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摘　要：计算机辅助气动设计对飞行器外形优化至关重要，为进一步提升气动特性建模效率，提出了面
向飞行器的气动力系数智能预测方法ＡｅｒｏＰｏｉｎｔＮｅｔ。该方法以几何数模的三维点云表征为输入，构建了高效
提取局部与全局几何特征的神经网络架构。为捕捉流动条件的变化，ＡｅｒｏＰｏｉｎｔＮｅｔ将物理信息与几何特征融
合，并引入两种加权注意力机制来动态调整权重，有效解决了权重失衡问题。实验结果表明，ＡｅｒｏＰｏｉｎｔＮｅｔ实
现了较传统数值方法３个数量级以上的气动力系数计算效率提升，升力系数和阻力系数的平均相对误差均保
持在５％以下。
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　　气动设计是飞行器概念设计中的关键环节，
在航空航天领域具有极其重要的意义，它直接影

响着飞行器的性能，如机动性和安全性［１］。计算

流体力学（ｃｏｍｐｕｔａｔｉｏｎａｌｆｌｕｉｄｄｙｎａｍｉｃｓ，ＣＦＤ）利
用计算机和数值计算方法对飞行器周围的气动流

场进行模拟，是气动分析与设计的重要工具。然
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而，ＣＦＤ模拟需要繁重的数值迭代和计算，通常
面临着计算开销大、内存要求高和收敛速度慢等

问题，已成为阻碍高效数值技术发展的瓶颈［２］。

得益于计算能力的提升和海量试验数据的积

累，以深度学习为代表的人工智能方法被广泛应

用于解决复杂的科学计算问题，包括电磁、气象海

洋、生命科学、航空航天等领域，为多学科设计优

化提供了快速的分析工具，并逐渐成为一种新的

研究范式［３－５］。近年来，采用深度学习方法来解

决流体问题已成为研究热点，越来越多的研究人

员将其应用于网格生成［６－７］、偏微分方程求解［８］

和流场预测［９］等关键任务。其中，基于卷积神经

网络（ｃｏｎｖｏｌｕｔｉｏｎａｌｎｅｕｒａｌｎｅｔｗｏｒｋ，ＣＮＮ）的代理
模型已成为智能流体领域的重要建模方法［１０－１１］。

Ｔｈｕｅｒｅｙ等［１２］通过像素化表征将非均匀流场数据

投影到均匀的二维笛卡儿网格上，并通过 ＵＮｅｔ
网络来学习流场特征。训练后的网络对压力和速

度的预测平均相对误差小于３％。虽然该方法在
加速流场预测方面展现出巨大的潜力，但像素化

表征策略会在平滑的边界上引入粗糙度，造成几

何信息的缺失，严重干扰边界上的流动特征

提取［１３］。

为更好地表征几何特征，已有学者提出基于

距离场的几何建模方法［１４－１５］。Ｇｕｏ等［１６］提出了

一种基于符号距离函数的端到端预测模型，为各

种几何外形提供了通用的表示，消除了物体内部

的冗余计算并保持了边界平滑度。坐标变换方法

是保留几何特征的另一有效途径［１７］。Ｈｕ等［１８］

将流场从非均匀物理域变换到均匀计算域，并在

计算域上对流场变量构建预测模型，但这种变换

方法只适用于结构化网格。此外，还有一些研究

采用几何参数化的方法来表征几何特征［１９－２０］。

Ｗａｎｇ等［２１］将翼型形状参数化为控制点坐标，然

后将其输入神经网络获得预测的流场。此类方法

的控制点或几何参数数量严重依赖于主观选择，

且通常需要两阶段建模，增加了训练开销。近年

来，图神经网络（ｇｒａｐｈｎｅｕｒａｌｎｅｔｗｏｒｋ，ＧＮＮ）因其
在捕捉不规则数据拓扑结构上的优势，逐渐应用

于流体领域［２２－２３］。Ｌｉ等［２４］提出了一种基于图卷

积网络的气动设计优化框架来高效学习潜在的物

理定律。然而，ＧＮＮ在流场建模中的应用受到其
高计算复杂度和大内存需求的限制。为增强模型

的物理可解释性，物理信息神经网络（ｐｈｙｓｉｃｓ
ｉｎｆｏｒｍｅｄｎｅｕｒａｌｎｅｔｗｏｒｋ，ＰＩＮＮ）得到了广泛关
注［２５－２７］。ＰＩＮＮ通过将控制方程嵌入神经网络的
损失函数中，实现了对物理规律的显式约束。尽

