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高超声速进气道内收缩基准流场的残差网络智能预测方法

杨孔强，熊　冰，范晓樯，王　翼，唐　啸
（国防科技大学 先进推进技术实验室，湖南 长沙　４１００７３）

摘　要：为了提高内转式进气道的设计效率，实现对内收缩基准流场的快速预测，采用准均匀 Ｂ样条方
法实现内收缩基准流场的参数化设计，提出了基于深度学习残差神经网络架构的流场预测模型。结合峰值

信噪比、结构相似性指数等图像质量评估方法，对预测流场进行定量评价，并从中提取壁面特性分布、激波形

态等关键流场特性，以实现基于基准流场几何参数快速获取流场云图和特性参数分布的目标。研究结果表

明，所构建的流场快速预测模型精度较高，其整体平均峰值信噪比为 ４２５１ｄＢ，平均结构相似性指数为
０９９７３，且能有效地从预测结果中提取流场的关键特性与参数分布，为内收缩基准流场的快速设计与优化提
供有力支持。
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　　高超声速进气道是高超声速飞行器推进系统
中的关键供气部件［１－２］，其主要功能是捕获足量

空气并对其进行高效压缩，为燃烧室提供特定流

量、压比、温度和速度的气流，从而使发动机能够

产生足够推力以实现高超声速飞行［３－４］。其中，

内转式进气道因其较高的总压恢复系数相比传统

进气道更具优势，成为进气道研究中的热点［５］。

高超声速三维内转进气道设计及性能优化的

研究主要围绕着激波求解析理论、基本流场构建

及内转进气道设计３个方向展开［６］。目前研究表

明，基于流线追踪内转式进气道的性能受基准流

场的直接影响，通过优化基准流场性能可以有效

提升进气道性能，因此基准流场的设计至关重要。

李永洲等［７］基于壁面马赫数分布规律的轴对称

基准流场设计了方转圆高超声速内收缩进气道，

并采用弥散反射激波中心体削弱了中心体反射激
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波的强度，从而提升出口总压恢复系数。Ｘｉｏｎｇ
等［８］采用参数化设计方法，在对基准流场性能指

标进行约束的前提下，深入分析几何参数与流场

性能之间的关系，并进一步优化几何参数生成最

优性能的基准流场。

随着机器学习算法的快速发展，其在处理复

杂系统和高维非线性问题方面展现出了显著优

势，已经在航空航天领域中得到广泛的应用。

一方面，深度学习［９］能够实现流场的高精度

重构。Ｋｏｎｇ等［１０］基于流场壁面压力数据和纹影

对应关系，构建了卷积神经网络模型，实现流场结

构与激波串前缘位置的高精度预测。Ｇｕｏ等［１１］

提出了一种结合物理信息的金字塔池卷积神经网

络模型，针对基准流场的流场分布预测性能达到

较高水平，平均峰值信噪比为３６４２７ｄＢ，相关系
数超过９７％。关开港等［１２］研究了高超声速乘波

前体－进气道三维构型，构建了本征正交分解和
反向传播神经网络的流场快速预测模型，在高马

赫数和不同攻角条件下表现出较高的预测精度，

但在激波串区域预测中仍存在误差。奕建苗

等［１３］建立基于 ＵＮｅｔ架构的深度卷积神经网络
实现跨声速流场的快速预测，并将流场预测误差

控制在较小范围。胡伟杰［１４］选取某型号导弹模

型作为研究对象，在ＣＦＤ生成的模拟数据上采用
深度学习代理模型，提出一套快速且精确的导弹

气动性能和流场预测方案。李鑫等［１５］提出了一

种基于卷积神经网络和残差连接的 Ｕ型架构降
阶模型，实现了三维非定常流场快速重构的预期

目标。曹晓峰等［１６］基于 ＵＮｅｔ神经网络模型通
过模拟ＲＡＮＳ方程对速度、压力和密度分布进行
预测，预测结果流场趋势与真实流场趋势整体相

同。吴跃腾等［１７］采用融合了注意力机制的对称

卷积神经网络对静叶不同半径处静温、静压以及

马赫数等流场参数进行重构，模型对叶型流场参

数预测的平均相对误差不超过１％，实现了对压
气机静叶流场的快速、准确重构。

另一方面，深度学习还能够为飞行器设计提

供优化指导。代春良等［１８］基于内转进气道的基

准流场参数化灵敏度分析，结合神经网络近似模

型与多目标遗传算法，实现了轴对称基准流场的

多目标优化设计。何磊等［１９］提出了一种基于深

度学习的翼型反设计方法对翼型曲面与压力分布

图像特征进行拟合，实现了翼型曲线的高精度重

构，大幅提升设计效率并保证了设计结果的精度

和鲁棒性。柳家齐等［２０］建立了一种基于深度学

习的翼型多目标气动优化框架，结果表明优化翼

型可以显著地提升高速直升机旋翼的气动性能。

基于物理和设计相关理念，使用深度学习方

法准确预测轴对称基准流场特性参数分布对内收

缩进气道设计至关重要。结合深度学习领域的残

差连接网络构架，提出了一种针对二维内收缩基

准流场具有快速预测能力的神经网络模型，以构

建高超声速进气道基准流场的预测框架，旨在快

速准确地获得其内部流场的结构与特性分布，为

高超声速进气道的性能优化奠定基础。

１　基准流场参数化设计及数值方法

１．１　基准流场参数化方法

基准流场由压缩面型线与中心体组成。本文

基于Ｘｉｏｎｇ等［８］提出的基准流场模型，替换等直

中心体，针对压缩面进行参数化实现基准流场几

何型面生成。基准流场参数化如图１所示，轴对
称轴线表示为 ｘ。压缩面型线 ＣＨ，包括 ＣＥ、ＥＨ
两段压缩面型线，其中 Ｅ为预设分界点，位于预
设唇口位置Ｄ的正上方。底部为中心体型线，在
本研究中，中心体保持水平，即由一条等半径的直

