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超临界翼型流场预测：Ｔｒａｎｓｆｏｒｍｅｒ与卷积神经网络的结合

贺子舟，唐维劭，王　颵，杨韫加，张宇飞

（清华大学 航天航空学院，北京　１０００８６）

摘　要：为解决超临界翼型流场快速预测问题，基于当前深度学习流场预测模型的两种主要思路———卷
积神经网络和Ｔｒａｎｓｆｏｒｍｅｒ，提出一种综合结构的深度学习模型，称为ＴｒａｎｓＣＮＮＦｏｉｌＮｅｔ。该模型能够预测一系
列不同厚度的超临界翼型在不同攻角下的流场，相较于基准模型最高可减少７９５％的平均绝对值误差。还
针对超临界翼型流场预测模型的训练提出了一种新的组合损失函数，称为加权 Ｌ１ＳＳＩＭ损失函数。结果表
明，该损失函数可以改善对升阻力系数的预测，阻力系数相对误差最多可以减少１７８％。所提出的模型实现
了在降低复杂度的同时提升预测准确性和泛化性能，能够为超临界翼型流场的快速可靠预测提供有力支持。
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　　超临界翼型［１］是一种在高亚音速和跨音速

飞行条件下，可提高气动效率的翼型。通过特定

的几何形状，翼型上表面的气流速度可以得到控

制，从而减小超声速区域的大小和激波的强度，进

而减小翼型在高速飞行时产生的激波阻力。因

此，采用超临界翼型可以显著提高飞机的升阻比，

降低燃油消耗。早期的翼型设计优化主要采用风

洞试验［２］的试凑法，这种方法通过反复修型和试

验进行优化，耗费大量人力物力，且时间成本很

高。随着计算流 体 力 学 （ｃｏｍｐｕｔａｔｉｏｎａｌｆｌｕｉｄ
ｄｙｎａｍｉｃｓ，ＣＦＤ）的发展和计算机技术的进步，采
用数值模拟方法对翼型进行优化得到了越来越广

泛的应用［３］。然而，传统的 ＣＦＤ方法［４－５］主要基

于数值求解纳维－斯托克斯（ＮａｖｉｅｒＳｔｏｋｅｓ，ＮＳ）
方程，该方法虽然在理论上比较成熟，但计算成本

高昂，并且该方法依赖于迭代求解偏微分方程，导

致了在求解过程中面临数值稳定性等约束。这些

问题限制了传统方法在迭代设计、多方案比较和



　第１期 贺子舟，等：超临界翼型流场预测：Ｔｒａｎｓｆｏｒｍｅｒ与卷积神经网络的结合

实时流场控制等领域的应用。近年来，深度学习

技术的快速发展为流场预测提供了新的解决方

案［６］，在流场预测任务中，深度学习模型可以从

已知流场数据中学习物理量分布规律，从而预测

出给定几何与工况下的流场物理量分布。

基于卷积神经网络 （ｃｏｎｖｏｌｕｔｉｏｎａｌｎｅｕｒａｌ
ｎｅｔｗｏｒｋ，ＣＮＮ）的 ＵＮｅｔ模型和 Ｔｒａｎｓｆｏｒｍｅｒ模型
是当前深度学习流场预测领域的两大经典模型。

ＵＮｅｔ模型在经典的图像分割任务中表现出了卓
越的性能，许多研究［７－１２］将其应用于流场的重建

和快速预测，展现出该模型在处理复杂流动方面

的潜力。ＵＮｅｔ模型通过独特的编码器－解码器
架构和跳跃连接，能够有效捕捉流场的局部特征，

这对于流场的准确构建至关重要。Ｔｒａｎｓｆｏｒｍｅｒ模
型以自注意力机制为核心，能够处理长距离依赖

关系，非常适合用于处理序列和图像数据，为流场

的时序预测和空间分布预测提供了新的视角。

Ｚｕｏ等基于其之前提出的卷积神经网络流场快速
预测 模 型［１３］进 行 改 进，得 到 了 一 种 基 于

Ｔｒａｎｓｆｏｒｍｅｒ的端到端快速预测网络架构［１４］，模型

基于注意力机制提取几何特征，从而预测不同工

况下的翼型流场，并通过可视化翼型数据块特征

之间的注意力分数来提高网络的可解释性，用于

重建翼型绕流的不可压稳态流场。Ｊｉａｎｇ等［１５］提

出了 一 种 基 于 Ｔｒａｎｓｆｏｒｍｅｒ解 码 器 架 构 的
ＴｒａｎｓＣＦＤ模型，与传统 ＣＦＤ相比，其能够在将预
测速度提高三个数量级的前提下将平均绝对误差

（ｍｅａｎａｂｓｏｌｕｔｅｅｒｒｏｒ，ＭＡＥ）控制在 １％以内。
Ｍｉｏｔｔｏ和 Ｗｏｌｆ［１６］开发的基于视觉变换器（ｖｉｓｉｏｎ
ｔｒａｎｓｆｏｒｍｅｒ，ＶｉＴ）模型的计算框架，可以从非定常
流的图像中预测感兴趣的量，可用于翼型动态失

速分析等场景。

虽然目前通过深度学习方法预测流场已经取

得了大量的成果，但对于超临界翼型来说，激波造

成的物理量间断给深度学习模型带来了很多难

题。Ｄｅｎｇ等［１７］针对此问题进行了讨论，并设计

了一种基于 ＶｉＴ改进的编解码器网络，用于预测
超临界翼型上的跨声速流动。该模型采用了多种

方法对几何输入进行编码，并引入多级小波变换

和梯度分布损失到损失函数，以提高在激波区域

附近的预测精度，为超临界翼型流场预测问题的

解决提供了许多新思路。

为了进一步解决基于深度学习模型的超临界

翼型流场预测不够准确、泛化性能差的问题，提出

一种结合ＶｉＴ和ＵＮｅｔ结构的超临界翼型流场快
速预测模型———ＴＣＦＮ（ＴｒａｎｓＣＮＮＦｏｉｌＮｅｔ）模型，

其可以很好地综合 ＵＮｅｔ结构和 ＶｉＴ结构的优
势，得到更佳的预测精度和泛化能力。为了针对

性地提高模型对于超临界翼型流场的预测能力，

提出将加权Ｌ１ＳＳＩＭ损失函数作为模型训练使用
的损失函数，并在自建数据集上进行了测试，验证

了其对于预测结果的改进。

１　训练数据与深度学习模型

１．１　数据集生成

为了训练适用于在实际翼型设计过程中，用

于在给定工况下迭代翼型几何的快速预测模型，

本文重点关注模型在特定工况下对不同几何形状

和攻角的翼型的泛化性能。因此，所有流场数据

的来流工况均为Ｍａ＝０７６，Ｒｅ＝５×１０６。参照先
前的相关研究［１８］，首先使用类 －形变换（ｃｌａｓｓ
ｓｈａｐｅｔｒａｎｓｆｏｒｍａｔｉｏｎ，ＣＳＴ）方法对翼型进行参数
化造型，其中翼型上下表面分别使用７个 ＣＳＴ参
数表征，接着对翼型的厚度和攻角（ａｎｇｌｅｏｆ
ａｔｔａｃｋ，ＡＯＡ）使用输出空间采样法在一定范围内
进行采样，得到训练集（Ｔｒａｉｎ）的翼型。然后依次
扩大厚度和攻角范围得到测试集 Ｖａｌｉｄ１和
Ｖａｌｉｄ２，用于评估模型的泛化能力。另外，常见的
超临界翼型ＲＡＥ２８２２也被用于生成数据集，以检
验模型对于实际翼型的流场预测效果。造型完成