管如此，ＰＩＮＮ仍面临预测精度不足和收敛性差等
关键挑战，难以满足气动设计快速迭代的需求。

为解决上述研究存在的不足，Ｋａｓｈｅｆｉ等［２８］

首次提出基于二维点云的智能流场预测方法，直

接将网格顶点视为点云，通过 ＰｏｉｎｔＮｅｔ网络学习
点坐标与物理变量之间的映射。然而，目前大部

分研究仍聚焦于二维外形，对三维外形的研究尚

少。在气动设计中，升力系数和阻力系数是衡量

飞行器气动性能的关键参数，二者的比值（升阻

比）直接决定了飞行器的气动效率［２９］。优化升阻

比是气动设计的核心目标之一，更高的升阻比意

味着在相同升力下阻力更小，有助于提升飞行器

的整体性能［３０］。因此，快速准确地预测升力系数

和阻力系数对于优化飞行器的气动外形至关重

要，亟须发展更高效、更具泛化能力的三维通用智

能建模方法。

为了更高效、精准地预测多种流动条件下不

同三维飞行器的升力系数和阻力系数，提出了基

于三维点云的气动力系数智能预测方法

ＡｅｒｏＰｏｉｎｔＮｅｔ。该方法通过融合几何特征与物理
信息，并引入加权注意力机制来提升预测精度。

１　ＡｅｒｏＰｏｉｎｔＮｅｔ框架

点云数据是一种自然且高效的几何表示形

式，相较于传统网格化方法，在处理复杂几何形状

和不规则表面时具有巨大优势。然而，在三维外

形建模中，高效提取空间几何特征仍是关键挑战。

此外，几何特征与物理信息融合时，两者在数据分

布和量纲上通常存在差异，可能会导致模型偏重

学习某些特征而忽略其他关键特征，造成权重失

衡，从而降低预测精度。为了解决上述问题，提出

了基于三维点云的气动力系数智能预测方法

ＡｅｒｏＰｏｉｎｔＮｅｔ。该方法采用结合局部自注意力机
制与位置编码的网络结构，以增强几何特征提取

能力；同时，引入两种加权注意力机制，有效解决

权重失衡问题，提高模型对气动力系数的预测精

度及对复杂流场的泛化能力。

１．１　整体框架

ＡｅｒｏＰｏｉｎｔＮｅｔ的整体框架如图１所示，输入为
点云数据，其中每个点云包含若干三维坐标点

（ｘ，ｙ，ｚ）。利用最远点采样 （ｆａｒｔｈｅｓｔｐｏｉｎｔ
ｓａｍｐｌｉｎｇ，ＦＰＳ）对点云进行预处理，从原始点云中
选择２０００个点，确保输入数据具有相同的维度。
将经过预处理后的点云输入多层感知机

（ｍｕｌｔｉｌａｙｅｒｐｅｒｃｅｐｔｒｏｎ，ＭＬＰ）中，三维坐标被映射
到高维特征空间，便于后续的特征提取。

·９８·
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ＡｅｒｏＰｏｉｎｔＮｅｔ构建了以点云变换层为核心的
点云变换模块，如图１所示，其输入与输出维度大
小是一致的。该模块通过点云变换层实现局部特

征的动态聚合与更新，并利用残差连接保留输入

信息，从而增强对点云几何特征的建模能力。

图２所示为点云变换层，其计算公式如下：

ｙｉ＝∑
ｘｊ∈Ｘ（ｉ）

ρ（γ（ｑ（ｘｉ）－ｋ（ｘｊ）＋δ））⊙（ｖ（ｘｊ）＋δ）

（１）
式中：ｘｉ和ｘｊ分别表示中心点 ｉ及其邻域点 ｊ的
特征向量；ｙｉ表示中心点 ｉ更新后的特征向量；
Ｘ（ｉ）表示中心点 ｉ所有邻域点的特征向量集合，
邻域点基于Ｋ近邻算法确定；ｑ、ｋ与 ｖ均为特征

的线性映射函数；γ为生成注意力向量的非线性
映射函数，由 ＭＬＰ实现；ρ为 Ｓｏｆｔｍａｘ函数，用于
归一化注意力向量，得到注意力权重；⊙表示逐元
素相乘。此外，为了捕获各点之间的几何关系，点

云变换层中引入了参数化位置编码函数，具体形

式为：

δ＝θ（ｐｉ－ｐｊ） （２）
式中，ｐｉ和ｐｊ为点ｉ和 ｊ的三维坐标，编码函数 θ
由包含两个线性层和 ＲｅＬＵ的 ＭＬＰ构成，因此位
置编码是可学习的。点云变换层的本质就是针对

当前输入点云的每个点，利用自身和 Ｋ个邻居的
几何特征以及位置编码共同计算注意力权重，从

而动态更新该点的几何特征。

图１　ＡｅｒｏＰｏｉｎｔＮｅｔ整体框架
Ｆｉｇ．１　ＯｖｅｒａｌｌｆｒａｍｅｗｏｒｋｏｆＡｅｒｏＰｏｉｎｔＮｅｔ

图２　点云变换层
Ｆｉｇ．２　Ｐｏｉｎｔｃｌｏｕｄｔｒａｎｓｆｏｒｍａｔｉｏｎｌａｙｅｒ

　　在特征提取过程中，降采样模块通过逐步
减少点云中的点数来实现数据规模的压缩。假

设输入点云表示为 Ｐ１，输出点云表示为 Ｐ２。首
先对 Ｐ１进行最远点采样，得到点集 Ｐ２Ｐ１。随
后，使用 Ｋ近邻算法（Ｋ＝１６）在Ｐ１上为Ｐ２的每
个点构建局部邻域。对于每个邻域特征，通过

