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Supercritical airfoil flow field prediction. the integration of
Transformer and convolutional neural network

HE Zizhou, TANG Weishao, WANG Yan, YANG Yunjia, ZHANG Yufei®
(School of Aerospace Engineering, Tsinghua University, Beijing 100086, China)

Abstract; To address the challenge of rapid flow field prediction for supercritical airfoils, a hybrid deep learning model, termed TransCNN-
FoilNet, based on two main approaches in current deep learning flow field prediction models—convolutional neural networks and Transformers was
proposed. The model was capable of predicting the flow fields of supercritical airfoils with varying thicknesses at different angles of attack, achieving
up to a 79.5% reduction in the mean absolute error compared to the baseline model. Additionally, a new combined loss function for training the
flow field prediction model was introduced, referred to as the weighted LISSIM loss function. The results demonstrate that this loss function can
improve the prediction of lift and drag coefficients, with the relative error in drag coefficient reduced by up to 17.8% . The proposed model achieves

improved prediction accuracy and generalization performance while reducing complexity, providing a promising tool for fast and reliable flow field

prediction of supercritical airfoils.
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