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摘　要：针对传统方法在应对多目标、多约束优化时效率较低，难以满足动态复杂环境下的需求的问题，
基于协同进化机制、斑马优化算法和微分对策理论，提出了一种融合协同进化算法。通过采用分阶段优化策

略对轨迹和策略进行动态适应性优化，同时引入多种群协同进化机制，增强了算法的全局探索能力和局部收

敛性能，并结合微分对策理论，提升了博弈策略的稳定性和可靠性。仿真实验结果表明，该方法在多约束条

件下能够显著提高任务完成效率，同时可兼顾追逃双方的动态策略调整，为天基空间目标侦察监视任务中的

卫星追逃博弈提供了有效的解决方案。
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　　随着航天应用技术的飞速发展，人类社会
对各类航天器的依赖不断增加，尤其是资源卫

星、气象卫星、通信卫星和导航卫星等，它们不

仅显著提升了生产力，也便利了人们的日常生

活。正因如此，各航天大国对空间资源的争夺

愈发激烈，导致空间安全形势日益严峻［１］。在

这一背景下，空间追逃博弈［２］作为一种关键的

对抗策略，已成为现代空间任务中不可忽视的

重要研究方向之一。在空间环境中，卫星作为

高价值资产，常处于对抗态势，尤其是在侦察与

反侦察任务中，侦察方试图获取目标信息，而反

侦察方则试图规避或干扰侦察，双方在动态对



国 防 科 技 大 学 学 报 第４８卷

抗中形成了典型的追逃博弈关系。追逃博弈的

优化不仅决定任务的成败，还直接影响资源的

有效利用和风险控制。因此，如何在多重约束

下优化卫星追逃博弈的路径规划，是成功完成

空间侦察任务的关键。

卫星追逃博弈通常涉及多目标、多约束的优

化问题。早期的研究主要集中于基于微分对

策［３－４］的航天器追逃问题求解。Ｐｏｎｔａｎｉ等［５］提

出的半直接法（ｓｅｍｉｄｉｒｅｃｔｍｅｔｈｏｄ）为航天器三维
轨道追逃微分对策提供了一种较为稳健的求解途

径，算法具备较好的鲁棒性和收敛性，广泛应用于

实际的拦截、交汇和能量匹配等任务中。Ｐｒｉｎｃｅ
等［６］将这一方法进一步拓展，应用于复杂的航天

器追逃任务，但在非线性、大扰动环境下的计算效

率问题仍未完全解决。近年来，微分对策理论进

一步扩展至多人博弈场景：李振瑜等［７］提出追

踪－逃逸 －防御三方博弈模型，通过线性二次型
微分对策推导纳什均衡条件，证明防御器可显著

提升逃逸方的生存概率。

强化学习在航天器动力学与控制中的研究

吸引了不少学者的关注［８－１０］。Ｚｈｕ等［１１］将神经

网络用于追逃博弈问题，提高了计算效率，减少

了计算耗时，与直接法的优化结果对比吻合较

好。耿远卓等［１２］引 入 终 端 诱 导 强 化 学 习

（ｔｅｒｍｉｎａｌｌｙ ｉｎｄｕｃｅｄ ｒｅｉｎｆｏｒｃｅｍｅｎｔ ｌｅａｒｎｉｎｇ，
ＴＩＲＬ），利用博弈终局奖励稀疏性设计时间差分
误差奖励机制，使脉冲推力航天器快速收敛至

纳什均衡策略。Ｙａｎｇ等［１３］将轨道脉冲追逐 －
规避任务建模为两阶段博弈问题，其中采用顺

序二次规划（ｓｅｑｕｅｎｔｉａｌｑｕａｄｒａｔｉｃｐｒｏｇｒａｍｍｉｎｇ，
ＳＱＰ）方法将远距离追逐 －规避问题转化为多脉
冲会合轨迹优化问题，并应用深度确定性策略

梯度（ｄｅｅｐｄｅｔｅｒｍｉｎｉｓｔｉｃｐｏｌｉｃｙｇｒａｄｉｅｎｔ，ＤＤＰＧ）
方法将近距离追逐 －规避问题建模为策略强化
学习问题。Ｃｈｕ等［１４］利用深度 Ｑ学习在完成航
天器合作交会任务的同时有效规避了碰撞。刘

冰雁等［１５］为避免应对连续空间存在的维数灾难

问题，通过构建模糊推理模型表征连续空间，提

出了一种具有多组并行神经网络和共享决策模

块的分支深度强化学习架构。Ｙａｎｇ等［１６］将物

理 信 息 神 经 网 络 （ｐｈｙｓｉｃｓｉｎｆｏｒｍｅｄ ｎｅｕｒａｌ
ｎｅｔｗｏｒｋｓ，ＰＩＮＮ）与水平集方法结合，构建了基
于连续推力的捕获区动态演化模型，为航天器

追逃任务中的威胁关系确定、任务可行性分析

和轨道博弈规则总结提供了量化决策依据。许

旭升等［１７］提出了一种基于多智能体深度强化学

习的集群卫星空间轨道追逃博弈方法，通过多

智能体深度确定性策略梯度（ｍｕｌｔｉａｇｅｎｔＤＤＰＧ，
ＭＡＤＤＰＧ）方法训练数据，在脉冲机动下的集群
追逃场景中实现了策略泛化能力的提升。Ｚｈａｏ
等［１８］在考虑航天器机动能力和任务时间限制的

前提下，针对脉冲机动形势下的轨道追逃问题，

提出了基于预测反馈检测的多智能体深度确定

性策 略 梯 度 （ｐｒｅｄｉｃｔｒｅｗａｒｄｄｅｔｅｃｔＭＡＤＤＰＧ，
ＰＲＤＭＡＤＤＰＧ）方法。但是，基于强化学习的训
练面临可解释性差、理论证明难、可靠性不高等