多个 ＭＬＰ来实现维度变换。最后，采用局部最
大池化操作在 Ｐ２每个点的邻域内沿邻域点维

度取最大值，从而选取最显著的特征作为该点

的更新表示。

在整个框架中，降采样模块与点云变换模块

交替进行，共同实现点云规模的降维和局部特征

的提取与更新。类似于卷积操作，这种设计通过

逐模块处理逐步扩大对点云全局几何信息的捕

获。点云规模从初始的 ２０００个点依次减少到
５００、１２５、３１和 ７，而特征维度从 ３２逐步增加到
６４、１２８、２５６和５１２。在框架的最后阶段，通过全
局平均池化操作沿点维度对所有点的特征取均

值，生成一个５１２维的全局几何特征向量。随后，
利用ＭＬＰ对其进行非线性映射，提取更高层次的
几何特征。将上述几何特征与马赫数、攻角和侧

滑角组成的３维物理信息一同输入注意力机制模
块中进行处理，如图１所示。最后，通过 ＭＬＰ得
到气动力系数的预测结果。ＡｅｒｏＰｏｉｎｔＮｅｔ框架通
过结合局部特征提取与全局关系建模，有效提升

·０９·
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了气动力系数的预测精度，并增强了对复杂气动

场景的泛化能力。

１．２　加权注意力机制

ＡｅｒｏＰｏｉｎｔＮｅｔ创新性地引入两种加权注意力
机制，旨在解决权重失衡问题，分别是融合式加权

注意力机制和分离式加权注意力机制，如图３所
示。它们通过动态调整权重，实现网络对几何特

征和物理信息的均衡学习，从而提升整体建模的

精度。

（ａ）融合
（ａ）Ｆｕｓｉｏｎ

（ｂ）分离
（ｂ）Ｓｅｐａｒａｔｉｏｎ

图３　加权注意力机制
Ｆｉｇ．３　Ｗｅｉｇｈｔｅｄａｔｔｅｎｔｉｏｎｍｅｃｈａｎｉｓｍ

融合式加权注意力机制先将几何特征与物理

信息拼接，然后通过ＭＬＰ联合建模计算注意力权
重，捕捉二者的依赖关系。其计算过程为：

ｉ＝ｃｏｎｃａｔ（ｆ，ｃ） （３）
ｗ＝σ（Ｗ２（ＢＮ（Ｗ１ｉ＋ｂ１））＋ｂ２） （４）

ｏｆｗａｍ＝ｉ⊙ｗ （５）
其中：ｆ∈ＲＲ５１２表示特征向量，ｃ∈ＲＲ３表示物理信息，
ｉ∈ＲＲ５１５表示ｆ与 ｃ拼接后的结果。ｗ表示注意力
权重，Ｗ１∈ＲＲ

１６×５１５和Ｗ２∈ＲＲ
５１５×１６为权重矩阵，ｂ１∈

ＲＲ１６和ｂ２∈ＲＲ
５１５为偏置向量。ＢＮ表示批归一化，

为Ｍｉｓｈ激活函数，σ为Ｓｉｇｍｏｉｄ激活函数。
分离式加权注意力机制通过两个独立的

ＭＬＰ网络分别计算几何特征与物理信息的注意
力权重，其中几何特征的权重由物理信息得到，而

物理信息的权重则取决于几何特征，捕捉二者的

交互关系。其计算过程可描述为：

ｗｆ＝σ（Ｗ２（ＢＮ（Ｗ１ｃ＋ｂ１））＋ｂ２） （６）
ｗｃ＝σ（Ｗ′２（ＢＮ（Ｗ′１ｆ＋ｂ′１））＋ｂ′２） （７）
ｏｓｗａｍ＝ｃｏｎｃａｔ（ｆ⊙ｗｆ，ｃ⊙ｗｃ） （８）

其中，ｗｆ和ｗｃ分别表示ｆ和ｃ的注意力权重。这
里的权重矩阵大小有所不同：Ｗ１∈ＲＲ

１６×３、Ｗ２∈

ＲＲ５１２×１６、Ｗ′１∈ＲＲ
１６×５１２和 Ｗ′２∈ＲＲ

３×１６。同样地，偏置

向量有ｂ１∈ＲＲ
１６、ｂ２∈ＲＲ

５１２、ｂ′１∈ＲＲ
１６和ｂ′２∈ＲＲ

３。其他

符号与融合式加权注意力机制保持一致。最终注

意力机制模块的输出为：

ｏ＝ｏｆｗａｍ＋ｏｓｗａｍ （９）
这种组合策略能有效解决权重失衡问题，确

保网络可以动态且均衡地学习不同外形、不同流

动条件下的气动力变化规律，实现对复杂气动场

景的高精度预测。

２　基准测试集

基准数据集包含１９６个导弹外形及相应的数
值模拟结果（数据集开源在 ｈｔｔｐｓ：／／ｇｉｔｈｕｂ．ｃｏｍ／
ｑｉｓｏｎｇｘｉａｏ／ＡｅｒｏＰｏｉｎｔＮｅｔ）。对于流动条件，马赫数
３个，取值为｛１．５，２，２．５｝；侧滑角５个，取值为
｛０°，１０°，２０°，３０°，４０°｝；攻角 ６１个，取值为
｛０°，１°，２°，…，５９°，６０°｝。因此，每个导弹对
应有９１５种流动条件，基准数据集共有 １７９３４０
个样本。随机选择２０个导弹作为外形基准测试
集，编号为｛１７，３２，３３，４５，５０，５４，７０，８４，８６，
９９，１２２，１３０，１４７，１４９，１５４，１７０，１７５，１７７，
１８７，１９６｝，其他导弹作为外形基准训练集，各导
弹的流动条件包含全部９１５种。图４所示为７０
号、１３０号和１８７号导弹的几何外形，三者在外形