后，使用开源 ＣＦＤ软件 ＣＦＬ３Ｄ的剪切应力输运
（ｓｈｅａｒｓｔｒｅｓｓｔｒａｎｓｐｏｒｔ，ＳＳＴ）模型对各翼型的流场
进行雷诺平均 ＮＳ方程（ＲｅｙｎｏｌｄｓａｖｅｒａｇｅｄＮＳ
ｅｑｕａｔｉｏｎｓ，ＲＡＮＳ）计算，以升阻力系数趋于稳定
判断流场收敛，剔除掉因非定常效应导致不收敛

的结果后，得到最终的流场数据集。各数据集的

具体采样范围和样本数量如表１所示，翼型厚度
变化范围可视化为图１。

表１　数据集信息

Ｔａｂ．１　Ｉｎｆｏｒｍａｔｉｏｎｏｆｄａｔａｓｅｔｓ

数据集 攻角／（°）
最大相对

厚度

流场样本

数量

Ｔｒａｉｎ －０．５～４．５ ０．０９～０．１１ １５０００

Ｖａｌｉｄ１ －０．５～４．５ ０．０７～０．１３ ３４０５

Ｖａｌｉｄ２ －１～６ ０．０７～０．１３ ２９０９

ＲＡＥ２８２２ －１～６ ０．１２１ ８

ＣＦＤ计算网格结构如图２所示，任意网格点都
可以由ｉｊ索引得到，从尾迹开始围绕翼型的顺时针
为ｉ的正方向，从翼型壁面到远场则为ｊ的正方向，

·７１·



国 防 科 技 大 学 学 报 第４８卷

（ａ）Ｔｒａｉｎ

（ｂ）Ｖａｌｉｄ１

（ｃ）Ｖａｌｉｄ２

图１　翼型厚度变化范围
Ｆｉｇ．１　Ｖａｒｉａｎｃｅｒａｎｇｅｏｆｔｈｅａｉｒｆｏｉｌｓ′ｔｈｉｃｋｎｅｓｓ

（ａ）全场网格
（ａ）Ｇｒｉｄｏｆｆｕｌｌｆｉｅｌｄ

（ｂ）翼型附近网格
（ｂ）Ｇｒｉｄｎｅａｒｔｈｅａｉｒｆｏｉｌ

图２　空间离散化网格
Ｆｉｇ．２　Ｓｐａｔｉａｌｄｉｓｃｒｅｔｉｚａｔｉｏｎｇｒｉｄ

共计３６１×７７个点，其中ｊ＝１，３２≤ｉ≤３２８范围内
的点定义了翼型的表面。通过ＣＦＤ计算可以得到
各网格点上的无量纲压力ｐ、温度Ｔ以及ｘ和ｙ方
向上的速度ｕ和ｖ（无量纲因子为对应的来流物理
量）。根据以上数据，可以构造各数据集的输入与

输出真值：输入定义为一个３通道图像，长和宽为ｉ
和ｊ，３个通道分别为ｘ、ｙ和攻角；输出真值定义为
相同大小的４通道图像，４个通道分别为ｐ、Ｔ、ｕ、ｖ。

１．２　基准模型

流场预测领域当前比较经典的模型框架主要

有ＣＮＮ和Ｔｒａｎｓｆｏｒｍｅｒ神经网络，本文分别对其选
取了两个经典模型进行实现，用于在相同的数据

集下与自建模型对比预测效果。

图３　ＵＮｅｔ结构
Ｆｉｇ．３　ＡｒｃｈｉｔｅｃｔｕｒｅｏｆｔｈｅＵＮｅｔ

参考Ｒｏｎｎｅｂｅｒｇｅｒ等［１９］的标准架构，本文搭

建了基于ＣＮＮ的ＵＮｅｔ模型，该模型由收缩路径
的编码器和扩展路径的解码器组成，并在二者之

间做跳跃连接。ＵＮｅｔ结构如图 ３所示，收缩路
径和扩展路径均由一系列基本单元组成。收缩路

径的基本单元是卷积层、最大池化层以及 ＲｅＬＵ

·８１·
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激活函数层。为避免数据损失，卷积层引入了大

小为１的填充［７，１０］。扩展路径的基本单元是反卷

积层和卷积层，反卷积层将通道数减半，卷积层以

及输出填充将图像大小还原至与收缩路径中相对

应的大小，用于跳跃连接。在扩展路径的最后，卷

积层将通道数减少至４作为输出。整体来看，数据
经历了一个大小先减后增、通道先增后减的过程。

ＵＮｅｔ结构的优势首先在于参数共享，因此可
以使用较少的数据训练，这意味着数据生成成本的

降低。另外，ＵＮｅｔ通过多层卷积和池化可以实现
从微观到宏观学习流场结构，这与流场多尺度效应

的物理实际符合，有利于学习到更本质的流动特征，

从而增强泛化性。同时，ＵＮｅｔ在收缩路径和扩展路
径之间的跳跃连接有效地融合了不同分辨率的特征

图，这有助于在特征提取过程中保留更多的细节信

息，并避免网络结构过深造成的梯度消失。

在 Ｔｒａｎｓｆｏｒｍｅｒ结构方面，Ｚｕｏ等［１４］开发的

ＶｉＴ模型在流场预测方面取得了巨大的成功，本
文参照其搭建了基准 Ｔｒａｎｓｆｏｒｍｅｒ模型，该模型使
用Ｔｒａｎｓｆｏｒｍｅｒ编码器提取翼型的几何特征，之后
通过多层感知机（ｍｕｌｔｉｌａｙｅｒｐｅｒｃｅｐｔｒｏｎ，ＭＬＰ）作
为解码器进行流场预测。与 ＵＮｅｔ模型相比，由
于考虑到了流场不同位置之间更复杂的相互影