线ＢＩ组成。
图１展示了压缩面型线ＣＥ、ＥＨ的参数化方

法，由两条准均匀 Ｂ样条曲线表示，其中 Ｃ、Ｅ、Ｈ
为固定控制点，Ｅ为两段准均匀 Ｂ样条共用控
制点，并包含４个柔性控制点 Ｆ１～Ｆ４，其中 Ｆ２、
Ｅ、Ｆ３三点保持共线以控制曲线在 Ｅ点的斜率。
固定界面与控制点分别采用实线、黑色实心点

表示，柔性界面与控制点分别采用虚线、绿色实

心点表示。

图１　基准流场参数化示意图
Ｆｉｇ．１　Ｂａｓｉｃｆｌｏｗｉｅｌｄｐａｒａｍｅｔｅｒｉｚｅｄｓｃｈｅｍａｔｉｃｓ

准均匀Ｂ样条［２１］用式（１）表示。

Ｃ（ｔ）＝∑
ｎ

ｉ＝０
Ｎｉ，ｋ（ｔ）·Ｐｉ （１）

式中：Ｃ（ｔ）为样条曲线；Ｐｉ为控制点；Ｎｉ，ｋ（ｔ）为第
ｉ个基函数的值，阶数为 ｋ；ｔ为曲线参数，定义域
在节点矢量范围之内；ｎ等于控制点数量减１。

基函数Ｎｉ，ｋ（ｔ）通过递归方式定义，如式（２）、
式（３）所示。
１）零阶基函数（ｋ＝１）：

·９２·
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Ｎｉ，１（ｔ）＝
１ ｔｉ≤ｔ＜ｔｉ＋１
０{ 其他

（２）

２）高阶基函数（ｋ＞１）：
Ｎｉ，ｋ（ｔ）＝ｆ１（ｔ）Ｎｉ，ｋ－１（ｔ）＋ｆ２（ｔ）Ｎｉ＋１，ｋ－１（ｔ）

ｆ１（ｔ）＝
ｔ－ｔｉ
ｔｉ＋ｋ－１－ｔｉ

ｆ２（ｔ）＝
ｔｉ＋ｋ－ｔ
ｔｉ＋ｋ－ｔｉ













＋１

（３）
其中：ｔｉ表示节点矢量中的第 ｉ个节点；分母中的
数值若为０，则对应项取值为０。

基准流场入口半径 Ｒｉ设置为单位１，其余长
度由Ｒｉ进行归一化。基准流场总长度为Ｌｔ，中心
体半径为ｒｉ。设计基准流场所涉及几何参数变量
以七维向量进行表述，如式（４）所示。

Ｘ＝（θ１，θ２，θ３，ｘＦ１，ｘＦ２，ｘＦ３，ｘＦ４）
Ｔ （４）

其中：ｘＦ１，ｘＦ２，ｘＦ３，ｘＦ４均为柔性控制点坐标，用以
调控准均匀 Ｂ样条的具体形态。θ１为初始压缩
角，对前体激波的压缩角具有较大的影响。θ１取
值较大时，前体激波角较大，容易出现多道激波反

射的情况，大幅度削弱基准流场的总压恢复系数。

其计算如式（５）所示。

ｔａｎθ１＝
ｒＣ－ｒＦ１
ｘＦ１－ｘＣ

（５）

θ２为下洗角，即 ＣＥ曲线在 Ｅ点处切线与流向的
夹角。若θ２取值不合理，压缩面型线中段将发生
一定程度的畸变，此时在压缩段末端产生一道斜

激波，进一步削弱总压恢复系数，并对局部流场产

生较大的影响。其计算如式（６）所示。

ｔａｎθ２＝
ｒＥ－ｒＦ３
ｘＦ３－ｘＥ

＝
ｒＦ２－ｒＥ
ｘＥ－ｘＦ２

（６）

θ３为出口方向角，即 ＥＨ曲线在 Ｈ点处切线与流
向的夹角，定义顺时针方向为正方向，计算如

式（７）所示。

ｔａｎθ３＝
ｒＦ４－ｒＨ
ｘＨ－ｘＦ４

（７）

定义总收缩比为入口截面面积与出口截面面

积之比，即：

Ｒｔ，ｂａｓｉｃ＝
ｒ２Ｃ－ｒ

２
Ｂ

（ｒ２Ｈ－ｒ
２
Ｉ）ｃｏｓθ３

（８）

定义内收缩比为唇口截面面积与出口截面面

积之比，即：

Ｒｉｎ，ｂａｓｉｃ＝
ｒ２Ｅ－ｒ

２
Ｄ

（ｒ２Ｈ－ｒ
２
Ｉ）ｃｏｓθ３

（９）

１．２　网格无关性验证

基于ＣＦＤ方法获得基准流场的解。采用基

于密度的有限体积法（ｆｉｎｉｔｅｖｏｌｕｍｅｍｅｔｈｏｄ，ＦＶＭ）
进行数值求解，无黏性通量类型采用Ｒｏｅ通量差分
格式（ＲｏｅＦＤＳ），空间离散采用二阶迎风格式，梯
度设置为最小二乘网格。基准流场入口设置为压