（ａ）７０号导弹几何外形
（ａ）ＧｅｏｍｅｔｒｙｏｆｍｉｓｓｉｌｅＮｏ．７０

（ｂ）１３０号导弹几何外形
（ｂ）ＧｅｏｍｅｔｒｙｏｆｍｉｓｓｉｌｅＮｏ．１３０

·１９·
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（ｃ）１８７号导弹几何外形
（ｃ）ＧｅｏｍｅｔｒｙｏｆｍｉｓｓｉｌｅＮｏ．１８７

图４　部分导弹几何外形
Ｆｉｇ．４　Ｇｅｏｍｅｔｒｉｅｓｏｆｓｏｍｅｍｉｓｓｉｌｅｓ

特征、尾翼布局以及几何细节上存在明显差异。

为了充分检验模型对流动条件的泛化能力，

构建了５个流动条件基准数据集。具体而言，从
全部９１５种流动条件中随机选取１８３种作为测试
流动条件，将训练集中对应的这些流动条件数据

删除。因此，测试集包含随机选择的２０个导弹外
形及对应的１８３种流动条件，训练集则包含剩下
的１７６个导弹外形及对应的７３２种流动条件。为
了增加样本选择的随机性，进行了５次数据集的
随机划分，每次随机选取２０个导弹外形和１８３种
流动条件作为基准测试集，以此确保实验评估的

客观性和稳健性。

数据样本使用四川梅卡尔科技有限责任公司

开发的ＰｉＦｌｏｗ软件进行超声速流场定常数值模
拟［３１］。边界条件设置为压力远场，物面采用滑移

无穿透边界。在计算过程中应用龙格－库塔隐式
算法，求解格式为中心差分格式，所求解的方程为

欧拉方程。在 ＮＶＩＤＩＡＡ１００上基于有限体积法
进行数值模拟，所有样本平均计算时间为１１ｍｉｎ。
图５所示为 ７０号导弹在马赫数为 ２、侧滑角为
１０°和攻角为２０°时的数值模拟结果。

（ａ）速度场
（ａ）Ｖｅｌｏｃｉｔｙｆｉｅｌｄ

（ｂ）压力场
（ｂ）Ｐｒｅｓｓｕｒｅｆｉｅｌｄ

（ｃ）温度场
（ｃ）Ｔｅｍｐｅｒａｔｕｒｅｆｉｅｌｄ

图５　７０号导弹数值模拟结果
Ｆｉｇ．５　ＮｕｍｅｒｉｃａｌｓｉｍｕｌａｔｉｏｎｒｅｓｕｌｔｓｆｏｒｍｉｓｓｉｌｅＮｏ．７０

３　实验及结果分析

为验证ＡｅｒｏＰｏｉｎｔＮｅｔ的气动力系数预测效果，
选取深度学习领域的７个点云基准网络模型进行
了对 比，分 别 是：ＰｏｉｎｔＮｅｔ［３２］、ＰｏｉｎｔＮｅｔ＋＋［３３］、
ＰｏｉｎｔＣＮＮ［３４］、ＰｏｉｎｔＣｏｎｖ［３５］、ＰｏｉｎｔＴｒａｎｓｆｏｒｍｅｒ［３６］、
ＰｏｉｎｔＭＬＰ［３７］和 ＰｏｉｎｔＮｅＸｔ［３８］。网 络 训 练 基 于
ＡｄａｍＷ优化器，初始学习率为０．００１，批次大小为
２５６，训练平台为ＮＶＩＤＩＡＡ１００，训练总轮次为２００。
气动力系数和点云数据基于ＭａｘＭｉｎ方法进行归
一化，预测结果需要逆归一化恢复到原始区间。

使用三个误差指标来评估预测效果：平均相对

误差（ｍｅａｎｒｅｌａｔｉｖｅｅｒｒｏｒ，ＭＲＥ）、平均绝对误差
（ｍｅａｎａｂｓｏｌｕｔｅｅｒｒｏｒ，ＭＡＥ）和均方误差（ｍｅａｎ
ｓｑｕａｒｅｄｅｒｒｏｒ，ＭＳＥ），分别用 Ｅｒ、Ｅａ和 Ｅｓ来表示。
计算如下：

Ｅｒ＝
１
Ｎ∑

Ｎ

ｉ＝１

Ｃｉ－Ｃ
＾
ｉ

Ｃｉ
×１００％ （１０）

Ｅａ＝
１
Ｎ∑

Ｎ

ｉ＝１
Ｃｉ－Ｃ

＾
ｉ （１１）

Ｅｓ＝
１
Ｎ∑

Ｎ

ｉ＝１
Ｃｉ－Ｃ

＾( )
ｉ

２
（１２）
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其中，Ｃｉ和Ｃ
＾
ｉ分别表示第ｉ个样本的真实和预测