响，模型的预测精度和泛化性能会有所提高。

图 ４展示了本文所使用的 ＶｉＴ模型，该模型
编码器的输入为翼型几何和攻角，将数据分块并

编码。编码器由多个相同的模块组成，每个模块

均包含层标准化、多头自注意力层和 ＭＬＰ。
Ｔｒａｎｓｆｏｒｍｅｒ编码器的自注意力机制允许其在提取
特征时更加关注翼型的重要区域，多头注意力则

可以捕捉更加丰富的全局特征和局部特征之间的

关系。最后，模型的输出由全连接 ＭＬＰ解码器得
到，激活函数使用 ＥＬＵ。本文所实现的 ＶｉＴ模型
结构超参数如表２所示。

图４　ＶｉＴ模型结构
Ｆｉｇ．４　ＡｒｃｈｉｔｅｃｔｕｒｅｏｆｔｈｅＶｉＴｍｏｄｅｌ

表２　ＶｉＴ模型结构超参数
Ｔａｂ．２　ＳｔｒｕｃｔｕｒａｌｈｙｐｅｒｐａｒａｍｅｔｅｒｓｏｆｔｈｅＶｉＴｍｏｄｅｌ

数据块

大小

隐藏层

大小

注意力

头数

隐藏

层数

多层感知

机层数

８ １２８ ４ １２ １０

１．３　ＴＣＦＮ模型

为了综合利用Ｔｒａｎｓｆｏｒｍｅｒ模型和ＣＮＮ模型的
优势，受到前人工作［１４，１９］启发，本文设计了一款利

用ＶｉＴ作为编码器、ＣＮＮ作为解码器的流场预测模
型，并将ＵＮｅｔ网络结构中的跳跃连接引入了该模
型。该模型被称为ＴＣＦＮ模型，结构如图５所示。

图５　ＴＣＦＮ模型结构
Ｆｉｇ．５　ＡｒｃｈｉｔｅｃｔｕｒｅｏｆｔｈｅＴＣＦＮｍｏｄｅｌ

·９１·



国 防 科 技 大 学 学 报 第４８卷

　　可以看到，该模型的编码器部分与 ＶｉＴ模型
类似，先将输入信息分块，然后将每个数据块作为

一个令牌进行嵌入。ＴＣＦＮ模型编码器的结构超
参数如表３所示，值得注意的是，ＴＣＦＮ模型的输
入通道数被增加到了５，除了空间上的 ｘ、ｙ坐标
和攻角信息，翼型表面坐标点的 ｘ和 ｙ坐标也被
扩展成为两个新的通道，用以增强模型对不同几

何形状翼型的泛化能力。

表３　ＴＣＦＮ模型结构超参数
Ｔａｂ．３　ＳｔｒｕｃｔｕｒａｌｈｙｐｅｒｐａｒａｍｅｔｅｒｓｏｆｔｈｅＴＣＦＮｍｏｄｅｌ

数据块大小 隐藏层大小 注意力头数 隐藏层数

８ ２５６ ８ ８

在解码器方面，不同于先前 Ｔｒａｎｓｆｏｒｍｅｒ相关
研究使用的 ＭＬＰ解码器［１４］和 ＶｉＴ解码器［１７］，

ＴＣＦＮ模型采用了类似于 ＵＮｅｔ网络的反卷积解
码器。解码器由卷积层和反卷积层组成，前两层

用于生成符合输出大小要求的流场，后面两层则

是为了缓解反卷积带来的棋盘效应［２０］。最后，为

了增强模型的泛化能力，避免梯度消失，类似于

ＵＮｅｔ结构的跳跃链接被引入解码器。ＴＣＦＮ模
型综合了ＵＮｅｔ模型和ＶｉＴ模型的优势：ＶｉＴ编码
器使其能够更充分地捕捉翼型不同几何位置之间

的关联，ＣＮＮ解码器则在保证预测精度的前提下
减少了模型参数量，降低了模型的训练成本。

１．４　加权Ｌ１ＳＳＩＭ损失函数

本文针对超临界翼型流场预测问题，对Ｌ１误
差函数进行加权，并与结构相似性指标（ｓｔｒｕｃｔｕｒａｌ
ｓｉｍｉｌａｒｉｔｙｉｎｄｅｘｍｅａｓｕｒｅ，ＳＳＩＭ）函数结合［２１］，设计

了一种新的损失函数用于模型训练。这样做的目

的是：①对于翼型流场预测问题，更需要关注的是
翼型的升阻力等气动性能信息，这些信息是由靠

近翼型的流场所决定的，因此对该部分流场增加

权重是合理且有必要的；②卷积类解码器在生成
流场时往往会出现流场不光滑的问题，即在视觉

效果上与真值相差较大，这对于需要人工评判流

场质量的翼型气动设计来说是需要避免的，因此

本文引入了在计算机视觉领域用于提升图像视觉

效果的ＳＳＩＭ损失函数，定义如式（１）所示，其中
σ和 μ为滑窗统计的方差和均值，参考原始文
献［２２］将系数设置为Ｃ１＝１×１０

－４，Ｃ２＝９×１０
－４。

ＬＳＳＩＭ（ｘ，ｙ）＝
（２μｘμｙ＋Ｃ１）（２σｘｙ＋Ｃ２）
（μ２ｘ＋μ

２
ｙ＋Ｃ１）（σ

２
ｘ＋σ

２
ｙ＋Ｃ２）

（１）
Ｌ１损失函数在不同法向位置下的权重由

式（２）定义，之所以采用非线性分布的权重，是由
于翼型空间网格节点在靠近壁面的区域附近更密

集，如果权重在此处基于节点坐标的增长率较小，

则可以使其在实际物理空间的增长较为合理。

式（２）所对应的 Ｌ１误差权重在节点坐标和翼型
物理空间下的分布如图６所示。

λｊ＝ｅ－ｅ
ｊ
ｊｍａｘ＋１ （２）

（ａ）节点坐标
（ａ）Ｎｏｄｅｃｏｏｒｄｉｎａｔｅｓ

（ｂ）物理空间
（ｂ）Ｐｈｙｓｉｃａｌｓｐａｃｅ

图６　权重λ在节点坐标和物理空间上的分布
Ｆｉｇ．６　Ｄｉｓｔｒｉｂｕｔｉｏｎｏｆｗｅｉｇｈｔλｉｎｔｈｅｎｏｄｅ

ｃｏｏｒｄｉｎａｔｅｓａｎｄｐｈｙｓｉｃａｌｓｐａｃｅ

加权 Ｌ１误差和 ＳＳＩＭ损失函数之间的权重
系数设为０５，最终的损失函数如式（３）所示，其
中Ｙ和Ｘ分别代表真值和模型的预测结果，该损
失函数被称为加权Ｌ１ＳＳＩＭ损失函数。

Ｌ＝０．５× １
ｉｍａｘ·ｊｍａｘ∑

ｉｍａｘ

ｉ＝１
∑
ｊｍａｘ

ｊ＝１
λｊ Ｙｉ，ｊ－Ｘｉ，ｊ ＋

０．５×ＬＳＳＩＭ（Ｙ，Ｘ） （３）

２　实验结果

本节将展示 ＵＮｅｔ、ＶｉＴ两个基准模型以及
ＴＣＦＮ模型在各数据集上的性能，并对比了是否
使用加权Ｌ１ＳＳＩＭ损失函数对 ＴＣＦＮ模型预测结
果的影响。

２．１　深度学习模型的训练及预测结果的对比

基于 ＰｙＴｏｒｃｈ框架，利用单块 ＲＴＸ４０９０ＧＰＵ

·０２·
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（２４ＧＢ），在 Ｔｒａｉｎ数据集上对三个模型进行训
练，超参数设置均为：批量大小设为６４，初始学习
率设为 ００００１，学习率每 １０代减少为原来的
９／１０，训练总代数为６００，损失函数使用 Ｌ１损失
函数。训练开始前随机抽取５％的数据作为验证
集，最终得到各模型训练损失函数曲线如图７
所示。