力－远场边界条件，出口设置为压力－出口边界条
件，来流为理想气体。

为了进一步评估ＣＦＤ方法的准确性，对网格
无关性进行校验。基于１．１节所介绍的参数化方
法生成用于参考的流场几何边界，并比较了三种

不同网格尺度对ＣＦＤ结果的影响，具体包括粗网
格（１５５×３０）、中网格（３１０×６０）和细网格（９３０×
１８０）。图２分别展示了基准流场的细网格、中网
格和粗网格的马赫数云图与马赫数分布。在马赫

（ａ）不同网格密度的马赫数云图
（ａ）Ｍａｃｈｎｕｍｂｅｒｃｌｏｕｄｃｈａｒｔｓｗｉｔｈ

ｄｉｆｆｅｒｅｎｔｇｒｉｄｄｅｎｓｉｔｉｅｓ

（ｂ）不同网格密度的马赫数分布
（ｂ）Ｍａｃｈｎｕｍｂｅｒｄｉｓｔｒｉｂｕｔｉｏｎｗｉｔｈｄｉｆｆｅｒｅｎｔｇｒｉｄｄｅｎｓｉｔｉｅｓ

图２　网格无关性检验
Ｆｉｇ．２　Ｇｒｉｄｉｎｄｅｐｅｎｄｅｎｃｅｔｅｓｔ

·０３·
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数等值线分布情况上，粗网格相对其余两种网格

的差异较为明显，细网格和中网格相似性较高。

在前体激波的精细化程度上，粗网格对比细网格

与中网格略微粗糙。从中心体边界的马赫数分布

来看，中网格与细网格的马赫数分布重合度较高，

而粗网格的马赫数分布在前体激波间断处存在一

定的差异。

网格比例对流场解算存在一定影响，但较为

轻微。为了保证生成样本的精度与效率，综合考

虑选用中网格对基准流场进行ＣＦＤ计算，以获取
流场数据样本。

１．３　样本生成

在上述基准流场参数化设计与数值方法验证

之后，选定合适的设计点参数进行样本的生成。

本文选定的进气道设计点参数与来流条件如表１
所示。表１中，Ｍａｉ为来流马赫数，Ｌｃ为预设唇口
的相对位置。

表１　基准流场设计点参数及来流条件
Ｔａｂ．１　Ｄｅｓｉｇｎｐｏｉｎｔｐａｒａｍｅｔｅｒｓａｎｄｉｎｃｏｍｉｎｇｆｌｏｗ

ｃｏｎｄｉｔｉｏｎｓｆｏｒｂａｓｉｃｆｌｏｗｆｉｅｌｄ

Ｍａｉ Ｌｔ／Ｒｉ Ｌｃ／Ｒｉ ｒｉ／Ｒｉ Ｒｔ，ｂａｓｉｃ Ｒｉｎ，ｂａｓｉｃ

６．０ ４．５０ ３．６０ ０．１ ９．４０ ２．０５

由于压缩面型线对基准流场特性参数分布影

响较大，对参数化方法的几何参数的取值范围进

行限制，防止出现不符合设计需求的样本。表２
展示了参数化方法中的几何设计参数。根据所设

定的进气道几何参数范围，采用拉丁超立方体采

样，并进行数值模拟，共计获得进气道基准流场样

本５００组。

表２　基准流场几何设计参数
Ｔａｂ．２　Ｇｅｏｍｅｔｒｉｃｄｅｓｉｇｎｐａｒａｍｅｔｅｒｓｏｆｂａｓｉｃｆｌｏｗｆｉｅｌｄ

参数符号 物理含义 取值范围

θ１ 初始压缩角 ０～１０°

θ２ 下洗角 ３°～８°

θ３ 出口方向角 ０～３°

ｘＦ１

ｘＦ２

ｘＦ３

ｘＦ４

准均匀Ｂ样条曲线
柔性控制点坐标

０．５～１．５

２．５～３．５

３．５～４．０

４．０～４．５

　　基于ＩＳＩＧＨＴ软件搭建样本生成流程，实现型
面生成、网格划分、ＣＦＤ仿真计算以及仿真后处

理等关键环节集成的一体化设计流程。

本文所涉及的几何参数与流场特性数据包含

多个维度，其单位、量纲和数量级均存在显著差

异，易导致训练过程中的梯度更新不平衡，较大尺

度的变量会主导损失函数的优化，掩盖较小尺度

变量的贡献，从而降低模型的学习能力。因此引

入ＺＳｃｏｒｅ标准化，将各个维度数据转换为均值为
０、标准差为１的分布，公式为：

Ｘ′＝Ｘ－μ
σ

（１０）

式中，Ｘ为原始数据，μ为变量均值，σ为变量标
准差。

２　ＲｅｓＮｅｔ网络模型及评估方法

