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Abstract; Computer-aided aerodynamic design is crucial for aircraft geometry optimization. To further improve the efficiency of aerodynamic
characteristic modeling, an aircraft-oriented intelligent aerodynamic coefficient prediction method, AeroPointNet, was proposed. A three-dimensional
point cloud representation of geometric models was employed as input, and a neural network architecture was constructed to efficiently extract both
local and global geometric features. To capture variations in flow conditions, physical information was fused with geometric features, and two weighted
attention mechanisms were introduced to dynamically adjust the weights, by which the problem of weight imbalance was effectively addressed.
Experimental results show that AeroPointNet achieves a computational efficiency improvement of over three orders of magnitude in aerodynamic
coefficient prediction compared with traditional numerical methods. The mean relative errors of lift and drag coefficients are kept below 5% .
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Tab.2 Comparison of aerodynamic coefficient prediction errors and parameter sizes with different attention mechanisms

ERAOOLE THNRBE /% TIHRE, THHRBE, WMAORKE/% MAORKE, MHARME  SHE/MB

o 4.28 0.593 0.603 4.40 0.759 0.966 4.504
I 2.18 0.380 0.252 1.85 0.375 0.258 4.569
[y 3.65 0.374 0.238 2.03 0.383 0.256 4.569
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Fig.9 Loss curves with different attention mechanisms
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Tab.3 Comparison of aerodynamic coefficient prediction errors and computational costs with different sampling sizes

TR PR THhARE BAORE AR BEAORE gRTH 0 CFHE

e E/% E, E, E/% E, E, IZRmtial/s i/ s
500 1.79 0.295 0.154 1.66 0.364 0.232 82.306 0.047

1 000 1.65 0.281 0.139 1.52 0.321 0.171 159. 662 0.068

2 000 1.55 0.255 0.120 1.51 0.292 0.162 332.012 0.114
3 000 1.51 0.233 0. 104 1.34 0.274 0.134 566. 607 0.165
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Fig. 10  Prediction results and absolute errors of aerodynamic coefficients (flow condition benchmark test set)



o1 4]

VAT A T AT Sl ) AR RO RE TN T 14 97

TR

=A

AR T —Fh 3T =4 RS R AL
BREWIN Jy 7% AeroPointNet, i i 25 45 SR B FRAE $2
) 42 Jr O ZR BT, o RRCH 4 2 B P 1 LA
RO, R 5 Y35 B G o BT X A i o 1)
AU A ) 80, 51 AT PR OIAS R 35 S AL >k 3l
SVRERGE SO0 T W28 6 JLAn REAE A 3145 B
IR 2] o SR ZE R, AeroPointNet REAZ PR
TN B ) A, HLBINSCR LT BA 195 6E
T3 T R BORBE 1 2 B0 35 R i 22 2 A
FE 5% IR,

TEARRMFFE Bk — 24K &K AeroPointNet
s B TREE G, 51ATE 2 1S LR R
YRR GRS TR (137 AL Re Sy AT ket . 3t
KK AeroPointNet i JF 24 1% A 2 H RN 1 52 24
Bl e, AR E F IR A B AR, S )
CWmsh A SN A R E . A, 4G
AeroPointNet [ B8P, AR IS v] - — 4 5 % AT
wAMER e TS G, e S e sl
FE S bR AR A 9 7 v H

Brigf

R TAE Rl A B A DU AR R B
A BRI ) E 2 4R TR A3 BT 78 B, 4
L !

2 % 3Lk ( References )

[1] SHEN Y, HUANG W, WANG Z G, et al. A deep learning
framework for aerodynamic pressure prediction on general
three-dimensional configurations [ J ]J. Physics of Fluids,
2023, 35(10) ; 107111.

[2] CHEN X H, WANG Z C, DENG L, et al. Towards a new
paradigm in intelligence-driven computational fluid dynamics
simulations [ J ]. Engineering Applications of Computational
Fluid Mechanics, 2024, 18(1) ; 2407005.