图７　模型训练损失函数曲线
Ｆｉｇ．７　Ｌｏｓｓｆｕｎｃｔｉｏｎｃｕｒｖｅｓｏｆｔｈｅｍｏｄｅｌｓ′ｔｒａｉｎｉｎｇ

可以看出，训练６００代后，各模型的损失函数
均已趋于稳定，未发生过拟合。横向对比来看，不

管是对于训练集还是验证集，ＴＣＦＮ模型的损失
函数最小，ＶｉＴ模型次之，ＵＮｅｔ模型则呈现了相
对较大的损失函数，这也体现出了三个模型的拟

合能力差异。更进一步地，将各模型的性能在

Ｔｒａｉｎ、Ｖａｌｉｄ１和 Ｖａｌｉｄ２三个数据集上进行了测
试，预测结果与真值的 ＭＡＥ（εＭＡＥ）被呈现在图８
当中（εＭＡＥ计算表达式如式（４）所示，ｑ代表不同
物理量）。可以看出，在各个数据集上，ＴＣＦＮ模
型的表现均显著优于各基准模型，最高可将 εＭＡＥ
降至基准模型的２０．５％，这体现出 ＴＣＦＮ模型对
于训练数据的拟合能力以及对于外推数据的泛化

能力是比较优秀的。

εＭＡＥ ＝
∑
ｑｍａｘ

ｑ＝１
∑
ｉｍａｘ

ｉ＝１
∑
ｊｍａｘ

ｊ＝１
Ｙｑ，ｉ，ｊ－Ｘｑ，ｉ，ｊ

ｑｍａｘ·ｉｍａｘ·ｊｍａｘ
（４）

图８　各模型在各数据集上的εＭＡＥ对比

Ｆｉｇ．８　ＣｏｍｐａｒｉｓｏｎｏｆεＭＡＥａｃｒｏｓｓｄｉｆｆｅｒｅｎｔ

ｍｏｄｅｌｓｏｎｄｉｆｆｅｒｅｎｔｄａｔａｓｅｔｓ

为了更进一步地呈现各模型预测结果的差

异，Ｖａｌｉｄ１数据集中编号为 ３００的流场云图和
绝对值误差（ａｂｓｏｌｕｔｅｖａｌｕｅｅｒｒｏｒ，ＡＥ）分布被呈
现在图 ９用于对比。从流场云图来看，所有模
型都能够准确预测流场的整体形态，能够较好

地体现超临界翼型含有激波的流场的主要特

征。然而，所有模型的预测结果均在激波附近

出现了少许误差，这印证了深度学习模型在预

测含有激波间断的流场时所面临的困难，激波

位置和强度可能会出现一定偏差。不过横向对

比来看，相较于两个基准模型，ＴＣＦＮ模型呈现
了较为优秀的性能，预测结果在激波附近的 ＡＥ
更小，整体更接近真值。

（ａ）ＵＮｅｔ模型流场云图
（ａ）ＣｏｎｔｏｕｒｏｆｔｈｅｆｌｏｗｆｉｅｌｄｏｆＵＮｅｔｍｏｄｅｌ

（ｂ）ＵＮｅｔ模型ＡＥ
（ｂ）ＡＥｏｆＵＮｅｔｍｏｄｅｌ

·１２·
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（ｃ）ＶｉＴ模型流场云图
（ｃ）ＣｏｎｔｏｕｒｏｆｔｈｅｆｌｏｗｆｉｅｌｄｏｆＶｉＴｍｏｄｅｌ

（ｄ）ＶｉＴ模型ＡＥ
（ｄ）ＡＥｏｆＶｉＴｍｏｄｅｌ

（ｅ）ＴＣＦＮ模型流场云图
（ｅ）ＣｏｎｔｏｕｒｏｆｔｈｅｆｌｏｗｆｉｅｌｄｏｆＴＣＦＮｍｏｄｅｌ

（ｆ）ＴＣＦＮ模型ＡＥ
（ｆ）ＡＥｏｆＴＣＦＮｍｏｄｅｌ

图９　各模型预测得到的流场云图及绝对值误差
Ｆｉｇ．９　Ｃｏｎｔｏｕｒｏｆｔｈｅｆｌｏｗｆｉｅｌｄａｎｄａｂｓｏｌｕｔｅｖａｌｕｅｅｒｒｏｒｓｐｒｅｄｉｃｔｅｄｂｙｄｉｆｆｅｒｅｎｔｍｏｄｅｌｓ

　　在实际工程应用中，人们更关注的是翼型表
面的物理量分布及其积分量（如升力、阻力）。以

Ｖａｌｉｄ１数据集中编号为３００和７００的两个流场
为例，图１０呈现了各模型预测得到的翼型表面无
量纲压力分布，其中 ｃ为翼型弦长。两个流场对
应的翼型的最大相对厚度分别为００９８和０１３，
相对于训练集来说分别是内插和外插数据。从不

同流场的预测结果来看，各模型对于外插数据集

的预测准确度普遍差于内插数据集，特别是 Ｕ
Ｎｅｔ模型和 ＶｉＴ模型，其对于激波位置和陡峭程
度的预测存在比较大的偏差。从不同模型的预测

结果来看，不论是在内插数据还是外插数据上，

（ａ）编号为３００
（ａ）Ｉｎｄｅｘｉｓ３００

·２２·
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（ｂ）编号为７００
（ｂ）Ｉｎｄｅｘｉｓ７００

图１０　各模型预测得到的翼型表面无量纲压力分布
Ｆｉｇ．１０　Ｓｕｒｆａｃｅｄｉｍｅｎｓｉｏｎｌｅｓｓｐｒｅｓｓｕｒｅｄｉｓｔｒｉｂｕｔｉｏｎｏｆｔｈｅ

ａｉｒｆｏｉｌｐｒｅｄｉｃｔｅｄｂｙｄｉｆｆｅｒｅｎｔｍｏｄｅｌｓ

ＴＣＦＮ模型均得到了显著优于基准模型的预测结
果，特别是在外插数据上，ＴＣＦＮ模型也能够准确
给出激波的位置。

各个模型在各数据集上计算得到的升阻力系

数与真值之间的相对误差呈现在图１１当中。从
不同数据集来看，外插样本更多的数据集普遍更

难预测，各个模型的升阻力系数误差均随着外插

样本的增多而增加。从不同模型来看，ＴＣＦＮ模
型在升阻力系数的预测方面基本显著优于各基准

模型，特别是升力系数，ＴＣＦＮ模型可以将基准模
型在各个数据集上的相对误差最多减少９０９％，
相对于真值的误差控制在不大于０９１％。值得
注意的是，由于阻力系数本身是一个相对较小的