２．１　残差神经网络基本结构

全连接层是深度学习框架的基本组件，主要

用于对输入特征进行线性变换，从而将输入映射

到新的特征空间。公式如式（１１）所示。
ｙ＝Ｗ·ｘ＋ｂ （１１）

式中：ｘ为输入向量，包含 ｎ个特征；Ｗ为权重矩
阵，包含输入到输出的连接权重；ｂ为偏置向量，
用于调整输出值与真实值的偏差；ｙ为输出向量，
包含ｍ个输出向量。

图３所示为全连接神经网络的基本结构，包
含输入层、隐藏层与输出层。隐藏层作为神经网

络的核心组成部分，通过引入权重参数与非线性

激活函数，如修正线性单元（ｒｅｃｔｉｆｉｅｄｌｉｎｅａｒｕｎｉｔ，
ＲｅＬＵ），实现对输入特征的高维映射与非线性转
换，从而增强模型对复杂模式的表达能力，处理输

入层信号并传递到输出层，帮助网络拟合复杂非

线性关系。

图３　全连接神经网络
Ｆｉｇ．３　Ｆｕｌｌｙｃｏｎｎｅｃｔｅｄｎｅｕｒａｌｎｅｔｗｏｒｋ

ＲｅＬＵ是神经网络训练过程中一种常见的激
活函数，其数学表达式为：

Ｒ（ｘ）＝ｍａｘ（０，ｘ） （１２）
通过针对输入参数的指定性激活，使网络结

·１３·
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构具有一定的非线性能力。

卷积层能从输入中提取局部特征，通过卷积

核在输入数据上滑动，捕捉局部区域的模式，其公

式为：

Ｏ（ｉ，ｊ）＝∑
ｍ
∑
ｎ
Ｊ（ｉ＋ｍ，ｊ＋ｎ）·Ｋ（ｍ，ｎ）

（１３）
式中：Ｊ（ｉ，ｊ）为输入特征图在位置（ｉ，ｊ）处的取值，
Ｋ（ｍ，ｎ）为卷积核的权重，ｍ、ｎ分别表示卷积核
行、列的索引值；Ｏ（ｉ，ｊ）为输出特征图在位置（ｉ，
ｊ）处的取值。

残差连接是神经网络中的一种运用技巧。由

于深层网络容易出现梯度消失或梯度爆炸的问

题，通过残差连接的方式，将网络的深度扩展到数

十层以上，从而提高模型的性能。残差连接将输

入的信号直接连接到输出，从而在网络中引入

“跨层连接”。残差连接如图４所示，输入信号不
仅通过两次权重运算进行信号转换，同时通过旁

路直接将信号传输到输出。

图４　残差连接
Ｆｉｇ．４　Ｒｅｓｉｄｕａｌｃｏｎｎｅｃｔｉｏｎ

残差 块 由 卷 积 层、批 量 归 一 化 （ｂａｔｃｈ
ｎｏｒｍａｌｉｚａｔｉｏｎ，ＢＮ）层组成，并加入残差连接与激
活函数提升模型性能，其公式化表达为：

ｙ＝Ｆ（ｘ，Ｗｉ）＋ｘ （１４）

式中：ｘ为初始输入特征；Ｗｉ代表残差模块权重；
Ｆ为残差映射，即通过卷积、激活等操作后的结
果；ｙ为残差块的输出。

ＢＮ层针对各层输出进行归一化处理，有效
地稳定网络模型训练过程，并加速其收敛，一定程

度上减少了梯度消失和梯度爆炸问题。具体操作

如式（１５）所示。

ｚ^＝ ｚ－μ
σ２＋槡 ε

ｚｏｕｔ＝ａ１^ｚ＋ａ
{

２

（１５）

其中：μ，σ２分别为小批量数据的均值和方差；ａ１，
ａ２均为可学习参数；ｚ为初始数据。

２．２　模型参数设置

采用基于残差连接的 ＲｅｓＮｅｔ网络模型实现
基于设计几何参数向量生成对应的流场特征的快

速预测。采用的流场预测模型的架构框图如图５
所示，图中只展示模块的大致组成，不区别具体

模块。

输入的特征向量包括７个几何设计参数，用
于描述基准流场的压缩面型线，通过２个全连接
层（ＦＣ１、ＦＣ２）将输入数据映射到高维特征空间，
随后将高维特征进行重塑（Ｒｅｓｈａｐｅ）作为卷积层
的输入并紧接着应用ＢＮ以稳定训练过程。

网络包含３２个重复的残差块（ＲｅｓＢｌｏｃｋ），
每个残差块内包含２个３×３的卷积层（Ｃｏｎｖ２、
Ｃｏｎｖ３），每层之后均配备 ＢＮ和 ＲｅＬＵ激活函
数。经过这些残差块的处理后，数据再通过第