[3] kA, R, XER. BaemaE kR[]

Wi 2E4, 2021, 42(4) « 524689.
ZHANG W W, KOU J Q, LIU Y L. Prospect of artificial
intelligence
Aeronautica et Astronautica Sinica, 2021, 42 (4) . 524689.
(in Chinese)

(4] FEEIE, AAMRE, A, & BBl TR
PR MJRBLT]. RS2, 2023, 41(7) : 1-35.
TANG Z G, ZHU L Y, XIANG X H, et al. Some research
progress and prospect of intelligent aerodynamics [ J]. Acta
Aerodynamica Sinica, 2023, 41(7): 1 -=35. (in Chinese)

[5]  #fh, kKK, B, % BmE T 6NN S
it 5 Z R (], Ak #i B R, 2022,
45(3): 329 -331.

HUANG W, ZHANG T T, YAN L, et al. Internal/external

empowered fluid mechanics [ J ]. Acta

(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

flow coupling design and multidisciplinary design optimization
of airbreathing hypersonic vehicle[ J]. Journal of Solid Rocket
Technology, 2022, 45(3) : 329 —331. (in Chinese)

PENG J M, CHEN X H, ZHANG Q Y, et al. A data-free
Kolmogorov-Arnold network-based method for structured mesh
generation[ J |. Physics of Fluids, 2024, 36(11) ; 117146.
XIAO J, CHEN X H, WANG Q L, et al. MeshONet: a
generalizable and efficient operator learning method for
structured mesh generation [ EB/OL]. (2025 - 01 - 22)
[2025 -03 —19]. https://arxiv. org/abs/2501. 11937.
BB, XUAS, TIAF, 5. —Fhscl i 3 F VR b 4 4%
B o 7 R SR AR DT A (D] ITRALE R 5Bk, 2022,
44(11): 1932 - 1940.

CHEN X H, LIU J, WAN Q, et al. An improved method for
solving partial differential equations using deep neural
networks [ J J. Computer Engineering and Science, 2022,
44(11); 1932 —1940. (in Chinese)

OBIOLS-SALES O, VISHNU A, MALAYA N, et al
CFDNet; a deep
simulations| C ]//Proceedings of the 34th ACM International
Conference on Supercomputing, 2020 1 —12.

LI CM, YUAN P, LIU Y H, et al. Fast flow field prediction
of hydrofoils based on deep learning[ J]. Ocean Engineering,
2023, 281: 114743.

LIU Y, ZHANG Q Y, CHEN X H, et al. LKFlowNet: a

deep neural network based on large kernel convolution for fast

learning-based  accelerator for fluid

and accurate nonlinear fluid-changing prediction[ J ]. Physics
of Fluids, 2024, 36(9) . 097125.

THUEREY N, WEIBENOW K, PRANTL L, et al. Deep
learning
simulations of airfoil flows[ J]. AIAA Journal, 2020, 58 (1) :
25 -36.

CHEN X H, LI T J, WAN Y B, et al. Developing an

advanced neural

methods for Reynolds-averaged Navier-Stokes

network and physics solver coupled
framework for accelerating flow field simulations [ J ].
Engineering with Computers, 2024, 40(2) . 1111 —1126.
DURU C, ALEMDAR H, BARAN O U. A deep learning
approach for the transonic flow field predictions around
airfoils[ J]. Computers & Fluids, 2022, 236, 105312.
XIAO Q S, CHEN X H, LIU J, et al. MH-DCNet: an
improved flow field prediction framework coupling neural
network with physics solver[ J]. Computers & Fluids, 2024,
284 . 106440.

GUO X X, LI W, IORIO F. Convolutional neural networks
for steady flow approximation [ C]//Proceedings of the 22nd
ACM SIGKDD
Discovery and Data Mining, 2016 481 —490.

HU J W, ZHANG W W. Mesh-Conv: convolution operator
with mesh resolution independence for flow field modeling[ J ].
Journal of Computational Physics, 2022, 452 110896.

HU J W, ZHANG W W. Flow field modeling of airfoil based

on convolutional neural networks from transform domain

International  Conference on Knowledge

perspective[ J ]. Aerospace Science and Technology, 2023,
136: 108198.

SEKAR V, JIANG Q H, SHU C, et al. Fast flow field
prediction over airfoils using deep learning approach [ J].
Physics of Fluids, 2019, 31(5) : 057103.

ZUO K J, BU S H, ZHANG W W, et al. Fast sparse flow
field prediction around airfoils via multi-head perceptron based

deep learning architecture [ J ]. Aerospace Science and



- 08 -

(FE TR SR S AN S

548 &

(23]

[24]

[27]

[28]

Technology, 2022, 130 107942.
WANG X, JIANG Y, LI G X, et al
altention generative network for airfoil flow field prediction[]].
Soft Computing, 2024, 28(11) ; 7417 -7437.