值，因此微小的绝对误差也会表现为较大的相对

误差，所以各模型对阻力系数的预测相对误差普

遍偏大。ＴＣＦＮ模型对于阻力系数的预测相对误
差可以控制在５２％以下，虽然不如升力系数那
么准确，但也能满足实际工程需要，且基本优于基

准模型。

（ａ）升力系数相对误差
（ａ）Ｒｅｌａｔｉｖｅｅｒｒｏｒｏｆｔｈｅｌｉｆｔｃｏｅｆｆｉｃｉｅｎｔ

（ｂ）阻力系数相对误差
（ｂ）Ｒｅｌａｔｉｖｅｅｒｒｏｒｏｆｔｈｅｄｒａｇｃｏｅｆｆｉｃｉｅｎｔ

图１１　各模型预测的升阻力系数相对误差
Ｆｉｇ．１１　Ｒｅｌａｔｉｖｅｅｒｒｏｒｓｉｎｌｉｆｔａｎｄｄｒａｇｃｏｅｆｆｉｃｉｅｎｔ

ｐｒｅｄｉｃｔｉｏｎｓｂｙｄｉｆｆｅｒｅｎｔｍｏｄｅｌｓ

２．２　损失函数的性能验证

为了说明本文提出的加权 Ｌ１ＳＳＩＭ损失函数
的有效性，接下来使用其作为损失函数再次训练

ＴＣＦＮ模型，并与Ｌ１损失函数训练得到的模型进
行对比。模型结构和超参数保持不变，将损失函

数更改为加权Ｌ１ＳＳＩＭ损失函数，在 Ｔｒａｉｎ数据集
上训练，得到损失函数曲线如图１２所示。可以看
出，６００代之后，模型损失函数基本趋于稳定，且
未发生过拟合。

图１２　ＴＣＦＮ模型损失函数曲线
Ｆｉｇ．１２　ＬｏｓｓｆｕｎｃｔｉｏｎｃｕｒｖｅｓｏｆｔｈｅＴＣＦＮｍｏｄｅｌ

引入加权 Ｌ１ＳＳＩＭ损失函数的目的之一是
通过增大翼型附近数据点的权重，提高模型对

升阻力系数预测的准确性。图 １３对比了采用
Ｌ１损失函数和采用加权 Ｌ１ＳＳＩＭ损失函数训
练得到的 ＴＣＦＮ模型，在各数据集上的升阻力
系数相对误差。可以看到，两种损失函数得到

的升力系数相对误差相差不大，在外插数据更

多的 Ｖａｌｉｄ２数据集上，加权 Ｌ１ＳＳＩＭ损失函数
的结果略好于 Ｌ１损失函数。对于阻力系数而
言，加权 Ｌ１ＳＳＩＭ损失函数有效地进一步降低

·３２·
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了模型预测结果的相对误差，降幅最大可达

１７８％，这体现出增加近壁区域数据权重这一
策略的有效性。

引入加权Ｌ１ＳＳＩＭ损失函数的另一目的是提
高预测结果云图的质量。图１４选取了Ｖａｌｉｄ２数
据集中编号为１５００的流场，绘制了不同损失函
数训练得到的ＴＣＦＮ模型的流场云图及绝对值误
差分布。可以看出相较于采用 Ｌ１损失函数训练
的模型而言，采用加权Ｌ１ＳＳＩＭ损失函数得到的流

（ａ）升力系数相对误差
（ａ）Ｒｅｌａｔｉｖｅｅｒｒｏｒｏｆｔｈｅｌｉｆｔｃｏｅｆｆｉｃｉｅｎｔ

（ｂ）阻力系数相对误差
（ｂ）Ｒｅｌａｔｉｖｅｅｒｒｏｒｏｆｔｈｅｄｒａｇｃｏｅｆｆｉｃｉｅｎｔ

图１３　不同损失函数训练得到的ＴＣＦＮ模型升阻力
系数相对误差

Ｆｉｇ．１３　Ｒｅｌａｔｉｖｅｅｒｒｏｒｓｏｆｌｉｆｔａｎｄｄｒａｇｃｏｅｆｆｉｃｉｅｎｔｓｆｏｒ
ＴＣＦＮｍｏｄｅｌｓｔｒａｉｎｅｄｗｉｔｈｄｉｆｆｅｒｅｎｔｌｏｓｓｆｕｎｃｔｉｏｎｓ

场误差更小。图１５展示了该流场的翼型表面无
量纲压力分布，可以看到采用加权 Ｌ１ＳＳＩＭ损失
函数得到的流场激波位置更准确，且压力分布更

光滑，更符合真实流动特征，从而更加方便在实际

工程应用中人工判别翼型质量。

（ａ）Ｌ１损失函数，流场云图
（ａ）Ｌ１ｌｏｓｓｆｕｎｃｔｉｏｎ，ｃｏｎｔｏｕｒｏｆｔｈｅｆｌｏｗｆｉｅｌｄ

（ｂ）Ｌ１损失函数，ＡＥ
（ｂ）Ｌ１ｌｏｓｓｆｕｎｃｔｉｏｎ，ＡＥ

（ｃ）加权Ｌ１ＳＳＩＭ损失函数，流场云图
（ｃ）ＷｅｉｇｈｔｅｄＬ１ＳＳＩＭｌｏｓｓｆｕｎｃｔｉｏｎ，ｃｏｎｔｏｕｒｏｆｔｈｅｆｌｏｗｆｉｅｌｄ

·４２·
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（ｄ）加权Ｌ１ＳＳＩＭ损失函数，ＡＥ
（ｄ）ＷｅｉｇｈｔｅｄＬ１ＳＳＩＭｌｏｓｓｆｕｎｃｔｉｏｎ，ＡＥ

图１４　不同损失函数训练得到的ＴＣＦＮ模型流场云图及绝对值误差
Ｆｉｇ．１４　ＣｏｎｔｏｕｒｏｆｔｈｅｆｌｏｗｆｉｅｌｄａｎｄａｂｓｏｌｕｔｅｖａｌｕｅｅｒｒｏｒｓｏｆＴＣＦＮｍｏｄｅｌｓｔｒａｉｎｅｄｗｉｔｈｄｉｆｆｅｒｅｎｔｌｏｓｓｆｕｎｃｔｉｏｎｓ

图１５　不同损失函数训练得到的ＴＣＦＮ模型预测翼型
表面无量纲压力分布

Ｆｉｇ．１５　Ａｉｒｆｏｉｌｓｕｒｆａｃｅｄｉｍｅｎｓｉｏｎｌｅｓｓｐｒｅｓｓｕｒｅｄｉｓｔｒｉｂｕｔｉｏｎ
ｐｒｅｄｉｃｔｅｄｂｙＴＣＦＮｍｏｄｅｌｓｔｒａｉｎｅｄｗｉｔｈ

ｄｉｆｆｅｒｅｎｔｌｏｓｓｆｕｎｃｔｉｏｎｓ

２．３　更进一步泛化性能测试

接下来，ＴＣＦＮ模型和基准模型被应用于
ＲＡＥ２８２２翼型流场的预测。ＲＡＥ２８２２翼型是航
空领域常见的超临界翼型之一，经常作为标准算

例被用于验证求解器对于超临界翼型流场的计算

精度。本文选取 Ｍａ＝０７６，Ｒｅ＝５×１０６工况的
流场进行预测。

图１６呈现了各模型对ＲＡＥ２８２２翼型流场的
升力系数ＣＬ曲线的预测结果，可以看出ＵＮｅｔ模
型和ＴＣＦＮ模型都基本能够正确预测升力系数变
化的趋势，且对于失速拐点有着较为准确的捕捉，