问题，训练好的决策模型缺乏解析表达式，仅能

通过仿真打靶验证其决策的正确性，且缺乏高

效的训练赋能方法，航天器通常需要博弈上万

回合才能学习到最优追逃策略。

优化算法在空间追逃博弈场景中也得到了

广泛应用，显著提升了博弈策略的求解效率和

质量。Ｐｒｉｎｃｅ等［６］研究了以时间为优化目标的

椭圆轨道交会问题，并应用遗传算法（ｇｅｎｅｔｉｃ
ａｌｇｏｒｉｔｈｍ，ＧＡ）进行了数值求解。Ｗｕ等［１９］针对

Ｊ２摄动下的远程连续推力拦截轨道设计问题，
提出混合遗传 －二次规划方法，实现远程拦截
的燃料 －时间均衡。Ｌｉｕ等［２０］针对多卫星围捕

逃逸目标场景，提出了一种博弈与优化相结合

的策略求解方法，在考虑预期目的、燃料消耗和

机动安全的条件下设计代价函数，利用粒子群

优化（ｐａｒｔｉｃｌｅｓｗａｒｍｏｐｔｉｍｉｚａｔｉｏｎ，ＰＳＯ）算法对双
方策略进行优化，得到了双方的最优策略。吴

其昌等［２１］在航天器追逃博弈研究中提出了用蚁

群算法对航天器追逃博弈问题进行优化，进一

步丰富了优化算法在该领域的应用范畴。

尽管轨道追逃博弈现有研究已经取得了一

定的进展，但大多数方法仍集中在较为简单的

任务场景中，且多以单阶段目标优化为主。面

对复杂的动态环境和非合作博弈条件，现有的

优化策略仍存在一定的改进空间。为此，本文

将脉冲推力模型转化为约束控制，建立了航天

器相对运动模型，并基于协同进化机制、斑马优

化算法和微分对策理论，提出了一种融合协同

进化的算法，用于求解空间侦察任务。与传统

优化方法（遗传算法、粒子群优化算法等）相比，

通过多种群协同进化机制，能够增强算法的全

局探索能力和局部收敛性能，避免传统方法在

复杂多峰问题中陷入局部最优的缺陷。结合微

分对策理论，算法能够实时响应博弈对手的策

略变化，实现动态调整，解决了传统静态优化方

法难以适应高动态环境的问题。面对传统方法

·００１·
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的单一优化框架，难以兼顾多阶段任务需求的

不足，本文将任务分解为“抵近段”和“持续

段”，分别优化不同目标，提高了计算效率，从而

为卫星追逃问题提供一种更高效、更具适应性

的解决方案。

１　场景描述与建模

在地球同步轨道上分布着高价值的主星及

保障其运行的任务卫星。主星附近出现了一个

未知目标卫星，如图 １所示。为确保主星的安
全，任务卫星对目标卫星进行侦察，以支持空间

监测、追踪或防御等任务。然而，由于卫星速度

脉冲（脉冲大小和脉冲间隔）、任务时间和总燃

料量等多重限制条件，侦察过程变得复杂。

图１　问题描述图解
Ｆｉｇ．１　Ｄｉａｇｒａｍｉｌｌｕｓｔｒａｔｉｎｇｔｈｅｐｒｏｂｌｅｍｄｅｓｃｒｉｐｔｉｏｎ

以主星为原点建立参考轨道坐标系 Ｏｂ－
ＸＹＺ，航天器单位质量控制力产生的瞬时加速度
ｕ如图２所示。

定义 ｕ与 ＸＯｂＹ平面之间的夹角为 β，在
ＸＯｂＹ平面内的投影与 Ｘ轴之间的夹角为 α。则
ｕ在Ｏｂ－ＸＹＺ三个轴的分量表示如式（１）所示。

ａｘ＝ｕｃｏｓβｃｏｓα
ａｙ＝ｕｃｏｓβｓｉｎα
ａｚ＝ｕｓｉｎ

{
β

（１）

其中，α∈［－π，π］，β∈［－π／２，π／２］。

图２　航天器控制力及其在轨道坐标系下的分解
Ｆｉｇ．２　Ｓｐａｃｅｃｒａｆｔｃｏｎｔｒｏｌｆｏｒｃｅｓａｎｄｔｈｅｉｒｄｅｃｏｍｐｏｓｉｔｉｏｎｉｎ

ｔｈｅｏｒｂｉｔａｌｃｏｏｒｄｉｎａｔｅｓｙｓｔｅｍ

采用 ＣＷ（ＣｌｏｈｅｓｓｙＷｉｌｔｓｈｉｒｅ）方程描述航天
器（任务卫星、目标卫星）与主星的相对运动：

ｘ̈－２ｎｙ－３ｎ２ｘ＝ａｘ
ｙ̈＋２ｎｘ＝ａｙ
ｚ̈＋ｎ２ｚ＝ａ

{
ｚ

（２）

其中，ｎ为参考轨道的角速度，ｎ＝ μ／ａ槡
３，μ是中

心天体的标准重力参数，ａ是参考轨道的半长轴。
定义航天器在 ｔ时刻的状态为 ｘ（ｔ）＝

［ｘ ｙ ｚ ｘ ｙ ｚ］，ｔ０时刻施加于航天器的瞬
时加速度为ｕ（ｔ）＝［ａｘ ａｙ ａｚ］，令τ＝ｔ－ｔ０，则
自ｔ０至ｔ航天器状态转移方程为：

ｘ（ｔ）＝Φ（τ）ｘ（ｔ０）＋ψ（τ）ｕ（ｔ） （３）
式中：

Φ（τ）＝

４－３ｃｏｓ（ｎτ） ０ ０ ｓｉｎ（ｎτ）
ｎ

２－２ｃｏｓ（ｎτ）
ｎ ０

６（ｓｉｎ（ｎτ）－ｎτ） １ ０ ２ｃｏｓ（ｎτ）－２
ｎ

４ｓｉｎ（ｎτ）－３ｎτ
ｎ ０

０ ０ ｃｏｓ（ｎτ） ０ ０ ｓｉｎ（ｎτ）
ｎ

３ｎｓｉｎ（ｎτ） ０ ０ ｃｏｓ（ｎτ） ２ｓｉｎ（ｎτ） ０
６ｎｃｏｓ（ｎτ）－６ｎ ０ ０ －２ｓｉｎ（ｎτ） ４ｃｏｓ（ｎτ）－３ ０

０ ０ －ｎｓｉｎ（ｎτ） ０ ０ ｃｏｓ（ｎτ

























）

（４）
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ψ（τ）＝

１－ｃｏｓ（ｎτ）
ｎ２

２ｎτ－２ｓｉｎ（ｎτ）
ｎ２

０

２ｓｉｎ（ｎτ）－２ｎτ
ｎ２

４－４ｃｏｓ（ｎτ）
ｎ２

－３τ
２

２ ０

０ ０ １－ｃｏｓ（ｎτ）
ｎ２

ｓｉｎ（ｎτ）
ｎ

２－２ｃｏｓ（ｎτ）
ｎ ０

２ｃｏｓ（ｎτ）－２
ｎ

４ｓｉｎ（ｎτ）－３ｎτ
ｎ ０

０ ０ ｓｉｎ（ｎτ）

































ｎ

（５）
由式（３）可知，当航天器的初始状态ｘ（ｔ０）和

时刻ｔ控制加速度 ｕ（ｔ）已知时，可得到航天器于
任意时刻ｔ在轨道坐标系下的状态ｘ（ｔ）。

假设固定对策时间为Ｔ，将Ｔ离散化为 Ｎ＋１
个时间子区间［ｋＴ／Ｎ，（ｋ＋１）Ｔ／Ｎ］（ｋ＝０，１，
２，…，Ｎ）。航天器从时刻 ｋＴ／Ｎ到时刻（ｋ＋１）Ｔ／
Ｎ的状态转移方程为：