的气动力系数，Ｎ表示样本总数。在攻角为０时，
气动力系数的真实值很小，计算平均相对误差会导

致误差比例被严重放大，从而影响整体统计结果。

因此，在后续的结果分析中，攻角为 ０的实验数据

不参与计算。在所有表格中，粗体表示最优值。

３．１　外形泛化实验

本小节的实验结果均基于外形基准测试集。

表１所示为不同模型的升力系数与阻力系数预测
误差及参数量对比。

表１　不同模型气动力系数预测误差及参数量对比
Ｔａｂ．１　Ｃｏｍｐａｒｉｓｏｎｏｆａｅｒｏｄｙｎａｍｉｃｃｏｅｆｆｉｃｉｅｎｔｐｒｅｄｉｃｔｉｏｎｅｒｒｏｒｓａｎｄｐａｒａｍｅｔｅｒｓｉｚｅｓｆｏｒｄｉｆｆｅｒｅｎｔｍｏｄｅｌｓ

模型
参数

量／ＭＢ

外形泛化实验 流动条件泛化实验

升力系

数Ｅｒ／％

升力系

数Ｅａ

升力系

数Ｅｓ

阻力系

数Ｅｒ／％

阻力系

数Ｅａ

阻力系

数Ｅｓ

升力系

数Ｅｒ／％

升力系

数Ｅａ

升力系

数Ｅｓ

阻力系

数Ｅｒ／％

阻力系

数Ｅａ

阻力系

数Ｅｓ

ＰｏｉｎｔＮｅｔ［３２］ １３．２０８ １１．３１ １．３９２ ３．０６３ ２５．９０ ５．５１４ ４６．９９１ １３．６１ １．６９８ ６．３６８ ２３．４３ ５．７８３ ４８．４４１

ＰｏｉｎｔＮｅｔ＋＋［３３］ ６．９７９ ５．６５ ０．６９３ ０．８１６ ５．９１ ０．９３６ １．５７８ ６．５５ ０．８４４ １．２４２ ８．２３ ２．０１１ ６．４０５

ＰｏｉｎｔＣＮＮ［３４］ ５．９６７ １０．９３ ０．８４２ １．２４９ ６．４４ ０．７３５ ０．９４７ ６．０２ ０．６４１ ０．７１４ ６．９５ １．５８２ ３．９２９

ＰｏｉｎｔＣｏｎｖ［３５］ １９．２４０ ５．２０ ０．６２１ ０．６５８ ６．９３ １．０５４ １．７５４ ５．９５ ０．６８７ ０．７８７ ７．３０ １．４８３ ３．４２８

ＰｏｉｎｔＴｒａｎｓｆｏｒｍｅｒ［３６］ １２．１３９ ２．０５ ０．３２１ ０．１８０ １．９９ ０．３５４ ０．２１５ ５．１９ ０．６６２ １．２０４ ７．８９ １．９７７ ６．６９３

ＰｏｉｎｔＭＬＰ［３７］ ５．４６４ ７．２６ ０．８２２ １．１５４ ７．４６ １．１３４ ２．５４５ ７．９２ ０．９７６ １．５１１ ９．５３ ２．１２８ ７．５５５

ＰｏｉｎｔＮｅＸｔ［３８］ １７．７８６ ６．４４ ０．７１３ ０．８４５ ７．３７ １．０７４ １．８３７ ６．３８ ０．８５６ １．１９０ ９．０７ ２．２３４ ７．７９５

ＡｅｒｏＰｏｉｎｔＮｅｔ ４．６３４ １．５５ ０．２５５ ０．１２０ １．５１ ０．２９２ ０．１６２ １．８４ ０．３１０ ０．１８４ ４．８７ １．５４１ ３．５８０

　　与 ＰｏｉｎｔＮｅＸｔ相比，ＡｅｒｏＰｏｉｎｔＮｅｔ将升力系数
的 ＭＲＥ、ＭＡＥ和 ＭＳＥ分别降低了 ７５９３％、
６４２４％和８５８０％，将阻力系数的 ＭＲＥ、ＭＡＥ和
ＭＳＥ分别降低了７９５１％、７２８１％和９１１８％，参
数量减少了 ７３９５％。ＡｅｒｏＰｏｉｎｔＮｅｔ将气动力系
数预测的ＭＲＥ首次降低到２％以下，而其他模型
均在２％以上，这充分说明了ＡｅｒｏＰｏｉｎｔＮｅｔ在精准
气动力系数预测中的巨大优势。ＡｅｒｏＰｏｉｎｔＮｅｔ的
平均预测时间为０１１ｓ，相较于数值模拟的平均
时间１１ｍｉｎ，在计算效率上提升了３个数量级。
本小节随机选用马赫数为１５和侧滑角为３０°时
的一个样本进行展示。图６所示为 ＡｅｒｏＰｏｉｎｔＮｅｔ
对升力系数与阻力系数的预测结果及绝对误差。