相较而言，ＴＣＦＮ模型的预测结果更加准确。ＶｉＴ
模型虽然在升力系数线性段预测误差较小，但其

错误估计了大攻角下的升力系数，这对于失速预

测等场景来说是十分不利的。

图１７呈现了３°和５°攻角下，各模型预测得
到的ＲＡＥ２８２２翼型表面无量纲压力分布。可以
看到对于３°攻角内插的流场来说，ＵＮｅｔ模型和
ＴＣＦＮ模型得到的压力分布基本合理，而 ＶｉＴ模
型预测得到的压力分布出现了不合理的抖动。当

图１６　ＲＡＥ２８２２翼型升力系数曲线预测结果
Ｆｉｇ．１６　Ｐｒｅｄｉｃｔｅｄｒｅｓｕｌｔｓｏｆｌｉｆｔｃｏｅｆｆｉｃｉｅｎｔｃｕｒｖｅｆｏｒ

ｔｈｅＲＡＥ２８２２ａｉｒｆｏｉｌ

预测对象变为攻角５°这样的外插数据时，ＶｉＴ模
型结果的异常抖动变得更加剧烈，ＵＮｅｔ模型虽
然仍保持了正常的压力分布形态，但激波位置略

有偏差。对比来看，ＴＣＦＮ模型的结果分布更合
理，且激波位置也更加准确。

（ａ）３°攻角
（ａ）３°ＡＯＡ

然而，值得注意的是，虽然ＴＣＦＮ模型得到了
基本正确且优于基准模型的压力分布，但在中部

和尾缘附近的压力预测存在一定误差，这使得模

型得到的升力系数偏大，这应当是未来对模型进

行改进时所重点关注的方向。

·５２·
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（ｂ）５°攻角
（ｂ）５°ＡＯＡ

图１７　ＲＡＥ２８２２翼型表面无量纲压力分布预测
Ｆｉｇ．１７　Ｐｒｅｄｉｃｔｅｄｓｕｒｆａｃｅｄｉｍｅｎｓｉｏｎｌｅｓｓｐｒｅｓｓｕｒｅ

ｄｉｓｔｒｉｂｕｔｉｏｎｆｏｒｔｈｅＲＡＥ２８２２ａｉｒｆｏｉｌ

３　结论

本文提出了一种针对超临界翼型流场快速

预测的深度学习模型，称为 ＴＣＦＮ模型，该模型
综合了ＵＮｅｔ模型与Ｔｒａｎｓｆｏｒｍｅｒ模型的结构，能
够在提高预测精度和泛化能力的同时控制模型

复杂度。在超临界翼型流场数据集上，将 ＴＣＦＮ
模型的性能与基准 ＵＮｅｔ模型和 ＶｉＴ模型预测
结果进行了对比，结果表明 ＴＣＦＮ模型可以将基
准模型对流场预测的 ＭＡＥ最多减少７９５％，对
于升阻力系数的预测误差最多减少９０９％。