ｘ（ｋ＋１）Ｔ( )Ｎ ＝Φ Ｔ( )Ｎ ｘｋＴ( )Ｎ ＋ψ Ｔ( )Ｎ ｕｋＴ( )Ｎ
（６）

假设仅在离散时间节点ｋＴ／Ｎ（ｋ＝０，１，２，…，
Ｎ）上施加速度脉冲，并且每次施加脉冲后立即影
响航天器的状态，而不持续作用。即脉冲在每个

时间子区间起始点进行调整，脉冲的施加仅发生

在离散时间节点上，而不是在连续的时间范围内。

如果在节点ｋＴ／Ｎ施加于航天器的速度脉冲
为０，则该转移方程可以进一步简化为：

ｘ（ｋ＋１）Ｔ( )Ｎ ＝Φ Ｔ( )Ｎ ｘｋＴ( )Ｎ （７）

２　约束条件

２．１　侦察条件约束

完成空间侦察任务的前提是任务卫星能够在

规定的时间内接近目标卫星至特定范围，并在合

适的顺光角度下进行有效侦察，确保任务能够持

续一定时长。

２．１．１　相对距离约束
为了确保任务卫星能够有效地完成对目标卫

星的侦察，任务卫星与目标卫星之间的相对距离

必须小于允许侦察的最小距离且与目标卫星保持

安全距离。如果距离过近，可能会导致卫星间发

生碰撞；如果距离过远，则无法满足卫星侦察系统

的性能需求。相对距离约束确保任务卫星在侦察

过程中保持满足侦察的距离，从而获得精确的数

据。该约束可表示为：

ｄｍ≤ｄ≤ｄＭ （８）
式中，ｄｍ和ｄＭ分别为安全距离和允许的最小侦
察距离。

２．１．２　顺光角度约束
顺光角度θ是指太阳光方向与任务卫星至目

标卫星的观测矢量之间的夹角，如图３所示。

图３　顺光角度示意图
Ｆｉｇ．３　Ｓｕｎｌｉｇｈｔａｎｇｌｅｄｉａｇｒａｍ

空间任务会受到空间环境的影响，光照条件

是一个重要的因素，强烈的阳光会使星载成像传

感器难以正常观测，从而无法完成对目标的侦察

任务。当太阳光照方向与观测矢量夹角满足一定

角度时，有利于更好地完成对目标卫星的观测。

该约束可以表示为：

θｍｉｎ≤θ≤θｍａｘ （９）
式中，θｍｉｎ和θｍａｘ为顺光角度的最小值和最大值。
２．１．３　侦察时间约束

为了确保数据的有效性和精度，任务卫星必

须在满足上述相对距离和顺光角度的约束条件

下，持续侦察一定时长Ｔ，以确保能够获得准确数
据。该约束可表示为：

Ｔｍｉｎ≤Ｔ （１０）
式中，Ｔｍｉｎ是完成空间侦察任务要求的最小时间。

２．２　速度脉冲控制约束

２．２．１　脉冲大小约束
任务卫星的速度脉冲有最大和最小幅度限

制。脉冲大小决定了任务卫星轨道变化的幅度，

即速度的变化量。设定速度脉冲大小的约束为：

ｕｍｉｎ≤ｕ≤ｕｍａｘ （１１）
式中，ｕｍｉｎ和ｕｍａｘ分别表示速度脉冲的最小值和最
大值。

２．２．２　脉冲间隔约束
脉冲间隔指的是两次脉冲机动之间的时间间

隔，它控制着卫星轨道调整的频率和节奏。脉冲

间隔的限制可以表示为：

·２０１·
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Δｔｍｉｎ≤Δｔ （１２）
式中，Δｔｍｉｎ表示脉冲间隔的最小值。
２．２．３　能量消耗约束

卫星的能量资源有限，且每次脉冲调整都会

消耗卫星的燃料。能量消耗约束确保卫星在整个

任务过程中能够合理分配能量，避免因燃料不足

而导致任务中断。忽略卫星质量的变化，可以将

其转化为总速度脉冲量。该约束可以表示为：

∑Δｖ≤Δｖｍａｘ （１３）

式中，∑Δｖ为总速度脉冲量，Δｖｍａｘ为卫星的累计
速度脉冲上限。

２．３　时间约束

任务的总时长必须在给定的任务时长内。该

约束可以表示为：

ｔｆ≤Ｔｆ （１４）
式中，ｔｆ为任务的总时长，Ｔｆ为允许的最大任务
时长。

３　融合协同进化算法设计与实现

为了求解空间侦察任务中的追逃博弈问题，

采 用 斑 马 优 化 算 法［２２］ （ｚｅｂｒａ ｏｐｔｉｍｉｚａｔｉｏｎ
ａｌｇｏｒｉｔｈｍ，ＺＯＡ），引入协同进化机制和微分对策
理论，提出了一种融合协同进化算法（ｅｖｏｌｕｔｉｏｎａｒｙ
ａｌｇｏｒｉｔｈｍ，ＥＡ）。该算法的核心思想是基于任务
卫星和目标卫星的控制策略，分别构建两个独立

的斑马种群。通过交替联合进化的方式使两个种

群不断优化，最终都能达到稳定的最优解，从而实

现任务卫星和目标卫星的最优控制策略。

３．１　优化算法选取

为了评估 ＺＯＡ在空间侦察任务的追逃博弈
问题中的表现，本研究选取了多个经典优化算法，

包括 ＰＳＯ算法、ＧＡ、鲸鱼优化算法 （ｗｈａｌｅ
ｏｐｔｉｍｉｚａｔｉｏｎａｌｇｏｒｉｔｈｍ，ＷＯＡ）、灰狼优化算法（ｇｒｅｙ
ｗｏｌｆｏｐｔｉｍｉｚｅｒ，ＧＷＯ）、ＥＡ，并利用标准的优化测
试函数对这些算法进行了性能对比。选择这些算