二个卷积层（Ｃｏｎｖ４）进一步提取特征，输出尺寸
保持为３２×３２×３２，并同样应用 ＢＮ和 ＲｅＬＵ激
活函数。

图５　流场预测模型的架构框图
Ｆｉｇ．５　Ａｒｃｈｉｔｅｃｔｕｒｅｄｉａｇｒａｍｏｆｆｌｏｗｆｉｅｌｄｐｒｅｄｉｃｔｉｏｎｍｏｄｅｌ

　　通过 Ｒｅｓｈａｐｅ层将卷积层的输出重塑为一
维向量，进入全连接层阶段。通过全连接层

（ＦＣ３、ＦＣ４、ＦＣ５）以匹配最终输出的需求。将

ＦＣ５的输出重塑（Ｒｅｓｈａｐｅ）为流场特征分布的张
量，生成最终的预测流场矩阵，对应于基准流场

的密度场、压力场以及马赫数场。各层模型参

·２３·



　第１期 杨孔强，等：高超声速进气道内收缩基准流场的残差网络智能预测方法

数选择如表３所示。

表３　网络结构特定参数设置
Ｔａｂ．３　Ｎｅｔｗｏｒｋｓｔｒｕｃｔｕｒｅｓｐｅｃｉｆｉｃｐａｒａｍｅｔｅｒｓｅｔｔｉｎｇｓ

区域 层 核尺寸 输出尺寸

ＦＣ
ＦＣ１ １×２５６

ＦＣ２ １×１０２４

Ｒｅｓｈａｐｅｌａｙｅｒ１ １×３２×３２

Ｃｏｎｖｌａｙｅｒ１
Ｃｏｎｖ１ ３×３ ３２×３２×３２

ＢＮ ３２×３２×３２

ＲｅｓＢｌｏｃｋ×３２

Ｃｏｎｖ２ ３×３ ３２×３２×３２

ＢＮ／ＲｅＬＵ１ ３２×３２×３２

Ｃｏｎｖ３ ３×３ ３２×３２×３２

ＢＮ／ＲｅＬＵ２ ３２×３２×３２

Ｃｏｎｖｌａｙｅｒ２
Ｃｏｎｖ４ ３×３ ３２×３２×３２

ＢＮ／ＲｅＬＵ３ ３２×３２×３２

Ｒｅｓｈａｐｅｌａｙｅｒ２ １×３２７６８

ＦＣ

ＦＣ３ １×８１９２

ＦＣ４ １×４０９６

ＦＣ５ １×５５８００

Ｒｅｓｈａｐｅｌａｙｅｒ３ ３×１８６００

模型训练流程如图６所示，筛选后的样本按
照比例划分为训练集（８０％）和测试集（２０％）。
训练集用于模型训练，而测试集则用于模型性能

的验证与评估。模型的训练与测试均在 ＮＶＩＤＩＡ
３０９０显卡环境下基于 ＰｙＴｏｒｃｈ１１０框架进行。
训练过程中，采用自适应矩估计优化器（Ａｄａｍ）对
模型参数进行优化，数据加载的批次大小为１６。
同时，模型采用混合精度训练方式，以减少显存占

用，提高计算效率。

损失函数选择预测矩阵与真实矩阵之间的均

方误差（ｍｅａｎｓｑｕａｒｅｄｅｒｒｏｒ，ＭＳＥ），其计算公
式为：

ｅ＝１Ｎ∑
Ｎ

ｉ＝１
（ｙｉ－ｙ^ｉ）

２ （１６）

式中，^ｙｉ表示真实值，ｙｉ表示预测值，Ｎ表示向量
的维度。为优化模型性能，训练中使用梯度下降

法降低损失函数值。初始学习率设为００００１，每
１００个训练轮次将学习率衰减为原来的５０％，共
计５００个训练轮次。损失值和学习率的变化趋势
如图７所示。随着训练轮次的增加，训练集和测
试集的损失值逐渐降低，并最终趋于收敛。且两

者之间差异较小，这表明模型的拟合效果较为理

想，未出现明显的欠拟合或过拟合现象。

图６　模型训练流程框图
Ｆｉｇ．６　Ｍｏｄｅｌｔｒａｉｎｉｎｇｐｒｏｃｅｓｓｂｌｏｃｋｄｉａｇｒａｍ

图７　模型训练过程损失值与学习率变化
Ｆｉｇ．７　Ｌｏｓｓａｎｄｌｅａｒｎｉｎｇｒａｔｅｖａｒｉａｔｉｏｎｄｕｒｉｎｇ

ｍｏｄｅｌｔｒａｉｎｉｎｇｐｒｏｃｅｓｓ

２．３　评价指标

为了综合评估预测误差，避免单一指标可能

带来的信息不完全问题，流场预测的误差通过多

维度客观评价指标进行描述，包括峰值信噪比

（ｐｅａｋｓｉｇｎａｌｔｏｎｏｉｓｅｒａｔｉｏ，ＰＳＮＲ）、结构相似性指
数（ｓｔｒｕｃｔｕｒａｌｓｉｍｉｌａｒｉｔｙ，ＳＳＩＭ）和相关系数Ｒ。
２．３．１　峰值信噪比

ＰＳＮＲ是图像处理和视频质量评价中常用的
指标，用于衡量压缩图像或重建图像与原始图像

之间的质量差异。具体而言，它通过计算两幅图

像之间的像素差异来量化图像质量的变化程度，

计算公式为：

ＰＳＮＲ＝１０·ｌｇ
Ｍ２( )ｅ （１７）

式中：Ｍ表示像素最大值，对于常见图像而言，Ｍ
取值为２５５；ｅ定义为真实图像与预测图像所有像
素值之间的均方差。一般来说，ＰＳＮＲ高于３０ｄＢ

·３３·
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表明预测图像的质量较高，与真实图像之间的像

素分布差异较小。

２．３．２　结构相似性指数
ＳＳＩＭ是用于衡量图像感知质量的重要指标，

其从亮度、对比度和结构信息三个方面综合描述

图像之间的相似性。ＳＳＩＭ值介于０到１之间，值
越接近１表示图像越相似。

ＳＳＩＭ（ｘ，ｙ）＝Ｉα·ｃβ·ｓγ

Ｉ（ｘ，ｙ）＝
２μｘμｙ＋ｃ１
μ２ｘ＋μ

２
ｙ＋ｃ１

ｃ（ｘ，ｙ）＝
２σｘσｙ＋ｃ２
σ２ｘ＋σ

２
ｙ＋ｃ２

ｓ（ｘ，ｙ）＝
σｘｙ＋ｃ２
σｘσｙ＋ｃ















３

（１８）

其中：Ｉ反映图像亮度之间的相似性；μｘ，μｙ分别
表征两幅图像的均值；ｃ反映图像之间对比度的
相似性；σｘ，σｙ分别表征两幅图像的标准差；ｓ表
示两幅图像的结构相关性；σｘｙ表示两幅图像的协
方差；α，β，γ分别表示三个部分的权重；ｃ１，ｃ２，ｃ３
均为防止分母为０的稳定项。
２．３．３　相关系数