（ａ）升力系数预测结果及绝对误差
（ａ）Ｐｒｅｄｉｃｔｉｏｎｒｅｓｕｌｔｓａｎｄａｂｓｏｌｕｔｅｅｒｒｏｒｓｏｆｌｉｆｔｃｏｅｆｆｉｃｉｅｎｔ

（ｂ）阻力系数预测结果及绝对误差
（ｂ）Ｐｒｅｄｉｃｔｉｏｎｒｅｓｕｌｔｓａｎｄａｂｓｏｌｕｔｅｅｒｒｏｒｓｏｆｄｒａｇｃｏｅｆｆｉｃｉｅｎｔ

图６　气动力系数预测结果及绝对误差
（外形基准测试集）

Ｆｉｇ．６　Ｐｒｅｄｉｃｔｉｏｎｒｅｓｕｌｔｓａｎｄａｂｓｏｌｕｔｅｅｒｒｏｒｓｏｆａｅｒｏｄｙｎａｍｉｃ
ｃｏｅｆｆｉｃｉｅｎｔｓ（ａｐｐｅａｒａｎｃｅｂｅｎｃｈｍａｒｋｔｅｓｔｓｅｔ）

可以看到，预测值与真实值非常接近，拟合程度很

高，误差大致在 －０２５到０２５之间，且随攻角的
分布较为均匀。图７所示为 ＡｅｒｏＰｏｉｎｔＮｅｔ对升力
系数和阻力系数的平均相对误差变化曲线及

９５％置信区间。可以看出，在攻角较小时，误差相
对较大，但随着攻角的增大，误差迅速下降并趋于

稳定。在攻角大于１０°后，升力系数和阻力系数
的平均相对误差均基本维持在 ２％以下，并且
９５％置信区间的范围也大幅缩小，表明模型在大

·３９·
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攻角条件下具有更高的预测精度和稳定性。

（ａ）升力系数平均相对误差变化曲线及９５％置信区间
（ａ）Ｖａｒｉａｔｉｏｎｏｆｍｅａｎｒｅｌａｔｉｖｅｅｒｒｏｒｆｏｒｌｉｆｔｃｏｅｆｆｉｃｉｅｎｔ

ａｎｄ９５％ ｃｏｎｆｉｄｅｎｃｅｉｎｔｅｒｖａｌ

（ｂ）阻力系数平均相对误差变化曲线及９５％置信区间
（ｂ）Ｖａｒｉａｔｉｏｎｏｆｍｅａｎｒｅｌａｔｉｖｅｅｒｒｏｒｆｏｒｄｒａｇｃｏｅｆｆｉｃｉｅｎｔ

ａｎｄ９５％ ｃｏｎｆｉｄｅｎｃｅｉｎｔｅｒｖａｌ

图７　气动力系数平均相对误差变化曲线及
９５％置信区间

Ｆｉｇ．７　Ｖａｒｉａｔｉｏｎｏｆｍｅａｎｒｅｌａｔｉｖｅｅｒｒｏｒｆｏｒａｅｒｏｄｙｎａｍｉｃ
ｃｏｅｆｆｉｃｉｅｎｔｓａｎｄ９５％ ｃｏｎｆｉｄｅｎｃｅｉｎｔｅｒｖａｌｓ

图８所示为不同模型的升力系数与阻力系数
预测结果及绝对误差对比。在图８（ａ）和图８（ｃ）
中，ＡｅｒｏＰｏｉｎｔＮｅｔ的预测曲线与真实曲线几乎完全
重叠。在攻角大于４０°的情况下，ＡｅｒｏＰｏｉｎｔＮｅｔ依然
保持了极高的预测精度，而其他模型则出现了较明

显的偏差。从图 ８（ｂ）和图 ８（ｄ）可以观察到，
ＡｅｒｏＰｏｉｎｔＮｅｔ在整个攻角范围内的误差最小，且预
测误差的波动幅度小于其他模型，表现出较好的稳

定性和鲁棒性。总体来说，ＡｅｒｏＰｏｉｎｔＮｅｔ在不同攻角
条件下均能稳定地提供高精度的气动力系数预测结

果，这验证了其在复杂气动场景中的强泛化能力。

为了探究两种加权注意力机制的作用，进行了

消融实验，考虑四种情况：无注意力机制、只使用分

离式加权注意力机制、只使用融合式加权注意力机

制以及两者同时使用。表２所示为 ＡｅｒｏＰｏｉｎｔＮｅｔ

（ａ）不同模型升力系数预测结果对比
（ａ）Ｃｏｍｐａｒｉｓｏｎｏｆｌｉｆｔｃｏｅｆｆｉｃｉｅｎｔｐｒｅｄｉｃｔｉｏｎｒｅｓｕｌｔｓ

ｆｏｒｄｉｆｆｅｒｅｎｔｍｏｄｅｌｓ

（ｂ）不同模型升力系数绝对误差对比
（ｂ）Ｃｏｍｐａｒｉｓｏｎｏｆｌｉｆｔｃｏｅｆｆｉｃｉｅｎｔａｂｓｏｌｕｔｅｅｒｒｏｒｓ

ｆｏｒｄｉｆｆｅｒｅｎｔｍｏｄｅｌｓ

（ｃ）不同模型阻力系数预测结果对比
（ｃ）Ｃｏｍｐａｒｉｓｏｎｏｆｄｒａｇｃｏｅｆｆｉｃｉｅｎｔｐｒｅｄｉｃｔｉｏｎｒｅｓｕｌｔｓ

ｆｏｒｄｉｆｆｅｒｅｎｔｍｏｄｅｌｓ

·４９·
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（ｄ）不同模型阻力系数绝对误差对比
（ｄ）Ｃｏｍｐａｒｉｓｏｎｏｆｄｒａｇｃｏｅｆｆｉｃｉｅｎｔａｂｓｏｌｕｔｅｅｒｒｏｒｓ