LI Q, LI X C, CHEN X Q, et al. A novel graph modeling
GNN-based hypersonic flow field
reconstruction[ J ]. Engineering Applications of Computational
Fluid Mechanics, 2024, 18(1) : 2394177.

WANG Z C, CHEN X H, LI T J, et al. Evaluating mesh
quality with graph neural networks [ J]. Engineering with
Computers, 2022, 38(5) ; 4663 —4673.
LIT J, YAN J J, CHEN X H,

aerodynamic design optimization based on graph convolutional

Sag-flownet ; self-

method  for aircraft

et al. Accelerating

neural network [ J]. International Journal of Modern Physics
C, 2024, 35(1) : 2450007.

RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-
informed neural networks: a deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations [ J ]. Journal of Computational
Physics, 2019, 378 . 686 —707.

YAN J J, CHEN X H, WANG Z C, et al. ST-PINN: a self-
training physics-informed neural network for partial differential
equations [ C ]//Proceedings of 2023 International Joint
Conference on Neural Networks (IJCNN), 2023. 1 - 8.

LIN J, CHEN S S, YANG H, et al.
neural network-based aerodynamic parameter identification

Physics of Fluids, 2025, 37(2) .

A physics-informed

method for aircraft[ J].
027200.

KASHEFI A, REMPE D, GUIBAS L J. A point-cloud deep
learning framework for prediction of fluid flow fields on
irregular geometries[ J]. Physics of Fluids, 2021, 33(2) .
027104.

B¥, XN, WK, 5. 2K ATEIFE/ R
TR B L], 2 Bl J2 24k, 2021, 39(6)
101 - 110.

LUO J L, LONG S L, TANG J B, et al.
analyses and optimized design of wing/airfoil for aerospace
vehicles[ J ]. Acta Aerodynamica Sinica, 2021, 39 (6):

Requirement

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

101 = 110. (in Chinese)

WANE, KRR, el TSRS By
Z ARO[ T]. fiuas fedt, 2022, 29(6) : 56 -63.
XU X P, ZHANG T T, SHEN Y. Parametric modeling and
multi-objective design optimization of common aero vehicle[ ] ].
Aero Weaponry, 2022, 29(6) : 56 —=63. (in Chinese)
VU R RBHA RS A Rl Piklow FIP FHHLZ]. 48
FH - PO IR BHECA RTTE A 7, 2025.

Sichuan MAKER Technology Co. , Ltd. PiFlow user manual[Z ].
Mianyang: Sichuan MAKER Technology Co. , Ltd., 2025.
(in Chinese).

QI CR, SU H, KAICHUN M, et al. PointNet: deep learning
on point sets for 3D classification and segmentation [ C]//
Proceedings of 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) , 2017 77 -85.

QI CR, YIL, SUH, etal. PointNet + + : deep hierarchical
feature learning on point sets in a metric space [ C]//
Proceedings of the 31st International Conference on Neural
Information Processing Systems, 2017 ; 5105 -5114.
LIYY, BUR, SUN M C, et al. PointCNN: convolution on
x-transformed points[ EB/OL]. (2018 — 11 - 05) [ 2025 -
01 —=01]. https;//arxiv. org/abs/1801.07791.

WU W X, QI Z A, LI F X. PointConv: deep convolutional
networks on 3D point clouds [ C ]//Proceedings of 2019
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2019; 9613 -9622.

ZHAO H'S, JIANG L, JIAJ Y, et al. Point Transformer[ C]//
Proceedings of 2021 IEEE/CVF International Conference on
Computer Vision (ICCV), 2021 16239 - 16248.

MA X, QIN C, YOU H X, et al. Rethinking network design
and local geometry in point cloud: a simple residual MLP
framework[ EB/OL]. (2022 — 11 —29)[2025 - 01 - 01].
https://arxiv. org/abs/2202. 07123.

QIAN G C, LI Y C, PENG H W, et al. PointNeXt:
revisiting PointNet ++ with improved training and scaling
Neural

strategies [ C ]//Proceedings of Advances in

Information Processing Systems 35 ( NeurIPS 2022) , 2022.