Ｒ是用来衡量两幅图像或两个变量之间线性
相关性的指标。在图像处理或流场预测的评估

中，相关系数用于定量描述预测结果与真实值之

间的线性关系，反映了预测图像与真实图像是否

在整体趋势上保持一致。

对于两幅图像 Ｔ（真实图像）与 Ｋ（预测图
像），相关系数的计算公式为：

　Ｒ＝
∑
ｎ

ｉ＝１
（Ｔｉ－珔Ｔ）（Ｋｉ－珔Ｋ）

∑
ｎ

ｉ＝１
（Ｔｉ－珔Ｔ）

２·∑
ｎ

ｉ＝１
（Ｋｉ－珔Ｋ）槡

２

（１９）

式中：Ｔｉ，Ｋｉ分别表示真实图像与预测图像第 ｉ个
像素值；珔Ｔ，珔Ｋ分别表示真实图像与预测图像的像
素均值。

Ｒ趋于１表明真实图像与预测图像像素值相
关性较强。

３　结果分析

３．１　样本分析

基于２．２节所构建的网络模型，将划分的训
练集代入ＲｅｓＮｅｔ网络模型进行训练，并使用训练
后的模型加载测试集以检验模型性能。

图８展示了５０个测试集样本的预测流场图
像评价指标。以分图形式，分别展示了三类流场

云图预测的评价指标分布。具体而言，马赫数云

图预测流场的 ＰＳＮＲ在３０～４５ｄＢ之间，压力云
图预测流场的 ＰＳＮＲ在３５～５０ｄＢ之间，密度云
图预测流场的 ＰＳＮＲ在３８～５３ｄＢ之间，三者均
展现了较高的预测精度。其中，密度云图预测流

场的ＰＳＮＲ表现相对更优。在结构相似性指数方
面，马赫数云图与压力云图预测流场与真实流场

的ＳＳＩＭ均处于０９９３～１０００之间，而密度云图
的ＳＳＩＭ均超过０９９７，进一步表明密度云图的预
测效果相较于马赫数云图与压力云图更优，同时

也展现了整体上三类云图预测结果的高准确性和

可靠性。

（ａ）峰值信噪比分布
（ａ）ＰＳＮＲｄｉｓｔｒｉｂｕｔｉｏｎ

（ｂ）结构相似性指数分布
（ｂ）ＳＳＩＭｄｉｓｔｒｉｂｕｔｉｏｎ

图８　图像生成质量指标
Ｆｉｇ．８　Ｉｍａｇｅｇｅｎｅｒａｔｉｏｎｑｕａｌｉｔｙｉｎｄｉｃａｔｏｒｓ

表４展示了三种流场预测结果的平均指标，
并从整体流场与局部关键流场两个区域对生成图

像进行评价。从整体流场特性分析，三个流场的

ＰＳＮＲ均值为４２５１ｄＢ，ＳＳＩＭ均值为０９９７３，预
测精度较高；针对局部关键流场，ＰＳＮＲ均值为
３９３７ｄＢ，ＳＳＩＭ均值为０９９３９，相较整体区域略
微下降，但仍保证了较高的精度。

·４３·
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表４　预测结果评价指标
Ｔａｂ．４　Ｅｖａｌｕａｔｉｏｎｉｎｄｉｃａｔｏｒｓｆｏｒｐｒｅｄｉｃｔｉｏｎｒｅｓｕｌｔｓ

类别
整体区域 关键区域

ＰＳＮＲ／ｄＢ ＳＳＩＭ ＰＳＮＲ／ｄＢ ＳＳＩＭ

ρ ４７．７７ ０．９９８４ ４３．７８ ０．９９５９

Ｐ ４１．５７ ０．９９７２ ３７．２２ ０．９９２１

Ｍａ ３８．１８ ０．９９６４ ３７．１０ ０．９９３７

平均 ４２．５１ ０．９９７３ ３９．３７ ０．９９３９

综上所述，测试集的整体图像质量评估指标

表明，三类目标流场重构的 ＰＳＮＲ取值均在３０～
５０ｄＢ之间，说明模型在实现流场预测方面具有较
高的精度。同时，ＳＳＩＭ的取值均超过０９９，说明
真实流场与预测流场在结构相似性方面达到了较

高水平。上述结果均验证了模型在不同类型流场

云图预测中的优异性能。

为了进一步评估预测模型在单个样本中的表

现，从马赫数预测云图的 ＰＳＮＲ分布图中随机选
取两个样本 ＣａｓｅＡ与 ＣａｓｅＢ，展开深入研究。
图９展示了 ＣａｓｅＡ的真实流场与预测流场的对
比结果，同时记录了流场的 ＰＳＮＲ与 ＳＳＩＭ。采用
虚线框标注流场关键区域，并显示关键区域的

ＰＳＮＲ与ＳＳＩＭ值。

（ａ）真实流场
（ａ）Ｒｅａｌｆｌｏｗｆｉｅｌｄ

　　　 （ｂ）预测流场
（ｂ）Ｐｒｅｄｉｃｔｉｏｎｆｌｏｗｆｉｅｌｄ

图９　ＣａｓｅＡ流场
Ｆｉｇ．９　ＣａｓｅＡｆｌｏｗｆｉｅｌｄ

针对 ＣａｓｅＡ的真实流场和预测流场进行对
比分析，整体流场的预测结果表现优异，ＰＳＮＲ和
ＳＳＩＭ指数均处于较高水平，表明模型能够较好地
还原目标流场的整体特征。在密度云图的重构