法的目的是全面考察算法在不同优化问题中的适

应性、全局搜索能力、收敛速度以及逃脱局部最优

解的能力。

３．１．１　测试函数选取
为了全面评估各算法的性能，选用了以下几

种经典的测试函数。

Ｒａｓｔｒｉｇｉｎ函数：该函数是一个典型的多峰函
数，具有大量的局部极小值，适合考察算法的全局

搜索能力。它能够测试优化算法在面对复杂搜索

空间时是否能有效地避免局部最优，探索全局最

优解，如图４所示。

ｆ（ｘ）＝ＡＱ＋∑
Ｑ

ｉ＝１
ｘ２ｉ－Ａｃｏｓ（２πｘｉ( )） （１５）

式中：Ａ为常数，取Ａ＝１０；Ｑ为维度，取Ｑ＝３０。

图４　Ｒａｓｔｒｉｇｉｎ函数下的收敛曲线对比
Ｆｉｇ．４　Ｃｏｎｖｅｒｇｅｎｃｅｃｕｒｖｅｃｏｍｐａｒｉｓｏｎｆｏｒ

ｔｈｅＲａｓｔｒｉｇｉｎｆｕｎｃｔｉｏｎ

Ａｃｋｌｅｙ函数：包含多个局部极小值，主要用于
考察算法在多峰优化问题中的表现。该函数对算

法的全局搜索和局部优化能力提出了较高的要

求，是测试算法是否能够快速收敛并避开局部最

优的理想选择，如图５所示。

ｆ（ｘ）＝－２０ｅｘｐ－０．２ １
Ｑ∑

Ｑ

ｉ＝１
ｘ２

槡
( )ｉ －

ｅｘｐ １
Ｑ∑

Ｑ

ｉ＝１
ｃｏｓ（２πｘｉ( )）＋２０＋ｅ （１６）

式中，Ｑ＝３０，ｅ为自然常数。

图５　Ａｃｋｌｅｙ函数下的收敛曲线对比
Ｆｉｇ．５　Ｃｏｎｖｅｒｇｅｎｃｅｃｕｒｖｅｃｏｍｐａｒｉｓｏｎｆｏｒ

ｔｈｅＡｃｋｌｅｙｆｕｎｃｔｉｏｎ

Ｓｐｈｅｒｅ函数：作为一个单峰函数，Ｓｐｈｅｒｅ函数
主要用于考察算法的收敛性。其形状简单，能够

清晰地反映算法在搜索过程中收敛到全局最优解

·３０１·
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的速度和效率，如图６所示。

ｆ（ｘ）＝∑
Ｑ

ｉ＝１
ｘ２ｉ （１７）

式中，Ｑ＝３０。

图６　Ｓｐｈｅｒｅ函数下的收敛曲线对比
Ｆｉｇ．６　Ｃｏｎｖｅｒｇｅｎｃｅｃｕｒｖｅｃｏｍｐａｒｉｓｏｎｆｏｒ

ｔｈｅＳｐｈｅｒｅｆｕｎｃｔｉｏｎ

Ｇｒｉｅｗａｎｋ函数：该函数包含多个局部极小值，
适用于测试算法在逃脱局部最优解时的能力。其

复杂性在于每个局部极小值都可能导致算法陷入

局部最优，测试算法如何跳出这些局部解是一个

重要的考察点，如图７所示。

　ｆ（ｘ）＝１＋ １
４０００∑

Ｑ

ｉ＝１
ｘ２ｉ－∏

Ｑ

ｉ＝１
ｃｏｓ

ｘｉ
槡

( )ｉ （１８）

式中，Ｑ＝３０。

图７　Ｇｒｉｅｗａｎｋ函数下的收敛曲线对比
Ｆｉｇ．７　Ｃｏｎｖｅｒｇｅｎｃｅｃｕｒｖｅｃｏｍｐａｒｉｓｏｎｆｏｒ

ｔｈｅＧｒｉｅｗａｎｋｆｕｎｃｔｉｏｎ

这些测试函数能够覆盖多种优化问题的特

征，帮助全面评价不同算法在处理复杂优化问题

时的优势与不足。

３．１．２　结果分析
仿真结果验证了 ＺＯＡ在不同测试函数上的

优势。

１）Ｒａｓｔｒｉｇｉｎ函数：该函数测试了算法的全局
搜索能力。ＺＯＡ表现出优越的跳出局部极小值
的能力。

２）Ａｃｋｌｅｙ函数：ＺＯＡ在多峰优化问题中表现
出较好的全局优化能力，快速收敛且有效避免了

局部最优。

３）Ｓｐｈｅｒｅ函数：在单峰函数上，ＺＯＡ展现了
较快的收敛速度。

４）Ｇｒｉｅｗａｎｋ函数：ＺＯＡ有效逃脱局部最优
解，展现了较强的全局搜索能力。

综合来看，ＺＯＡ在多个经典优化测试函数中
展现了卓越的性能，特别是在全局搜索能力和收

敛速度方面均表现出色。这些优势表明，ＺＯＡ在
解决空间侦察任务中的追逃博弈问题时具有较大

的潜力。因此，本文决定选用 ＺＯＡ作为后续研究
的基础优化算法。

３．２　适应度函数设计

侦察任务可以描述为先靠近目标卫星，然后在

满足侦察条件的要求下持续一定的时间。因此，可

以将整个任务分为抵近段和持续段两个阶段。将

任务总时长ｔｆ按照一定的速度脉冲间隔Δｔ分成多
离散化的子区间，则整个决策时间ｔｆ被简化为?ｔｆ／
Δｔ」＋１个离散的时间点，?·」表示向下取整。

对于抵近段而言，目标函数为终止时刻任务

卫星与目标卫星的相对距离、顺光角度及其阈值

的比较结果。设计抵近段的目标函数为：

ＳＡｐｐｒ＝ ｍｉｎ
０≤ｔ≤?

ｔｆ
Δｔ」＋１

（ｍａｘ（ｒｔ１－ｒ
ｔ
２ －ｄ，０）＋

ｍａｘ（φＳ（ｒ
ｔ
１，ｒ

ｔ
２）－θ，０）） （１９）

式中，ｒｔ１和ｒ
ｔ
２表示ｔ时刻任务卫星和目标卫星的

位置矢量，ｄ为任务卫星与目标卫星之间的相对
距离阈值，φＳ（·）表示顺光角度计算函数。

对于持续段而言，任务卫星的优化目标函数

与抵近段基本相同，差异之处在于持续段需要每

个时刻都满足阈值条件，因此外围的最小化改为

最大化，具体如下：

ＳＤｕｒ＝ ｍａｘ
０≤ｔ≤?

ｔｆ
Δｔ」＋１

（ｍａｘ（ｒｔ１－ｒ
ｔ
２ －ｄ，０）＋

ｍａｘ（φＳ（ｒ
ｔ
１，ｒ

ｔ
２）－θ，０）） （２０）

若目标函数为 ０，则任务成功，可以结束任
务；否则，持续迭代至迭代次数上限，结束任务，任

务失败。

３．３　微分对策模型

在实际应用场景中，目标卫星在面对任务卫

星的行为时，必然会做出相应的策略性反应。鉴
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于目标卫星同样拥有机动能力，本文构建了一个

