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Time-coordinated re-entry trajectory planning for hypersonic glide
vehicle cluster
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Abstract: Starting from the cooperative mission requirements of hypersonic gliding vehicles, a cooperative trajectory planning method for
cluster re-entry was proposed to address the trajectory planning problem in complex re-entry environments. The re-entry dynamics of a cluster of
vehicles was modelled, and a longitudinal trajectory control scheme was designed on the basis of the control volume and re-entry corridor
constraints. This approach aimed to mitigate the oscillation problem during trajectory calculation and improve the feasibility of trajectory solution.
On this basis, a trajectory planning scheme under two forms of cooperation was proposed, which completed the decision of cooperative time
according to the mission requirements and the gliding capability analysis results of the aircraft cluster, and utilized the hp adaptive pseudo-spectral
algorithm to plan the cooperative trajectory that satisfies the no-fly zone and time constraints. Simulation results show that the proposed method can
plan 3D trajectories that satisfy the specified constraints and coordinated time under different mission scenarios. This has significant reference value
for the cooperative planning research of hypersonic glider vehicles.
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