入ＰＤＥ建模，可以同时训练多个一维非线性常
系数ＰＤＥ算子，并引入符号模态作为额外约束，
解决了多算子联合训练中常见的不适定问题。模

型不仅预测短期动态，还能通过物理特征的泛化

实现时间外推。对于空气动力学形状设计而言，

快速预测和设计工具是所期望的，算子学习能融

合数据驱动模型已取得的显著性能，并突破输入

维度限制，已成为流场预测领域的重要工具，未来

有望进一步推动ＣＦＤ的智能化革新。
在算子学习之外，Ｙａｎｇ等［１０１］通过 ＶＡＥ模

型，利用巡航条件下的流场作为先验信息，对非设

计工况下的流场进行预测。该模型通过编码器提

取翼型几何特征，并通过解码器生成新的流场图

像，进而结合质量通量约束的损失函数来提高预

测的精度和泛化能力。针对三维复杂构型，Ｗａｎｇ
等［１０２］提出将欧拉方程嵌入双系列残差神经网

络，通过求解欧拉方程近似边界层外缘的物理特

征，并将这些特征作为输入，实现了气动热建模的

物理一致性。这一方法将无黏流场解析与数据驱

动模型结合，克服了传统纯数据驱动模型忽略流

动物理机制的缺陷。Ｍｉｃｈｅｋ等［１０３］使用 ＰＩＮＮ进
行飞行动力学不确定性量化建模，有利于极端飞

行条件下的系统辨识。Ｚｈａｎｇ等［１０４］提出物理信

息机器学习框架，整合氢动力飞机的电、液、机械、

化学多领域物理方程与数据驱动模型，突破传统

单一领域建模的局限性。然后基于 Ｘｉｌｉｎｘ

ＵｌｔｒａＳｃａｌｅ＋ＴＭＶＣＵ１２８ＦＰＧＡ平台，开发并行硬件
加速仿真架构，实现多域系统的实时数字孪生，提

升仿真效率与工程适用性。“物理机理 ＋硬件加
速”的协同创新，为飞机复杂系统设计提供了高

效建模与验证工具。

总之，物理约束建模有效缓解了传统数据驱

动模型对大规模标注数据的依赖，并增强了对物

理规律的遵循性，其对从分系统层面到总体集成

层面的飞行器设计效益提升有显著的发展潜力。

３　总结与展望

智能流场预测在飞行器 ＭＤＯ中展现出巨大
的应用潜力，通过高效的流场分析，该技术能够显

著缩短设计迭代周期，提升整体设计效率。然而，

当前的研究成果在适用范围上仍存在明显局限

性，主要困难在于高保真数据获取、复杂边界几何

特征表达以及鲁棒物理约束的构建。进一步提升

模型的形状泛化能力、预测精度和不同物理场景

中的适用性，是推动流场建模迈向实际应用的关

键挑战。

１）深度学习在高维数据处理和自动特征提
取方面具有强大的学习能力，而主动学习在有效

降低标注成本方面具有显著潜力。若结合深度学

习和主动学习，将在样本质量层面高效提升智能

模型的预测性能。尽管关于主动学习查询策略的

研究相当丰富［１０５－１０６］，但直接将这种策略应用于

深度学习仍然相当困难，核心在于动态样本选择

机制与深度架构的协同创新。

２）现有基于深度学习的流场预测模型在三
维复杂外形与宽速域变工况场景中适应性不足。

当前研究多聚焦于二维简化构型或固定飞行状态
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下的流场建模，而高超声速飞行器真实三维外形

具有非对称气动舵面、多曲率融合特征及跨速域

甚至全速域气动／热力学特性突变等特点，现有模
型在几何特征解耦表征与跨工况参数泛化机制上

存在显著缺陷。物理约束的多模态数据融合、迁

移学习增强的小样本泛化能力有望给予突破。

３）多学科耦合建模的端到端框架尚未突破
跨领域特征交互的技术瓶颈。现有智能预测模型

多局限于单一学科，缺乏对多学科耦合作用的联

合建模能力，原因在于无法通过隐式特征学习建

立跨学科参数的全局关联映射，导致多学科协同

优化效率低下。通过主动学习可以量化耦合敏感

性，实现不确定性传播路径的显式建模，建立基于

智能策略的 ＭＤＯ框架［１０７］，进而基于 ＭＤＯ架构
构建高保真数字孪生体，支持飞行器的在线健康

监测与控制［１０８］。

综上，智能流场建模正从单一学科高精度仿

真向多学科动态耦合演进，而数据驱动方法与物

理约束的结合将成为突破计算复杂度壁垒的关

键。当前研究需进一步解决跨尺度参数传递的保

真度、智能算法的可解释性等核心问题。物理信

息架构有望调和数据驱动预测与基本守恒定律的

矛盾，从而提升新型气动构型的预测外推能力。

持续突破这些技术瓶颈将加速智能流场预测与

ＭＤＯ工作流的深度集成，最终支持多物理约束下
复杂设计空间的高效探索。
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