ｆｏｒｄｉｆｆｅｒｅｎｔｍｏｄｅｌｓ

图８　不同模型气动力系数预测结果及绝对误差对比
Ｆｉｇ．８　Ｃｏｍｐａｒｉｓｏｎｏｆａｅｒｏｄｙｎａｍｉｃｃｏｅｆｆｉｃｉｅｎｔｐｒｅｄｉｃｔｉｏｎ

ｒｅｓｕｌｔｓａｎｄａｂｓｏｌｕｔｅｅｒｒｏｒｓｆｏｒｄｉｆｆｅｒｅｎｔｍｏｄｅｌｓ

在不同注意力机制下升力系数和阻力系数预测误

差及参数量对比。当不使用注意力机制时，模型

的预测误差最大，表明几何特征与物理信息未

能有效融合，模型难以准确捕捉不同特征的重

要性差异。加入分离式或融合式加权注意力机

制后，误差明显降低。其中，分离式加权注意力

机制主要增强了几何特征与物理信息的独立表

达能力，融合式加权注意力机制则更加侧重于不

同类型信息之间的融合学习。与不使用注意力机

制相比，同时使用两种机制使升力系数的 ＭＲＥ、
ＭＡＥ和 ＭＳＥ分别降低了 ６３７９％、５７００％和
８０１０％，使阻力系数的 ＭＲＥ、ＭＡＥ和 ＭＳＥ分别
降低了６５６８％、６１５３％和８３２３％，说明两者的
结合进一步提升了模型的性能，体现出更强的协

同效应，更好地解决了权重失衡问题。此外，同时

使用两种加权注意力机制是轻量化的，与不使用

注意力机制相比，模型参数量仅增加２８９％，对
模型的复杂度几乎没有影响。图９展示了四种情
况下模型在训练过程中的损失变化趋势，当同时

使用两种机制时，模型具有更快的收敛速度和更

低的损失，这进一步验证了两种加权注意力机制

的有效性和合理性。

表２　不同注意力机制下气动力系数预测误差及参数量对比
Ｔａｂ．２　Ｃｏｍｐａｒｉｓｏｎｏｆａｅｒｏｄｙｎａｍｉｃｃｏｅｆｆｉｃｉｅｎｔｐｒｅｄｉｃｔｉｏｎｅｒｒｏｒｓａｎｄｐａｒａｍｅｔｅｒｓｉｚｅｓｗｉｔｈｄｉｆｆｅｒｅｎｔａｔｔｅｎｔｉｏｎｍｅｃｈａｎｉｓｍｓ

注意力机制 升力系数Ｅｒ／％ 升力系数Ｅａ 升力系数Ｅｓ 阻力系数Ｅｒ／％ 阻力系数Ｅａ 阻力系数Ｅｓ 参数量／ＭＢ

无 ４．２８ ０．５９３ ０．６０３ ４．４０ ０．７５９ ０．９６６ ４．５０４

分离 ２．１８ ０．３８０ ０．２５２ １．８５ ０．３７５ ０．２５８ ４．５６９

融合 ３．６５ ０．３７４ ０．２３８ ２．０３ ０．３８３ ０．２５６ ４．５６９

分离＋融合 １．５５ ０．２５５ ０．１２０ １．５１ ０．２９２ ０．１６２ ４．６３４

图９　不同注意力机制下损失变化曲线
Ｆｉｇ．９　Ｌｏｓｓｃｕｒｖｅｓｗｉｔｈｄｉｆｆｅｒｅｎｔａｔｔｅｎｔｉｏｎｍｅｃｈａｎｉｓｍｓ

　　为了检验采样规模对预测精度和计算效率
的影响，在４种采样规模下对 ＡｅｒｏＰｏｉｎｔＮｅｔ的预
测性能进行了对比，结果如表 ３所示。可以看
出，采样规模与预测精度之间呈正相关关系，与

计算效率则呈负相关关系。综合考虑预测精度

和计算效率，最终选择了 ２０００点作为采样

规模。

３．２　流动条件泛化实验

本小节的实验结果均基于５个流动条件基准
测试集。各模型分别在５个基准训练集上独立训
练，并在相应的测试集上进行预测。表１中包含
了不同模型在５个流动条件基准测试集上的气动
力系数预测误差及参数量对比，其中各项指标均

取５次实验结果的平均值。
与ＰｏｉｎｔＴｒａｎｓｆｏｒｍｅｒ相比，ＡｅｒｏＰｏｉｎｔＮｅｔ将升力

系数的 ＭＲＥ、ＭＡＥ和 ＭＳＥ分别降低了６４５５％、
５３１７％和８４７２％，将阻力系数的 ＭＲＥ、ＭＡＥ和
ＭＳＥ分别降低了３８２８％、２２０５％和４６５１％，同
时参数量减少了６１８３％。ＡｅｒｏＰｏｉｎｔＮｅｔ的平均相
对误差保持在 ５％以下，具有明显的精度优势。
图１０所示为ＡｅｒｏＰｏｉｎｔＮｅｔ在第１个流动条件基准
测试集上对升力系数与阻力系数的预测结果及绝