微分博弈模型，并设计了融合协同进化算法来求

解该微分博弈模型。任务卫星最小化的损失函数

为ＳＬ，Ｌ∈｛Ａｐｐｒ，Ｄｕｒ｝表示侦察阶段，即抵近段和
持续段。任务卫星和目标卫星的优化目标不同，

需要对它们分别建模。

在抵近段，任务卫星的策略是在规定的最大

任务时间 Ｔｆ内，通过优化控制变量，最小化与空
间侦察任务相关的损失函数。任务卫星的控制参

数包括任务总时间 ｔｆ、机动时刻 ｔ
Ａ＝［ｔＡ１，ｔ

Ａ
２，…，

ｔＡｋＡ］
Ｔ、脉冲量 ｕＡ ＝［ｕＡ１，ｕ

Ａ
２，…，ｕ

Ａ
ｋＡ］

Ｔ、脉冲与

ＸＯｂＹ平面之间的夹角 β
Ａ＝［βＡ１，β

Ａ
２，…，β

Ａ
ｋＡ］

Ｔ以

及在ＸＯｂＹ平面内的投影与Ｘ轴之间的夹角α
Ａ＝

［αＡ１，α
Ａ
２，…，α

Ａ
ｋＡ］

Ｔ，ｋＡ≤ｋＭＡＸＡ ，ｋ
ＭＡＸ
Ａ 表示任务卫星

最大脉冲机动次数。任务卫星的优化模型可以表

示为：

ｍｉｎ
ｕＡ，ｔＡｆ，ｔＡ，αＡ，βＡ

ＳＡｐｐｒ（ｕＡ，ｔＡｆ，ｔ
Ａ，αＡ，βＡ；ｕＯ，ｔＯ，αＯ，βＯ）

ｓ．ｔ．

ｔＡｆ≤Ｔｆ
１≤ｋＡ≤ｋＭＡＸＡ
ｕＡｉ≤ｕ

ＭＡＸ
Ａ

ｔＡｉ＋１－ｔ
Ａ
ｉ≥Δｔ

Ａ
ｍｉｎ

－π≤αＡｉ≤π

－π２≤β
Ａ
ｉ≤
π

















２

，１≤ｉ≤ｋＡ （２１）

其中：ｕＯ，ｔＯ，αＯ，βＯ是目标卫星的控制策略，它们
影响任务卫星的最优策略；ｔＡｆ为任务卫星执行抵
近段的任务总时间；ｕＭＡＸＡ 为任务卫星单次脉冲的

最大值；ΔｔＡｍｉｎ为任务卫星两次脉冲机动时间间隔
的最小值，约束条件确保任务卫星的控制变量在

物理和任务允许范围内，保证了优化问题的实际

可行性。

持续段任务卫星不需要优化任务时间，优化

模型为：

ｍｉｎ
ｕＡ，ｔＡ，αＡ，βＡ

ＳＤｕｒ（ｕＡ，ｔＡ，αＡ，βＡ；ｕＯ，ｔＯ，αＯ，βＯ）

ｓ．ｔ．

１≤ｋＡ≤ｋＭＡＸＡ
ｕＡｉ≤ｕ

ＭＡＸ
Ａ

ｔＡｉ＋１－ｔ
Ａ
ｉ≥Δｔ

Ａ
ｍｉｎ，１≤ｉ≤ｋ

Ａ

－π≤αＡｉ≤π

－π２≤β
Ａ
ｉ≤
π















２

（２２）

目标卫星的损失函数与任务阶段无关，且其

优化目标并非一定仅涉及躲避任务卫星，实际中

可以根据需求的不同为目标卫星设置不同的目标

使其更加智能。为目标卫星设计两个目标：其一

是躲避任务卫星的侦察或进攻等行动，即在博弈

过程中最大幅度地远离任务卫星；其二是尽可能

靠近主星并对主星进行一定目的的行动。目标卫

星的控制变量包括机动时刻 ｔＯ ＝［ｔＯ１，ｔ
Ｏ
２，…，

ｔＯｋＯ］
Ｔ、脉冲量 ｕＯ ＝［ｕＯ１，ｕ

Ｏ
２，…，ｕ

Ｏ
ｋＯ］

Ｔ、脉冲与

ＸＯｂＹ平面之间的夹角 β
Ｏ＝［βＯ１，β

Ｏ
２，…，β

Ｏ
ｋＯ］

Ｔ以

及在ＸＯｂＹ平面内的投影与Ｘ轴之间的夹角α
Ｏ＝

［αＯ１，α
Ｏ
２，…，α

Ｏ
ｋＯ］

Ｔ，ｋＯ≤ｋＭＡＸＯ ，ｋ
ＭＡＸ
Ｏ 表示目标卫星

最大脉冲机动次数。与任务卫星的损失函数计算

方法类似，对于一段时长为 ｔｒ的博弈，目标卫星
的损失函数可以表达为：

Ｒ＝ ｍａｘ
０≤ｎ≤?

ｔｒ
Δｔ」＋１

（ｍａｘ（ｄＭＲ－ ｒ
ｎ
１－ｒ

ｎ
２ ，０）＋ ｒ

ｎ
２ ）

（２３）
式中，ｄＭＲ为目标卫星最小安全距离。

在抵近段，博弈时长 ｔｒ为任务卫星的任务时
长ｔＡｆ；在持续段，博弈时长 ｔｒ是任务卫星侦察任
务的持续时长Ｔ。目标卫星的策略是在与任务卫
星对抗时间内，优化脉冲时刻、脉冲量及角度等参

数，最小化其损失函数。目标卫星优化模型为：

ｍｉｎ
ｕＯ，ｔＯ，αＯ，βＯ

Ｒ（ｕＡ，ｔＡ，αＡ，βＡ；ｕＯ，ｔＯ，αＯ，βＯ）

ｓ．ｔ．

１≤ｋＯ≤ｋＭＡＸＯ
ｕＯｉ≤ｕ

ＭＡＸ
Ｏ

ｔＯｉ＋１－ｔ
Ｏ
ｉ≥Δｔ

Ｏ
ｍｉｎ，１≤ｉ≤ｋ

Ｏ

－π≤αＡｉ≤π

－π２≤β
Ａ
ｉ≤
π















２

（２４）

其中：ｕＡ，ｔＡ，αＡ，βＡ表示任务卫星的控制策略；
ｕＭＡＸＯ 表示目标卫星单次脉冲量上限；ΔｔＯｍｉｎ表示目
标卫星两次脉冲机动时间间隔的最小值。

一个任务卫星和一个目标卫星的追逃博弈问

题，需要在各项给定约束条件下寻求满足以下鞍

点解的最优控制策略：

ＳＬ（ｕＡ，ｔＡ，αＡ，βＡ；ｕＯ，ｔＯ，αＯ，βＯ）
≤ＳＬ（ｕＡ，ｔＡ，αＡ，βＡ；ｕＯ，ｔＯ，αＯ，βＯ） （２５）
Ｒ（ｕＡ，ｔＡ，αＡ，βＡ；ｕＯ，ｔＯ，αＯ，βＯ）
≤Ｒ（ｕＡ，ｔＡ，αＡ，βＡ；ｕＯ，ｔＯ，αＯ，βＯ） （２６）

其中：ｕＡ，ｔＡ，αＡ，βＡ表示任务卫星的最优控
制策略；ｕＯ，ｔＯ，αＯ，βＯ表示目标卫星的最优
控制策略。

式（２５）和式（２６）的解表示微分博弈中的鞍
点解，意味着任务卫星和目标卫星在博弈过程中

会达到一个稳定状态，其中任务卫星和目标卫星

的策略在某种程度上相互对抗并达到最优平衡。

具体而言，任务卫星的最优策略是在最大化自身

·５０１·
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效益的同时，考虑到目标卫星的反应，并进行合理