此外，针对超临界翼型流场快速预测模型的

训练，本文还提出了一种更加综合的损失函数，称

为加权Ｌ１ＳＳＩＭ损失函数，该损失函数更加针对
性地考虑了翼型流场预测中所重点关注的升阻力

系数和翼型附近物理量分布等问题，从而得到更

有利于实际工程应用的结果。实验结果表明，在

相同模型结构和超参数设置下，使用加权Ｌ１ＳＳＩＭ
损失函数训练的模型升阻力系数预测更加准确，

物理量分布更加合理，阻力系数相对误差最多可

以减少１７８％。
本文在ＲＡＥ２８２２超临界翼型算例上对模型

进行了更进一步的泛化能力测试，结果表明即使

在外插几何和攻角下，ＴＣＦＮ模型依然能够得到
较为合理的流场和翼型表面压力分布，并能够得

到相对准确的激波位置，这体现出其对于超临界

翼型流场特征的学习和捕捉。然而，在测试过程

中ＴＣＦＮ模型也体现出一定程度的误差，如何减
小模型在外插数据集上的误差，增强泛化性能，并

将其预测推广到三维实际流动中，将是之后相关

工作的研究重点。

参考文献（Ｒｅｆｅｒｅｎｃｅｓ）

［１］　 ＨＡＲＲＩＳＣＤ．ＮＡＳＡｓｕｐｅｒｃｒｉｔｉｃａｌａｉｒｆｏｉｌｓ：ａｍａｔｒｉｘｏｆｆａｍｉｌｙ

ｒｅｌａｔｅｄａｉｒｆｏｉｌｓ：ＮＡＳＡＴＰ２９６９［Ｒ］．Ｗａｓｈｉｎｇｔｏｎ，Ｄ．Ｃ．：

ＮａｔｉｏｎａｌＡｅｒｏｎａｕｔｉｃｓａｎｄＳｐａｃｅＡｄｍｉｎｉｓｔｒａｔｉｏｎ，１９９０．

［２］　 ＢＯＴＴＡＳＳＯＣＬ，ＣＡＭＰＡＧＮＯＬＯＦ，ＰＥＴＲＯＶＩＣ＇Ｖ．Ｗｉｎｄ

ｔｕｎｎｅｌｔｅｓｔｉｎｇ ｏｆｓｃａｌｅｄ ｗｉｎｄ ｔｕｒｂｉｎｅ ｍｏｄｅｌｓ： ｂｅｙｏｎｄ

ａｅｒｏｄｙｎａｍｉｃｓ［Ｊ］．ＪｏｕｒｎａｌｏｆＷｉｎｄＥｎｇｉｎｅｅｒｉｎｇａｎｄＩｎｄｕｓｔｒｉａｌ

Ａｅｒｏｄｙｎａｍｉｃｓ，２０１４，１２７：１１－２８．

［３］　 ＳＨＩＹＹ，ＭＡＤＥＲＣＡ，ＨＥＳＣ，ｅｔａｌ．Ｎａｔｕｒａｌｌａｍｉｎａｒｆｌｏｗ

ａｉｒｆｏｉｌ ｏｐｔｉｍｉｚａｔｉｏｎ ｄｅｓｉｇｎ ｕｓｉｎｇ ａ ｄｉｓｃｒｅｔｅ ａｄｊｏｉｎｔ

ａｐｐｒｏａｃｈ［Ｊ］．ＡＩＡＡＪｏｕｒｎａｌ，２０２０，５８（１１）：４７０２－４７２２．

［４］　 ＳＴＡＮＬＹＲ，ＭＡＲＴ?ＮＥＺＴＯＳＳＡＳＬＡ，ＦＲＡＮＫＥＬＳＨ，ｅｔ

ａｌ．Ｌａｒｇｅｅｄｄｙｓｉｍｕｌａｔｉｏｎｏｆａｗｉｎｄｔｕｒｂｉｎｅｕｓｉｎｇａｆｉｌｔｅｒｅｄ

ａｃｔｕａｔｏｒｌｉｎｅｍｏｄｅｌ［Ｊ］．ＪｏｕｒｎａｌｏｆＷｉｎｄＥｎｇｉｎｅｅｒｉｎｇａｎｄ

ＩｎｄｕｓｔｒｉａｌＡｅｒｏｄｙｎａｍｉｃｓ，２０２２，２２２：１０４８６８．

［５］　 ＮＡＫＨＣＨＩＭ Ｅ，ＮＡＵＮＧＳＷ，ＤＡＬＡＬ，ｅｔａｌ．Ｄｉｒｅｃｔ

ｎｕｍｅｒｉｃａｌｓｉｍｕｌａｔｉｏｎｓｏｆａｅｒｏｄｙｎａｍｉｃｐｅｒｆｏｒｍａｎｃｅｏｆｗｉｎｄ

ｔｕｒｂｉｎｅ ａｅｒｏｆｏｉｌ ｂｙ ｃｏｎｓｉｄｅｒｉｎｇ ｔｈｅ ｂｌａｄｅｓ ａｃｔｉｖｅ

ｖｉｂｒａｔｉｏｎｓ［Ｊ］．ＲｅｎｅｗａｂｌｅＥｎｅｒｇｙ，２０２２，１９１：６６９－６８４．

［６］　 ＷＵＨＺ，ＬＩＵＸＪ，ＡＮＷ，ｅｔａｌ．Ａｄｅｅｐｌｅａｒｎｉｎｇａｐｐｒｏａｃｈ

ｆｏｒｅｆｆｉｃｉｅｎｔｌｙａｎｄａｃｃｕｒａｔｅｌｙｅｖａｌｕａｔｉｎｇｔｈｅｆｌｏｗｆｉｅｌｄｏｆ

ｓｕｐｅｒｃｒｉｔｉｃａｌａｉｒｆｏｉｌｓ［Ｊ］． Ｃｏｍｐｕｔｅｒｓ＆ Ｆｌｕｉｄｓ，２０２０，

１９８：１０４３９３．

［７］　 ＴＨＵＥＲＥＹＮ，ＷＥＩＥＮＯＷ Ｋ，ＰＲＡＮＴＬＬ，ｅｔａｌ．Ｄｅｅｐ

ｌｅａｒｎｉｎｇ ｍｅｔｈｏｄｓ ｆｏｒ Ｒｅｙｎｏｌｄｓａｖｅｒａｇｅｄ ＮａｖｉｅｒＳｔｏｋｅｓ

ｓｉｍｕｌａｔｉｏｎｓｏｆａｉｒｆｏｉｌｆｌｏｗｓ［Ｊ］．ＡＩＡＡＪｏｕｒｎａｌ，２０２０，５８（１）：

２５－３６．

［８］　 ＣＨＥＮＬＷ，ＣＡＫＡＬＢＡ，ＨＵＸＹ，ｅｔａｌ．Ｎｕｍｅｒｉｃａｌ

ｉｎｖｅｓｔｉｇａｔｉｏｎｏｆｍｉｎｉｍｕｍｄｒａｇｐｒｏｆｉｌｅｓｉｎｌａｍｉｎａｒｆｌｏｗｕｓｉｎｇ

ｄｅｅｐｌｅａｒｎｉｎｇｓｕｒｒｏｇａｔｅｓ［Ｊ］．ＪｏｕｒｎａｌｏｆＦｌｕｉｄＭｅｃｈａｎｉｃｓ，

２０２１，９１９：Ａ３４．

［９］　 ＣＨＥＮＬＷ，ＴＨＵＥＲＥＹＮ．Ｄｅｅｐｌｅａｒｎｉｎｇｂａｓｅｄｐｒｅｄｉｃｔｉｖｅ

ｍｏｄｅｌｌｉｎｇｏｆｔｒａｎｓｏｎｉｃｆｌｏｗｏｖｅｒａｎａｅｒｏｆｏｉｌ［ＥＢ／ＯＬ］．（２０２４－

０３－２５）［２０２４－１２－０５］．ｈｔｔｐｓ：／／ａｒｘｉｖ．ｏｒｇ／ａｂｓ／

２４０３．１７１３１．

［１０］　ＪＩＮＹ，ＬＩＳ，ＪＵＮＧＯ．Ｐｒｅｄｉｃｔｉｏｎｏｆｆｌｏｗｐｒｏｐｅｒｔｉｅｓｏｎ

ｔｕｒｂｉｎｅ ｖａｎｅ ａｉｒｆｏｉｌ ｓｕｒｆａｃｅ ｆｒｏｍ ３Ｄ ｇｅｏｍｅｔｒｙ ｗｉｔｈ

ｃｏｎｖｏｌｕｔｉｏｎａｌｎｅｕｒａｌｎｅｔｗｏｒｋ［Ｃ］／／ＰｒｏｃｅｅｄｉｎｇｓｏｆＡＳＭＥ

ＴｕｒｂｏＥｘｐｏ２０１９：ＴｕｒｂｏｍａｃｈｉｎｅｒｙＴｅｃｈｎｉｃａｌＣｏｎｆｅｒｅｎｃｅａｎｄ