对误差。可以看出，模型的预测值与真实值基本吻

·５９·
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表３　不同采样规模下气动力系数预测误差及计算开销对比
Ｔａｂ．３　Ｃｏｍｐａｒｉｓｏｎｏｆａｅｒｏｄｙｎａｍｉｃｃｏｅｆｆｉｃｉｅｎｔｐｒｅｄｉｃｔｉｏｎｅｒｒｏｒｓａｎｄｃｏｍｐｕｔａｔｉｏｎａｌｃｏｓｔｓｗｉｔｈｄｉｆｆｅｒｅｎｔｓａｍｐｌｉｎｇｓｉｚｅｓ

采样规模
升力系数

Ｅｒ／％
升力系数

Ｅａ

升力系数

Ｅｓ

阻力系数

Ｅｒ／％
阻力系数

Ｅａ

阻力系数

Ｅｓ

每轮平均

训练时间／ｓ
平均预测

时间／ｓ

５００ １．７９ ０．２９５ ０．１５４ １．６６ ０．３６４ ０．２３２ 　８２．３０６ ０．０４７

１０００ １．６５ ０．２８１ ０．１３９ １．５２ ０．３２１ ０．１７１ １５９．６６２ ０．０６８

２０００ １．５５ ０．２５５ ０．１２０ １．５１ ０．２９２ ０．１６２ ３３２．０１２ ０．１１４

３０００ １．５１ ０．２３３ ０．１０４ １．３４ ０．２７４ ０．１３４ ５６６．６０７ ０．１６５

合，尽管预测效果低于在外形基准测试集上的表

现，但绝对误差仍较小，说明 ＡｅｒｏＰｏｉｎｔＮｅｔ在面对
复杂多变的流动条件和几何外形时依然具备较强

的泛化能力与预测稳定性。

（ａ）升力系数预测值
（ａ）Ｐｒｅｄｉｃｔｉｏｎｖａｌｕｅｏｆｌｉｆｔｃｏｅｆｆｉｃｉｅｎｔ

　　　　　　　　
（ｂ）升力系数真实值

（ｂ）Ｔｒｕｅｖａｌｕｅｏｆｌｉｆｔｃｏｅｆｆｉｃｉｅｎｔ
　　　　

（ｃ）升力系数绝对误差
（ｃ）Ａｂｓｏｌｕｔｅｅｒｒｏｒｏｆｌｉｆｔｃｏｅｆｆｉｃｉｅｎｔ

　　　　　　　　　
（ｄ）阻力系数预测值

（ｄ）Ｐｒｅｄｉｃｔｉｏｎｖａｌｕｅｏｆｄｒａｇｃｏｅｆｆｉｃｉｅｎｔ
　　　　

（ｅ）阻力系数真实值
（ｅ）Ｔｒｕｅｖａｌｕｅｏｆｄｒａｇｃｏｅｆｆｉｃｉｅｎｔ

　　　　　　　　　　
（ｆ）阻力系数绝对误差

（ｆ）Ａｂｓｏｌｕｔｅｅｒｒｏｒｏｆｄｒａｇｃｏｅｆｆｉｃｉｅｎｔ
　　　　

图１０　气动力系数预测结果及绝对误差（流动条件基准测试集）
Ｆｉｇ．１０　Ｐｒｅｄｉｃｔｉｏｎｒｅｓｕｌｔｓａｎｄａｂｓｏｌｕｔｅｅｒｒｏｒｓｏｆａｅｒｏｄｙｎａｍｉｃｃｏｅｆｆｉｃｉｅｎｔｓ（ｆｌｏｗｃｏｎｄｉｔｉｏｎｂｅｎｃｈｍａｒｋｔｅｓｔｓｅｔ）
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４　结论

本文提出了一种基于三维点云的气动力系数

智能预测方法ＡｅｒｏＰｏｉｎｔＮｅｔ，通过结合局部特征提
取与全局关系建模，高效捕捉点云数据中的几何

特征，并将其与物理信息融合。针对融合带来的

权重失衡问题，引入了两种加权注意力机制来动

态调整权重，实现了网络对几何特征和物理信息

的均衡学习。实验结果表明，ＡｅｒｏＰｏｉｎｔＮｅｔ能够快
速预测气动力系数，且预测效果优于现有的智能

方法，升力系数和阻力系数的平均相对误差均保

持在５％以下。
在未来的研究中，将进一步探索ＡｅｒｏＰｏｉｎｔＮｅｔ

与物理信息的深度融合，引入更多的气动机理和

物理约束来提升模型的泛化能力和可解释性。计

划将 ＡｅｒｏＰｏｉｎｔＮｅｔ拓展至包含非定常效应的复杂
流动场景，如非定常涡流、分离流等，实现对更广

泛的流动条件与应用场景的覆盖。此外，结合

ＡｅｒｏＰｏｉｎｔＮｅｔ的高效特性，未来还可进一步与飞行
器外形智能优化设计相结合，推动智能气动设计

在实际工程中的落地应用。
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