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Dynamic approximate modeling and deviation analysis methods for
sounding rocket flight performance

TIAN Lei' , WU Zeping'® , LI Guosheng' , ZHANG Weihua' , LI Yiging®
(1. College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China;
2. School of Power and Energy, Nanchang Hangkong University, Nanchang 330063, China)

Abstract; Taking low-cost sounding rockets as the research object, a multi-disciplinary simulation model for sounding rockets was established
on the basis of various disciplinary simulation modules, enabling the simulation of rocket flight performance with multi-disciplinary coupling. An
uncertainty propagation analysis method based on dynamic expansion sampling and surrogate models was proposed to address the uncertainty
propagation issues related to the flight performance of the sounding rocket. An uncertainty deviation model for rocket flight performance was
established on the basis of physical analysis. The deviation parameters were dynamically sampled using the bounded augmented Latin hypercube
design method, and deviation samples that satisfied the specified distribution were obtained through the inverse cumulative distribution
transformation method. An improved expanded radial basis function model was employed for the approximate modeling of flight performance
characteristic parameters, and an approximate prediction model for the flight performance characteristic parameters of sounding rockets was
established by utilizing a minimal number of sample points. The flight performance characteristic parameters of rocket obtained from the proposed
method were compared with those from the Monte Carlo simulation method. The results validate that the proposed method can achieve rapid and
accurate statistical prediction of flight performance parameters by utilizing a minimal number of simulation samples under the specified distribution
deviation model.
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Tab.1 Main parameters of a sounding rocket

ZHEE SRR Rk LiXDs
PR 1270 mm
PR B
PRI AR 85 mm
28] B SN 190 mm
[FEIZ4N S 1 600 mm
R EAR 255 mm
R S5 Ik 18.7 mm/s
HEEEK 200 mm
i 5T 16 mm
T A O A 69 mm
M A

WY IR LY 11
HREZ 600 mm
LSl 200 mm
e HERK 300 mm
Jaiik 500 mm
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Fig.3 Schematic diagram of solid rocket motor structure
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Fig.6 Drag coefficient of javelin stage
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Tab.3 Lift and moment coefficients of entire rocket

18/ km gk ULES QIS PIES
1.001 2.756 -0.69207  1.464 69
2.014 4.137 -0.37159  1.097 20
3.003 5.242 -0.204 88 0.965 36
3.784 5.970 -0.137 54 0.901 85
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Tab.4  Lift and moment coefficients of javelin stage

1 B/ km gk ULES QP IPIEY
3.784 5.970 -0.12703  1.044 64
10.970 5.552 -0.14365  1.082 61
15. 680 5.213 -0.157 81  1.112 64
20. 151 5.000 -0.167 18 1.13147
25.870 4.736 -0.18264  1.11075
30.018 4.574 -0.19224  1.130 16
35.391 4.326 -0.20309  1.157 67
40. 595 4.073 -0.216 14 1.190 31
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Fig.7 Thrust-time curve of engine
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six-degree-of-freedom simulation curve
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six-degree-of-freedom simulation curve
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Tab.6 Three benchmark test functions
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Tab.7 Test function results
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Fig. 15 Transformation process of the sampling set
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Tab. 10  Comparison of uncertainty propagation analysis

results for the sounding rocket

RATSH ik RS ES[IEN PR
40 126.913 km 3.386 km
80  126.912 km 3.635 km
5 ARBF 120  126.886 km 3.673 km
=53 160 127.085 km 3.752 km
200 127.058 km 3.825 km
MCS 5000 127.085 km 3.914 km
40 1.638° 1.107°
80 1.676° 1.194°
E& ARBF 120 1.657° 1.685°
B4 160 1.558° 1.300°
200 1.534° 1.095°
MCS 5 000 1.511° 1.178°

40 3.576 x107*(°) 0.059 x107*(°)

80  3.566x107*(°) 0.051 x107*(°)

ok ARBF 120 3.567 x107*(°) 0.060 x107*(°)
¥ £ 160 3.566 x107*(°) 0.051 x107*(°)
200 3.569 x107*(°) 0.050 x107*(°)

MCS 5000 3.568 x107*(°) 0.051 x107*(°)

40 15.872x10° Pa 0.333 x10° Pa
80 15.883 x10° Pa 0.367 x 10’ Pa
ok ARBF 120 15.869 x10° Pa 0.369 x 10° Pa
Bk 160 15.878 x10° Pa 0.386 x 10° Pa
200 15.890 x10° Pa  0.400 x 10° Pa

MCS 5000 15.886x10° Pa  0.399 x 10’ Pa
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