Ｅｘｐｏｓｉｔｉｏｎ，２０１９．

［１１］　ＺＨＵＪ，ＷＡＮＧＳ，ＷＥＩＮ，ｅｔａｌ．Ａｔｈｒｅｅｄｉｍｅｎｓｉｏｎａｌｆｌｏｗ

ｆｉｅｌｄｒｅｃｏｎｓｔｒｕｃｔｉｏｎｍｅｔｈｏｄｏｆｗｉｎｇｂａｓｅｄｏｎＳＥ３Ｄｕｎｅｔ［Ｃ］／／

Ｐｒｏｃｅｅｄｉｎｇｓｏｆ２０２３３５ｔｈＣｈｉｎｅｓｅＣｏｎｔｒｏｌａｎｄＤｅｃｉｓｉｏｎ

Ｃｏｎｆｅｒｅｎｃｅ（ＣＣＤＣ），２０２３：９２３－９２８．

［１２］　ＺＨＵＺＪ，ＺＨＡＯＧＱ，ＺＨＡＯＱＪ．Ｆａｓｔａｎｄｈｉｇｈｐｒｅｃｉｓｉｏｎ

ｃｏｍｐｒｅｓｓｉｂｌｅｆｌｏｗｆｉｅｌｄｉｎｆｅｒｅｎｃｅｍｅｔｈｏｄｏｆｔｒａｎｓｏｎｉｃａｉｒｆｏｉｌｓ

ｂａｓｅｄｏｎａｔｔｅｎｔｉｏｎＵＮｅｔ［Ｊ］．ＰｈｙｓｉｃｓｏｆＦｌｕｉｄｓ，２０２４，

３６（３）：０３６１１１．　

［１３］　ＺＵＯＫＪ，ＢＵＳＨ，ＺＨＡＮＧＷ Ｗ，ｅｔａｌ．Ｆａｓｔｓｐａｒｓｅｆｌｏｗ

ｆｉｅｌｄｐｒｅｄｉｃｔｉｏｎａｒｏｕｎｄａｉｒｆｏｉｌｓｖｉａｍｕｌｔｉｈｅａｄｐｅｒｃｅｐｔｒｏｎｂａｓｅｄ

ｄｅｅｐｌｅａｒｎｉｎｇａｒｃｈｉｔｅｃｔｕｒｅ［Ｊ］．ＡｅｒｏｓｐａｃｅＳｃｉｅｎｃｅａｎｄ

Ｔｅｃｈｎｏｌｏｇｙ，２０２２，１３０：１０７９４２．

·６２·



　第１期 贺子舟，等：超临界翼型流场预测：Ｔｒａｎｓｆｏｒｍｅｒ与卷积神经网络的结合

［１４］　ＺＵＯＫＪ，ＹＥＺＹ，ＺＨＡＮＧＷＷ，ｅｔａｌ．Ｆａｓｔａｅｒｏｄｙｎａｍｉｃｓ

ｐｒｅｄｉｃｔｉｏｎ ｏｆｌａｍｉｎａｒａｉｒｆｏｉｌｓｂａｓｅｄ ｏｎ ｄｅｅｐ ａｔｔｅｎｔｉｏｎ

ｎｅｔｗｏｒｋ［Ｊ］．ＰｈｙｓｉｃｓｏｆＦｌｕｉｄｓ，２０２３，３５（３）：０３７１２７．

［１５］　ＪＩＡＮＧＪＤ，ＬＩＧ Ｘ，ＪＩＡＮＧ Ｙ，ｅｔａｌ．ＴｒａｎｓＣＦＤ：ａ

ｔｒａｎｓｆｏｒｍｅｒｂａｓｅｄｄｅｃｏｄｅｒｆｏｒｆｌｏｗ ｆｉｅｌｄｐｒｅｄｉｃｔｉｏｎ［Ｊ］．

ＥｎｇｉｎｅｅｒｉｎｇＡｐｐｌｉｃａｔｉｏｎｓｏｆＡｒｔｉｆｉｃｉａｌＩｎｔｅｌｌｉｇｅｎｃｅ，２０２３，

１２３：１０６３４０．

［１６］　ＭＩＯＴＴＯＲＦ，ＷＯＬＦＷＲ．Ｆｌｏｗｉｍａｇｉｎｇａｓａｎａｌｔｅｒｎａｔｉｖｅｔｏ

ｎｏｎｉｎｔｒｕｓｉｖｅｍｅａｓｕｒｅｍｅｎｔｓａｎｄｓｕｒｒｏｇａｔｅｍｏｄｅｌｓｔｈｒｏｕｇｈ

ｖｉｓｉｏｎｔｒａｎｓｆｏｒｍｅｒｓａｎｄｃｏｎｖｏｌｕｔｉｏｎａｌｎｅｕｒａｌｎｅｔｗｏｒｋｓ［Ｊ］．

ＰｈｙｓｉｃｓｏｆＦｌｕｉｄｓ，２０２３，３５（４）：０４５１４３．

［１７］　ＤＥＮＧＺＷ，ＷＡＮＧ Ｊ，ＬＩＵＨ Ｓ，ｅｔａｌ．Ｐｒｅｄｉｃｔｉｏｎｏｆ

ｔｒａｎｓｏｎｉｃｆｌｏｗ ｏｖｅｒｓｕｐｅｒｃｒｉｔｉｃａｌａｉｒｆｏｉｌｓｕｓｉｎｇｇｅｏｍｅｔｒｉｃ

ｅｎｃｏｄｉｎｇａｎｄｄｅｅｐｌｅａｒｎｉｎｇｓｔｒａｔｅｇｉｅｓ［Ｊ］．ＰｈｙｓｉｃｓｏｆＦｌｕｉｄｓ，

２０２３，３５（７）：０７５１４６．　

［１８］　ＬＩＲＺ，ＺＨＡＮＧＹＦ，ＣＨＥＮＨＸ．Ｐｒｅｓｓｕｒｅｄｉｓｔｒｉｂｕｔｉｏｎ

ｆｅａｔｕｒｅｏｒｉｅｎｔｅｄｓａｍｐｌｉｎｇｆｏｒｓｔａｔｉｓｔｉｃａｌａｎａｌｙｓｉｓｏｆｓｕｐｅｒｃｒｉｔｉｃａｌ

ａｉｒｆｏｉｌａｅｒｏｄｙｎａｍｉｃｓ［Ｊ］．ＣｈｉｎｅｓｅＪｏｕｒｎａｌｏｆＡｅｒｏｎａｕｔｉｃｓ，

２０２２，３５（４）：１３４－１４７．

［１９］　ＲＯＮＮＥＢＥＲＧＥＲ Ｏ， ＦＩＳＣＨＥＲ Ｐ， ＢＲＯＸ Ｔ． ＵＮｅｔ：

ｃｏｎｖｏｌｕｔｉｏｎａｌｎｅｔｗｏｒｋｓｆｏｒｂｉｏｍｅｄｉｃａｌｉｍａｇｅｓｅｇｍｅｎｔａｔｉｏｎ［Ｃ］／／

ＰｒｏｃｅｅｄｉｎｇｓｏｆＭｅｄｉｃａｌＩｍａｇｅＣｏｍｐｕｔｉｎｇａｎｄＣｏｍｐｕｔｅｒＡｓｓｉｓｔｅｄ

Ｉｎｔｅｒｖｅｎｔｉｏｎ，２０１５：２３４－２４１．

［２０］　ＯＤＥＮＡＡ，ＤＵＭＯＵＬＩＮＶ，ＯＬＡＨＣ．Ｄｅｃｏｎｖｏｌｕｔｉｏｎａｎｄ

ｃｈｅｃｋｅｒｂｏａｒｄａｒｔｉｆａｃｔｓ［ＥＢ／ＯＬ］．（２０１６－１０－１７）［２０２４－

１２－０５］．ｈｔｔｐｓ：／／ｄｉｓｔｉｌｌ．ｐｕｂ／２０１６／ｄｅｃｏｎｖｃｈｅｃｋｅｒｂｏａｒｄ／．

［２１］　ＡＮＹＦ，ＤＵＸＳ，ＭＡＲＴＩＮＳＪＲＲＡ．Ａｃｏｎｖｏｌｕｔｉｏｎａｌ

ｎｅｕｒａｌｎｅｔｗｏｒｋｍｏｄｅｌｂａｓｅｄｏｎｍｕｌｔｉｓｃａｌｅｓｔｒｕｃｔｕｒａｌｓｉｍｉｌａｒｉｔｙ

ｆｏｒｔｈｅｐｒｅｄｉｃｔｉｏｎｏｆｆｌｏｗｆｉｅｌｄｓ［Ｃ］／／ＰｒｏｃｅｅｄｉｎｇｓｏｆＡＩＡＡ

Ａｖｉａｔｉｏｎ２０２１Ｆｏｒｕｍ，２０２１．

［２２］　ＷＡＮＧＺ，ＢＯＶＩＫＡＣ，ＳＨＥＩＫＨＨＲ，ｅｔａｌ．Ｉｍａｇｅｑｕａｌｉｔｙ

ａｓｓｅｓｓｍｅｎｔ：ｆｒｏｍｅｒｒｏｒｖｉｓｉｂｉｌｉｔｙｔｏｓｔｒｕｃｔｕｒａｌｓｉｍｉｌａｒｉｔｙ［Ｊ］．

ＩＥＥＥＴｒａｎｓａｃｔｉｏｎｓｏｎＩｍａｇｅＰｒｏｃｅｓｓｉｎｇ，２００４，１３（４）：

６００－６１２．

·７２·