调整；而目标卫星的最优策略则是在躲避任务卫

星的同时最大化其自身目标，尽可能避免被侦察。

３．４　策略更新和协同进化机制设计

在斑马算法中，个体通过协作与竞争的机制

来优化其行为。在协同进化的框架下，任务卫星

和目标卫星之间通过相互的竞争和动态调整来优

化各自的轨道控制策略。在任务的抵近段和持续

段，任务卫星根据目标卫星的逃逸策略进行追踪，

而目标卫星则根据任务卫星的追踪策略来规避任

务卫星的追击。两个卫星在相互作用中不断优化

各自的行为，以实现各自的任务目标最大化。

３．４．１　群体初始化
任务卫星种群：由 ＮＡ个个体组成，每个个体

的策略由任务总时长ｔｆ、脉冲机动时刻ｔ
Ａ
ｉ、脉冲量

ｕＡｉ及两个指向角α
Ａ
ｉ和β

Ａ
ｉ五个控制变量组成。

ＳＡ＝｛ＳＡｉ ｉ＝１，２，…，ＮＡ｝ （２７）
ＳＡｉ＝［ｔｆ，ｔ

Ａ
ｉ，ｕ

Ａ
ｉ，α

Ａ
ｉ，β

Ａ
ｉ］ （２８）

其中：任务总时长 ｔｆ在抵近段为优化变量，不超
过任务限定的最大时间，即 ｔｆ≤Ｔｆ；在持续段不需
要优化此变量，任务总时长为满足卫星侦察任务

的持续时长Ｔ。脉冲量则需要考虑任务卫星的运
动能力，在速度脉冲的最小值和最大值的区间内

优化，即ｕＡｉ∈［ｕ
Ａ
ｍｉｎ，ｕ

Ａ
ｍａｘ］。

目标卫星种群：由 ＮＯ个个体组成，由于目标
卫星与任务卫星处于同一场博弈中，任务总时长

是一样的，因此不需要对目标卫星的任务总时长

进行优化，而要将任务卫星的任务总时长作为博

弈时间，个体的控制变量为脉冲机动时刻ｔＯｉ、脉冲
量ｕＯｉ及两个指向角α

Ｏ
ｉ和β

Ｏ
ｉ。

ＳＯ＝｛ＳＯｉ ｉ＝１，２，…，ＮＯ｝ （２９）
ＳＯｉ＝［ｔ

Ｏ
ｉ，ｕ

Ｏ
ｉ，α

Ｏ
ｉ，β

Ｏ
ｉ］ （３０）

其中，ｕＯｉ∈［ｕ
Ｏ
ｍｉｎ，ｕ

Ｏ
ｍａｘ］表示目标卫星的脉冲量也

需要在其速度脉冲的最小值与最大值的区间内

优化。

３．４．２　适应度评估
式（１９）、式（２０）分别为任务卫星在抵近段和

持续段的适应度函数，式（２３）为目标卫星的损失
函数。对每个个体的策略进行评估，计算其在当

前环境下的任务卫星种群和目标卫星种群的

表现。

３．４．３　斑马行为模拟
（１）觅食阶段
在种群中选定先锋斑马，先锋斑马引导其他

斑马走向它在种群中的位置。位置更新公式为：

Ｓｎｅｗｉ·ｊ＝Ｓｉ·ｊ＋ｒ·（Ｐｊ－Ｉ·Ｓｉ·ｊ） （３１）

Ｓｉ＝
Ｓｎｅｗｉ Ｆｎｅｗｉ ＜Ｆｉ
Ｓｉ{ 其他

（３２）

其中：ｉ代表斑马个体数；Ｓｉ·ｊ为斑马在第 ｊ维的位
置，Ｓｎｅｗｉ·ｊ为更新后的斑马在第 ｊ维的位置；Ｐｊ为每
一个种群的先锋斑马在第 ｊ维的位置；Ｓｉ为先锋
斑马的位置，Ｓｎｅｗｉ 为更新后的先锋斑马的位置；Ｆｉ
为第 ｉ个个体的目标函数值，计算方式参考
式（１９）～（２０）、式（２３）；ｒ为［０，１］之间的随机
数；Ｉ为控制步长的参数，决定移动幅度，Ｉ∈｛１，
２｝，Ｉ的值越高，代表种群变化越大。

在觅食过程中，每个个体会依据自身的适应

度值来判断其相对于种群的优劣。因此，计算适

应度是优化过程中的关键步骤。

适应度计算如下。

Ｓｔｅｐ１：计算所有个体的适应度。任务卫星：
根据不同的任务阶段，分别使用式（１９）和式（２０）
计算适应度。目标卫星：依据式（２３）计算适
应度。

Ｓｔｅｐ２：选取适应度最高的个体作为先锋斑
马，并使用式（３１）～（３２）引导种群更新位置。

Ｓｔｅｐ３：计算更新后个体的适应度，并进行筛
选，若新适应度更优，则保留新位置；否则，回溯到

上一位置，或进行微调（如缩小搜索步长）以防止

陷入局部最优解。

（２）抵御捕食者攻击阶段
野生斑马在草原上可能会遇到两类捕食者，

假设两种情况发生的概率相同。

Ｐｈａｓｅ１：狮子攻击斑马，斑马群体选择逃跑
策略。

Ｐｈａｓｅ２：其他捕食者（如鬣狗、灰狼等较小体
型捕食者）攻击斑马，斑马群体选择聚集或进攻

策略。

位置更新公式为：

Ｓｎｅｗｉ·ｊ＝
Ｐｈａｓｅ１：Ｓｉ·ｊ＋Ｃ（２ｒ－１）１－

ｍ( )Ｍ Ｓｉ·ｊ Ｐ≤０．５
Ｐｈａｓｅ２：Ｓｉ·ｊ＋ｒ（Ａｊ－Ｉ·Ｓｉ·ｊ）

{
其他

（３３）

Ｓｉ＝
Ｓｎｅｗｉ Ｆｎｅｗｉ ＜Ｆｉ
Ｓｉ{ 其他

（３４）

其中：Ｐ为两种策略发生的概率，区间为［０，１］；
Ｃ是值为 ００１的常数；ｒ∈［０，１］为随机数；Ｍ
为最大迭代次数；ｍ为当前迭代次数；Ａｊ是被攻
击斑马在第 ｊ维的位置；Ｉ为控制步长的参数。

