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Residual network intelligent prediction method for hypersonic inlet

internal contraction basic flowfield

YANG Konggiang , XIONG Bing", FAN Xiaogiang, WANG Yi, TANG Xiao
(‘Advanced Propulsion Technology Laboratory, National University of Defense Technology, Changsha 410073, China)

Abstract; To enhance the design efficiency of inward-turning inlet and enable rapid prediction of internal contraction basic flowfield, a

parametric design of internal contraction basic flowfield was implemented using quasi-uniform B-spline methods, and a flow field prediction model

based on deep learning residual neural network architecture was proposed. The predicted flowfields were quantitatively evaluated using image quality

assessment methods including PSNR ( peak signal-to-noise ratio) and SSIM (structural similarity index) , from which key flow field characteristics

such as wall property distributions and shock wave shape were extracted to achieve the goal of rapidly obtaining flow field contours and characteristic

parameter distributions based on basic flowfield geometric parameters. Research result shows that the constructed flow field rapid prediction model

is characterized by high accuracy, with an overall average PSNR of 42.51 dB and an average SSIM of 0. 997 3. Key characteristics and parameter

distributions are effectively extracted from the prediction results, providing strong support for the rapid design and optimization of the internal

contraction basic flowfield.

Keywords: hypersonic; internal compression; basic flowfield; parametric approach; flow field prediction; residual neural network
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Tab.4 Evaluation indicators for prediction results
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