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Integrated cooperative co-evolutionary optimization method for

multi-constraint satellite pursuit-evasion game
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2. Shanghai Institute of Aerospace Systems Engineering, Shanghai 201109, China)

Abstract; Traditional methods often exhibit low efficiency in addressing multi-objective and multi-constraint optimization problems, failing to

meet the requirements of dynamic and complex environments. In this case, a cooperative co-evolution algorithm was proposed based on cooperative

co-evolution mechanisms, zebra optimization algorithms, and differential game theory. A phased optimization strategy was adopted to dynamically

and adaptively optimize trajectories and strategies, while a multi-population co-evolution mechanism was introduced to enhance global exploration

capability and local convergence performance. Differential game theory was integrated to improve the stability and reliability of game strategies.

Simulation results demonstrate that this method significantly improves mission completion efficiency under multi-constraint conditions. It effectively

balances dynamic strategy adjustments for both pursuers and evaders, providing an effective solution for satellite pursuit-evasion games in space-

based target reconnaissance and surveillance missions.
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Fig.1 Diagram illustrating the problem description
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Fig.8 Flowchart of the integrated cooperative co-evolution algorithm
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Tab.1 Initial states of the mission satellite and target satellite
TR x/km y/km z/km %/ (km/s) y/ (km/s) 2/ (km/s)
51D — 8.660 254 -10.0 15.0 ~0.000 361 -0.001 253 -0.000 626
Hbr A 0 150.0 0 0 0 0
x2 EZIERAHENER
Tab.2 Impulse maneuver parameters of the mission satellite
BB I IE]/s WAL Av/ (m/s) o/rad B/rad
363 1 1.036 -1.205 -0.102
10 886 2 0. 642 -1.643 0.374
15 873 3 0.300 1.108 0.670
25 135 4 0.362 -0.793 0.296
R B
27 007 5 0.605 1.358 -0.830
27 313 6 1.082 2.493 -0.202
34 957 7 0.582 0.382 0.384
40 934 8 0.014 0.183 0.626
T Be s 46 720
46 922 9 1.726 1.358 0.622
47 124 10 1.347 —-0.845 1.252
FreiB
47 328 11 1.903 2.491 -1.250
47 532 12 1.980 -2.155 -0.038
FRELBR AR 471720
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Tab.3 Impulse maneuver parameters of the target satellite

BBt I ] /s A Av/(m/s) a/rad B/rad
816 1 0.041 -0.034 0.046
5169 2 0.069 0.235 0.102
6 226 3 0.076 -0.451 -0.113
11 599 4 0.557 -1.180 -0.541
18 017 5 0.175 0.038 0.101
21 102 6 0.569 -0.395 -0.061
R B
22 824 7 0.104 -0.677 0.152
26 547 8 0.185 0.061 -0.129
27 458 9 0.233 -0.781 0.425
34 750 10 0.113 0.284 0.002
40 882 11 0.389 -0.516 -0.078
44 310 12 0.090 0.425 -0.006
HRL Be4h 46 720
47 121 13 0.062 -0.442 1.399
FrekB
47 522 14 0.564 -0.531 1.527
oL B R 47 720
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Fig.9 Spatial path of the mission scenario
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