中，整体的ＰＳＮＲ高达５０ｄＢ，ＳＳＩＭ接近１。在关
键区域的性能评估中，虽然 ＰＳＮＲ相较于整体出
现一定程度的下降，但其数值仍维持在较高水平，

说明模型在关键区域的预测精度依然较高，能够

有效捕捉流场的局部特性。

图１０展示了马赫数预测流场与真实流场在
三通道像素（Ｒ、Ｇ、Ｂ）上的分布值，并计算两者三
通道像素分布的相关系数。从三个流场的像素值

分布拟合曲线分析可以看出，相关系数均高于

０９９９（图中取值仅保留三位小数），表明真实图
像像素与预测图像像素整体上呈现出高度的线性

（ａ）Ｒ通道像素分布
（ａ）Ｒｃｈａｎｎｅｌｐｉｘｅｌｄｉｓｔｒｉｂｕｔｉｏｎ

（ｂ）Ｇ通道像素分布
（ｂ）Ｇｃｈａｎｎｅｌｐｉｘｅｌｄｉｓｔｒｉｂｕｔｉｏｎ

（ｃ）Ｂ通道像素分布
（ｃ）Ｂｃｈａｎｎｅｌｐｉｘｅｌｄｉｓｔｒｉｂｕｔｉｏｎ

图１０　流场云图三通道像素分布
Ｆｉｇ．１０　Ｔｈｒｅｅｃｈａｎｎｅｌｐｉｘｅｌｓｄｉｓｔｒｉｂｕｔｉｏｎｏｆ

ｆｌｏｗｆｉｅｌｄｃｌｏｕｄｍａｐ

相关关系，说明真实流场像素分布与预测流场像

素分布的线性关系较强。然而，仍可观察到部分

·５３·
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离散像素值偏离真实值，与预测结果存在一定的

偏差，表明模型在局部离散区域的预测仍存在改

进的空间。

为了进一步探讨模型在不同样本中的表现，

分析了 ＣａｓｅＢ的真实流场与预测流场的对比情
况。由图１１可知，与图９类似，在图中对整体流
场评价指标与关键流场评价指标进行标注。

ＣａｓｅＢ的整体流场相比 ＣａｓｅＡ存在一定差距，其
ＰＳＮＲ和ＳＳＩＭ值大多低于ＣａｓｅＡ，但仍在高质量
范围内，表明模型在该样本的整体流场预测中仍

具备一定准确性。针对流场关键区域的性能评估

显示，ＰＳＮＲ和 ＳＳＩＭ在关键区域均出现了明显下
降，其中马赫数云图的重构 ＰＳＮＲ降至３０ｄＢ以
下，但整体分布趋势仍得到较好的保留。尽管关

键区域的预测质量有所下降，模型仍能有效捕捉

其局部的流场特征。

（ａ）真实流场
（ａ）Ｒｅａｌｆｌｏｗｆｉｅｌｄ

　　　　 （ｂ）预测流场
（ｂ）Ｐｒｅｄｉｃｔｉｏｎｆｌｏｗｆｉｅｌｄ

图１１　ＣａｓｅＢ流场
Ｆｉｇ．１１　ＣａｓｅＢｆｌｏｗｆｉｅｌｄ

３．２　关键特征提取

选取ＣａｓｅＡ对流场的关键特征进行提取，以
检验模型的预测效果。以该样本的密度云图为

例，从中截取一条虚线跨越基准流场的两波三区

（入射激波、反射激波，入射激波上游、反射激波

下游、中间区域），以探究真实流场与预测流场的

像素值变化，如图１２（ａ）所示。
其像素值变化如图１２（ｂ）所示，途经两道激

波间断区域，其像素值相应发生两段突变。不难

发现，在该虚线上三通道（Ｒ、Ｇ、Ｂ）像素值的预测
结果均与真实结果吻合程度较高，仅在反射激波

下游尾端存在小范围的差异。通过将像素值与图

例对应能进一步反解出流场特征，实现基于预测

图像的流场特性参数分布计算。

进一步针对基准流场中心体几何面与压缩

面，对马赫数云图和压力云图的分布特性进行

研究。图１３和图１４分别展示了马赫数和压比
在中心体几何面与压缩面上的分布情况。对于

中心体几何面分布而言，马赫数、压比均在激波

反射位置出现较大的突变，符合实际流动规律。

（ａ）划定虚线范围
（ａ）Ｄｅｆｉｎｅｔｈｅｄｏｔｔｅｄｌｉｎｅｒａｎｇｅ

（ｂ）虚线位置ＲＧＢ像素值变化
（ｂ）ＣｈａｎｇｅｏｆＲＧＢｐｉｘｅｌａｔｄｏｔｔｅｄｌｉｎｅ

图１２　密度云图局部分析
Ｆｉｇ．１２　Ｌｏｃａｌａｎａｌｙｓｉｓｏｆｄｅｎｓｉｔｙｎｅｐｈｏｇｒａｍ

在压缩面流动特性参数分布方面，马赫数在压

缩段逐渐降低，并在下洗角曲率变化较为剧烈

处出现较小范围的突跃，然后在反射激波与压

缩面交点处骤降，最终来流经过膨胀波加速使

马赫数回升；与之相反，压比随着压缩增强，出

现了一定程度的上升，并于曲率变化较大处发

生突跃，随后在反射激波与压缩面交点处骤升，

最后经过尾部膨胀波使得压比小幅度降低。上

述变化均符合流场特性参数分布规律。

总体而言，中心体几何面与压缩面上的预测

流场特性参数分布拟合程度较高，仅在激波间断

处存在一定误差，整体表现优异。

通过模型预测流场实现激波形状的捕捉。如

图１５（ａ）所示，以径向步长 Δｒ＝０１沿轴向方向
分别截取多条马赫数分布曲线，并将其与真实流

场的激波间断曲线进行对应。针对马赫数变化剧