在优化过程中，斑马个体会根据环境和适应

·６０１·
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度调整其位置，整体优化流程如下。

Ｓｔｅｐ１：计算斑马个体在新位置的适应度。
若适应度提高，保留新位置；若适应度降低，可能

陷入局部最优，需调整策略。

Ｓｔｅｐ２：选择优化策略（根据捕食者类型）。
策略１———逃跑策略（Ｐｈａｓｅ１），适应度较低的个
体会执行大步长移动，迅速远离捕食者，增加生存

概率。策略 ２———聚集策略（Ｐｈａｓｅ２），适应度较

高的个体会吸引其他个体靠近，增强整体适应性，

提高生存能力。

Ｓｔｅｐ３：执行优化策略。适应度较低的个体
可能回溯到上一位置，或调整步长以避免陷入局

部最优。适应度较高的个体在聚集策略中会引导

其他个体移动，使种群更具优势。

３．４．４　求解流程
融合协同进化算法的流程如图８所示。

图８　融合协同进化算法流程
Ｆｉｇ．８　Ｆｌｏｗｃｈａｒｔｏｆｔｈｅｉｎｔｅｇｒａｔｅｄｃｏｏｐｅｒａｔｉｖｅｃｏｅｖｏｌｕｔｉｏｎａｌｇｏｒｉｔｈｍ

　　详细流程描述如下。
Ｓｔｅｐ１：定义优化过程的初始条件和相关参

数。需要确定任务卫星和目标卫星的初始状态、

控制变量的优化范围以及斑马优化算法（ＺＯＡ）
的初始参数。

Ｓｔｅｐ２：初始化任务卫星和目标卫星种群。
对于目标卫星和任务卫星种群的控制变量，在其

优化范围内均匀随机选择一个初始位置，作为初

始斑马个体。

Ｓｔｅｐ３：使用 ＺＯＡ更新目标卫星种群。根据
目标卫星损失函数，对目标卫星种群进行更新。

Ｓｔｅｐ４：使用 ＺＯＡ更新任务卫星种群。根据
任务卫星损失函数，对任务卫星种群进行更新。

Ｓｔｅｐ５：判断是否达到最大迭代次数。检查
当前迭代次数是否达到预设的最大迭代次数，如

果未达到，则返回Ｓｔｅｐ３继续迭代。
Ｓｔｅｐ６：从两个种群中选择最优个体。最终

选择的最优个体代表在该对抗过程中表现最好的

策略，能够保证任务卫星和目标卫星均实现自身

损失最小化。

４　仿真结果与分析

主星位于距地面约３６０００ｋｍ的地球同步轨
道上，其轨道参数如下：半长轴为４２３７８ｋｍ，偏心
率为０，轨道倾角为４０°，升交点赤经为２０°，近地
点角距为０°，真近点角为８７°。在以主星为原点
的轨道坐标系下，任务卫星和目标卫星的初始状

态如表１所示。
任务卫星针对目标卫星开展空间侦察任务，

在抵近段和持续段中，任务卫星的机动次数均不

超过２０，单次脉冲量不超过２ｍ／ｓ，且两次脉冲机
动时间间隔不低于２００ｓ。在与目标卫星的博弈
过程中，任务卫星通过优化自身运动参数来满足

侦察任务的各种约束条件。目标卫星拥有一定的

机动能力，每阶段机动次数同样不超过２０，单次
脉冲量不超过１ｍ／ｓ，两次脉冲机动时间间隔不
低于４００ｓ。目标卫星在博弈过程中试图远离任
务卫星并靠近主星。二者对抗的时间上限为
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１０００００ｓ，仿真步长为２０ｓ。
任务卫星距离主星２０ｋｍ做环绕飞行，保障

主星的安全。目标卫星位于与主星同轨道的前方

１５０ｋｍ处。任务卫星对目标卫星进行侦察，侦察
场景参数设置为两星相对距离在２０ｋｍ以内、顺
光角度在４０°以内，对目标卫星持续观测１０００ｓ，
任务最大时间为１０００００ｓ。这一目标要求任务
卫星必须在规定的时间内，通过精确控制与目标

卫星的相对位置与顺光角度，达到任务设定的需

求。而目标卫星则采取积极的逃避策略，尽力避

开任务卫星的观测，并在条件允许的情况下，尽量

接近主星。

表２和表３详细记录了任务卫星和目标卫星
在抵近段与持续段的脉冲时间、脉冲量以及角度

情况。可以看出，任务卫星在抵近段（从任务开

始到４６７２０ｓ），总共进行了８次脉冲，成功将相
对距离和顺光角度调整至预定范围内。进入持续

段，任务卫星在接下来的１０００ｓ内通过４次脉冲
进行调整，确保目标卫星始终保持在合适的相对

位置，并且满足顺光角度的要求，与此同时，目标

卫星则在抵近段采取了１２次脉冲。进入持续段
后，目标卫星仍试图通过２次脉冲来改变其轨迹，
尽可能摆脱任务卫星。最终，任务卫星成功在

４７７２０ｓ时达成了对目标卫星的侦察任务。

表１　任务卫星和目标卫星初始状态
Ｔａｂ．１　Ｉｎｉｔｉａｌｓｔａｔｅｓｏｆｔｈｅｍｉｓｓｉｏｎｓａｔｅｌｌｉｔｅａｎｄｔａｒｇｅｔｓａｔｅｌｌｉｔｅ

卫星 ｘ／ｋｍ ｙ／ｋｍ ｚ／ｋｍ ｘ／（ｋｍ／ｓ） ｙ／（ｋｍ／ｓ） ｚ／（ｋｍ／ｓ）

任务卫星 －８．６６０２５４ －１０．０ １５．０ －０．０００３６１ －０．００１２５３ －０．０００６２６

目标卫星 ０ １５０．０ ０ ０ ０ ０

表２　任务卫星脉冲机动情况
Ｔａｂ．２　Ｉｍｐｕｌｓｅｍａｎｅｕｖｅｒｐａｒａｍｅｔｅｒｓｏｆｔｈｅｍｉｓｓｉｏｎｓａｔｅｌｌｉｔｅ

阶段 时间／ｓ 次数 Δｖ／（ｍ／ｓ） α／ｒａｄ β／ｒａｄ

抵近段

　 ３６３ １ １．０３６ －１．２０５ －０．１０２

１０８８６ ２ ０．６４２ －１．６４３ 　０．３７４

１５８７３ ３ ０．３００ 　１．１０８ 　０．６７０

２５１３５ ４ ０．３６２ －０．７９３ 　０．２９６

２７００７ ５ ０．６０５ 　１．３５８ －０．８３０

２７３１３ ６ １．０８２ 　２．４９３ －０．２０２

３４９５７ ７ ０．５８２ 　０．３８２ 　０．３８４

４０９３４ ８ ０．０１４ 　０．１８３ 　０．６２６

抵近段结束 ４６７２０

持续段

４６９２２ ９ １．７２６ 　１．３５８ 　０．６２２

４７１２４ １０ １．３４７ －０．８４５ 　１．２５２

４７３２８ １１ １．９０３ 　２．４９１ －１．２５０

４７５３２ １２ １．９８０ －２．１５５ －０．０３８

持续段结束 ４７７２０

　　图９展示了任务卫星与目标卫星在主星坐
标系下的运动轨迹。通过观察轨迹曲线，可以

看出任务卫星和目标卫星都通过多次脉冲机动

来调整各自的轨迹，从而实现各自的任务目标。

任务卫星通过多次脉冲机动逐步接近目标卫

星，并在持续段执行连续多次脉冲机动调整相

对距离和顺光角度，完成侦察任务。目标卫星

则在对抗初期倾向于靠近主星，后期则试图远

离任务卫星，意在躲避任务卫星侦察。这充分

展示了融合协同进化算法在复杂动态环境下的

决策能力和优化效率，体现了该算法在任务执

行中的高效性和适应性。
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表３　目标卫星脉冲机动情况
Ｔａｂ．３　Ｉｍｐｕｌｓｅｍａｎｅｕｖｅｒｐａｒａｍｅｔｅｒｓｏｆｔｈｅｔａｒｇｅｔｓａｔｅｌｌｉｔｅ