烈的区间，选取变化区间中点对应的轴向位置作

为激波间断位置，绘制激波分段图像，并在真实流

场中进行标注。从中提取不同径向对应的激波间

·６３·
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断位置，并与真实激波间断位置进行对比，结果记

录如图１５（ｂ）所示。图中横坐标为径向距离，纵
坐标为激波间断位置的轴向距离，分别作出真实

激波、预测激波与 Δｒ＝０１对应的离散点并进行

连线，进一步分析激波形状的捕获能力。

分析结果表明，该方法能够有效捕捉激波形

状，并且预测结果与真实流场激波形态具有较高

的匹配精度。

图１３　中心体几何面与压缩面的马赫数分布
Ｆｉｇ．１３　Ｍａｃｈｎｕｍｂｅｒｄｉｓｔｒｉｂｕｔｉｏｎｏｆｔｈｅｃｅｎｔｒａｌｂｏｄｙｇｅｏｍｅｔｒｉｃｓｕｒｆａｃｅａｎｄｔｈｅｃｏｍｐｒｅｓｓｉｏｎｓｕｒｆａｃｅ

图１４　中心体几何面与压缩面的压比分布
Ｆｉｇ．１４　Ｐｒｅｓｓｕｒｅｒａｔｉｏｄｉｓｔｒｉｂｕｔｉｏｎｏｆｔｈｅｃｅｎｔｒａｌｂｏｄｙｇｅｏｍｅｔｒｉｃｓｕｒｆａｃｅａｎｄｔｈｅｃｏｍｐｒｅｓｓｉｏｎｓｕｒｆａｃｅ

（ａ）激波间断位置
（ａ）Ｓｈｏｃｋｄｉｓｃｏｎｔｉｎｕｉｔｙｐｏｓｉｔｉｏｎ

３．３　模型可解释性

从某测试样本中提取残差块结构前与结构后

的特征图，如图１６所示。对比图１６（ａ）、图１６（ｂ）

（ｂ）激波位置对比
（ｂ）Ｓｈｏｃｋｐｏｓｉｔｉｏｎｃｏｎｔｒａｓｔ

图１５　激波形状捕捉
Ｆｉｇ．１５　Ｓｈｏｃｋｗａｖｅｓｈａｐｅｃａｐｔｕｒｅ

可以看出，模型逐渐从捕捉局部特征向提取全局

信息的方向转变。

图１６（ａ）是残差块前的特征图，呈现较为稀

疏、离散的特征响应，反映出模型对输入的局部区

域的边缘、纹理与局部变化等低维特征的提取能

力。这种情况下特征图的响应较为分散，整体表

·７３·
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现“粗糙”，此时模型聚焦于流场输入的局部特

征，例如小范围的马赫数变化或局部压力梯度的

波动。图１６（ｂ）是残差块后的特征图，经过残差
块的多层卷积操作与跳跃连接后，呈现更为平滑

的特征，部分区域的响应值变得更加集中，反映出

模型对输入流场的宏观特性与整体特点具有更加

精确的描述。同时，这种平滑性也表明了残差块

对局部特征进行了整合与过滤，去除部分冗余信

息，进一步增强对关键区域的表达。此时模型对

流场中的关键特性区域，如激波间断、反射激波依

赖区的描述更为清晰。

（ａ）残差块前特征图
（ａ）Ｆｅａｔｕｒｅｍａｐｂｅｆｏｒｅ

ｒｅｓｉｄｕａｌｂｌｏｃｋ
　　　

（ｂ）残差块后特征图
（ｂ）Ｆｅａｔｕｒｅｍａｐａｆｔｅｒ
ｒｅｓｉｄｕａｌｂｌｏｃｋ

图１６　不同位置特征图
Ｆｉｇ．１６　Ｆｅａｔｕｒｅｍａｐｓａｔｄｉｆｆｅｒｅｎｔｌｏｃａｔｉｏｎｓ

前后两张特征图的变化表明了残差块有效提

升了模型对流场的特征提取能力，前者保留更多

细节信息，后者的高响应区域更能体现模型的注

意力集中的区域，表明残差块对特征信息的融合

符合流场特性预测的需求。

４　结论

针对高超声速内收缩基准流场的特性参数分

布与性能进行快速预测，对其优化设计具有重要

的意义与显著的工程应用价值。本文通过将深度

学习的残差神经网络模型融入进气道参数化设计

中，并结合图像质量评估方法对预测结果进行检

验，主要结论如下：

１）基于准均匀 Ｂ样条实现了内收缩等中心
体基准流场的参数化设计，该方法可对基准流场

关键几何特征进行参数化表达，如初始压缩角、下

洗角、总收缩比、内收缩比以及出口方向角等，为

基准流场样本生成提供了有效工具。

２）基于数据驱动的残差神经网络架构，搭建
了高超声速内收缩基准流场的快速预测模型。该

模型在流场特性和性能分布预测方面表现出较高

的精度，整体流场平均峰值信噪比为４２５１ｄＢ，
平均结构相似性指数在０９９以上。对于设计几

何参数样本空间内的流场预测均具有良好的保

真性。

３）利用图像评估方法，对内收缩基准流场中
的关键流场特征进行了评估。结果表明，预测模

型能够准确捕捉激波形状、壁面参数分布等流场

特性，整体趋势符合预期，展现了较好的特性提取

与流场预测能力。

本文的研究方法也可推广应用到飞行器其他

部件设计的相关领域。
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