阶段 时间／ｓ 次数 Δｖ／（ｍ／ｓ） α／ｒａｄ β／ｒａｄ

抵近段

　　８１６ １ ０．０４１ －０．０３４ 　０．０４６

５１６９ ２ ０．０６９ 　０．２３５ 　０．１０２

６２２６ ３ ０．０７６ －０．４５１ －０．１１３

１１５９９ ４ ０．５５７ －１．１８０ －０．５４１

１８０１７ ５ ０．１７５ 　０．０３８ 　０．１０１

２１１０２ ６ ０．５６９ －０．３９５ －０．０６１

２２８２４ ７ ０．１０４ －０．６７７ 　０．１５２

２６５４７ ８ ０．１８５ 　０．０６１ －０．１２９

２７４５８ ９ ０．２３３ －０．７８１ 　０．４２５

３４７５０ １０ ０．１１３ 　０．２８４ 　０．００２

４０８８２ １１ ０．３８９ －０．５１６ －０．０７８

４４３１０ １２ ０．０９０ 　０．４２５ －０．００６

抵近段结束 ４６７２０

持续段
４７１２１ １３ ０．０６２ －０．４４２ 　１．３９９

４７５２２ １４ ０．５６４ －０．５３１ 　１．５２７

持续段结束 ４７７２０

图９　任务场景空间路径
Ｆｉｇ．９　Ｓｐａｔｉａｌｐａｔｈｏｆｔｈｅｍｉｓｓｉｏｎｓｃｅｎａｒｉｏ

　　任务卫星与目标卫星在抵近段和持续段的
相对距离变化和顺光角度变化如图１０和图１１所
示。从图１０可以看出，在抵近段期间，任务卫星
与目标卫星的相对距离逐渐缩短，但一直到两者

相距约５ｋｍ时才完成了抵近段的优化。这一现
象主要是因为任务卫星需要在不断调整其状态来

保证尽量接近目标卫星的同时，兼顾顺光角度的

约束。进入持续段后，任务卫星与目标卫星的相

对距离开始缓慢增大。然而，由于任务卫星在完

成抵近后对轨迹进行了精确调整，相对距离依旧

被严格控制在场景设定的 ２０ｋｍ以内并持续了
１０００ｓ，满足了侦察任务需求。与此同时，图１１
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所示的顺光角度是本次观测的另一重要约束。在

抵近段，顺光角度先呈现上升趋势，而后随着姿态

与机动调整快速下降，最终达到符合观测要求的

范围。进入持续段后，顺光角度出现数次小幅波

（ａ）抵近段
（ａ）Ｃｌｏｓｅａｐｐｒｏａｃｈｐｈａｓｅ

（ｂ）持续段
（ｂ）Ｓｕｓｔａｉｎｅｄｐｈａｓｅ

图１０　相对距离变化
Ｆｉｇ．１０　Ｒｅｌａｔｉｖｅｄｉｓｔａｎｃｅｖａｒｉａｔｉｏｎ

（ａ）抵近段
（ａ）Ｃｌｏｓｅａｐｐｒｏａｃｈｐｈａｓｅ

（ｂ）持续段
（ｂ）Ｓｕｓｔａｉｎｅｄｐｈａｓｅ

图１１　顺光角度变化
Ｆｉｇ．１１　Ｖａｒｉａｔｉｏｎｏｆｒｅｌａｔｉｖｅｓｕｎｌｉｇｈｔａｎｇｌｅ

动，但任务卫星通过精确的控制策略将顺光角度

逐渐减小并保持在４０°以内，并持续了足够长的
时间（１０００ｓ）。

任务卫星与目标卫星在抵近段和持续段的适

应度变化如图１２所示，从图中可以看出，在抵近
段期间，任务卫星的适应度值在第三次迭代后降

为０并保持稳定，这表明任务卫星的策略达到最
优，能够有效追踪目标卫星并满足侦察条件。而

目标卫星的适应度有所下降，试图躲避任务卫星

侦察。进入持续段，任务卫星的适应度稳定为０，
能够有效保持对目标卫星的追踪，完成侦察任务，

展示出策略的最优性。

（ａ）抵近段
（ａ）Ｃｌｏｓｅａｐｐｒｏａｃｈｐｈａｓｅ

从任务执行结果来看，执行任务总时间为

４７７２０ｓ，任务卫星在此期间通过１２次脉冲机动
完成了对目标卫星的观测任务，总速度增量约为

·０１１·
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（ｂ）持续段
（ｂ）Ｓｕｓｔａｉｎｅｄｐｈａｓｅ

图１２　适应度变化
Ｆｉｇ．１２　Ｖａｒｉａｔｉｏｎｏｆｆｉｔｎｅｓｓ

１１５８ｍ／ｓ。目标卫星在整个对抗博弈过程中，进
行了１４次脉冲机动，总速度增量约为３２３ｍ／ｓ。
任务卫星能够根据目标卫星的逃避策略来更新自

己的策略，在复杂的动态环境中成功实现对目标

卫星的侦察任务，展示了出色的任务执行能力。

与传统优化方法相比，融合协同进化算法在多约

束动态环境下的表现显著更优，微分对策理论的

引入使得任务卫星能够稳定应对目标卫星的机动

变化，而传统方法在动态博弈中易出现策略失效。

５　结论

针对脉冲推力模型的卫星追逃博弈问题，本

文主要聚焦于空间侦察场景。为了解决这一复杂

问题，本文基于斑马优化算法、协同进化机制以及

微分对策理论，设计了一种融合协同进化算法。

该算法将脉冲推力航天器的轨道动力学问题转化

为具有多重约束条件的最优化问题，并将整个空

间侦察任务分解为“抵近段”和“持续段”两个阶

段。对于每个阶段，本文分别建立了优化模型，确

保在两个阶段的相互配合下能够高效地执行整个

侦察任务。通过此方法能够在复杂的空间环境中

实现任务卫星与目标卫星的动态博弈，提升任务

执行的优化效率。

仿真结果表明，本文提出的融合协同进化算

法能够有效解决空间侦察问题。在计算时效性方

面，本文算法在抵近段的平均计算时间为６０ｓ，持
续段的平均计算时间为８ｓ，能够较快满足任务需
求。本文算法展现出较高的侦察任务成功率和策

略可靠性，能够在动态环境下应对目标卫星的机

动变化，满足复杂任务的多约束条件需求。

融合协同进化算法在解决多约束卫星追逃博

弈问题时展现出显著优势。协同进化机制克服了

传统优化算法（遗传算法、粒子群优化算法等）易

早熟收敛的问题，通过多种群交互提升全局优化

能力。斑马优化算法的引入进一步提高了搜索效

率，寻优能力强、收敛速度快的特点优于传统优化

方法。传统静态优化方法难以实现动态博弈，而

微分对策理论确保了策略的动态稳定性，使任务

卫星能够实时调整以应对目标卫星的逃逸策略。

针对复杂多变的空间环境，本文的研究不仅

能够有效地应用于空间侦察场景，还能在其他空

间任务中提供一定的借鉴。例如，在空间封锁任

务中，该方法能够根据目标卫星的机动性动态调

整策略，通过博弈优化来实现有效的区域封锁与

控制；在空间防御任务中，任务卫星可以根据不同

威胁级别的卫星行为来调整防御策略，并在博弈

过程中考虑卫星间的协同与对抗。尽管这些应用

场景的具体任务目标不同，但基于融合协同进化

算法的动态调整机制可以为其提供灵活有效的优

化解决方案。未来的研究可以进一步拓展到更广

阔的空间任务领域，包括但不限于空间封锁和空

间防御等，探讨如何在这些复杂空间环境中利用

融合协同进化算法优化任务执行效果，并进一步

提高算法的普适性与实用性。
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