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Rapid reentry trajectory planning of multi-gliding vehicles for
coordinated formation

NAN Wenjiang, YAN Xunliang ™ , HUO Qinghua
(School of Astronautics, Northwestern Polytechnical University, Xi’an 710072, China)
Abstract; For the problem of trajectory planning for multi-vehicle collaborative formation in the gliding mid-flight phase, a two-phase

cooperative formation trajectory planning method based on the "

coordinated assembly and formation maintenance" strategy was proposed. In the
coordinated assembly segment, a trajectory planning method based on a coordination-execution dual-layer framework was designed. The coordination
layer included three modules: spatiotemporal capability boundary forecasting, rendezvous point information calculation and distribution, and
adaptive correction of rendezvous point information, to quickly determine the rendezvous point information while considering the vehicles’ control
capabilities. The execution layer then designed a trajectory planning method considering space-time full state constraints to achieve high-precision
assembly of multiple vehicles, providing a favorable initial situation for formation maintaining. In the formation maintenance segment, using virtual
altitude and heading angle as coordination information, a trajectory planning method based on fixed-time consistency was designed to realize long-
range formation maintenance. Simulation results show that the proposed trajectory planning method demonstrates excellent high-precision assembly
capability, long-range formation maintaining ability, and adaptability to multiple tasks.
Keywords: reentry coordinated formation; coordinated assembly; formation maintenance; space-time full state constraints
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Tab.1 Initial and terminal positions of each aircraft for

formation mission in the same altitude plane

LIPS AY KATE A (°) ¢/ (°)
1 0 0
o 2 0 2
WIANLE
3 0 4
4 0 0
2 S YA 1 70 0

BT PR A4 G R T R B AR A AU
BT by =35.30 km, Ay = 61.17°, dyp =
0.80°, Vyp =3 303. 1 m/s, hpp = 97.6°, ypp =
-0.57°, 15 =1 130.95 s, TEULEERD |-, BT i
ST g BN AR 25 5 R R Pl R B B AR
HE5 Rk 2 5K 9 s,

®2 FREFTEANRMESEXMTRESERSLHRERE
Tab.2 RP and terminal states’ deviations of each aircraft for formation missions in the same altitude plane

i 22 1Y AT | As|/km [ AR |/km  [AVI/(m/s)  [Ayl/(°) A l/(°) | Acl/s
1 0.231 0.014 0.621 0.035 0.708 0.010
2 0.091 0.078 0. 660 0.073 1.657 0.042

L R

3 0.261 0. 066 0.639 0.075 0.759 0.040
4 0.154 0.051 0.051 0.071 1.833 0.036

2 RZS 1 0.259 0.020 0.374 0.072




- 134 - (FE TR SR S AN S

548 &

24T A AT AR A SUIR S D 2 F T
A RAT A AR S M 22 o Horb, 25 AT AR AR A
BRI 22 B BN, R4S R B R 22 | As [N T
300 m, & EMZE/NT 150 m, EEMZE/DNT 1 n/s,
25l 54 A i 22 /0 T 0. 10, i 1) £ i 22 /0 T
2°, AR ZE/N T 0. 05 s, Bk 1 B 4 4R 45 Bl
WK 5k F)ORG FE FN RT AT M, AT R I 2 g BA PR £
Pt RUF IG5 UL AT e 2% i I 25 i 22
259 m, m B 2E O 20 m, R R 22 N
0.374 m/s, b 55 18 {5 F1 fw 22 24 0. 072°, 55 3iF
4 BN PR AR BT AT i 3 R B A AL
PEo AL, 2 BA 3ok 2 v die ORH ) R B 1R 22 2 O
3.4 km, FRRAR R ZE N 9. 1 m/s, 275 2
NI TR

KO MIE—2B 25 1 4% KA gl th £ M 42
BotRAS g, H, it 206 g a4
SR KA TR 1~ 4, A SRS SR
TG TREB R L B S AR FE B,
9(a) ~ (d) Al & AT g ARSI RS TE 1y,
I 221 Wi S 22 0 B AR 25 S RN, DTG L IR 36 114 i

" v
sh + FAR
of
4 + -
_—
§ | . /// \\;
BN 2 - e \
& ) ;
of  + /{'\1\1
-2 ng
g
_é 10 ;) 1‘0 2‘0 3‘0 4‘0 5‘0 6‘0 7‘0 80
ZRE/()
(a) ML
(a) Ground trajectory
80
* RAR
TOF
60 F
/\ —
g 50 \
=
IE 40

30+

20+

0 200 400 600 800 1000 1200 1400 1600 1800
mfIH /s
(c) FiJE - A 2k

(¢) Altitude-velocity curve

PASH . HIEI9(a) ~ (b) IR, & AT RS T4
SENLE, HRBRSTE i DA PR RS BEAE R g AR 7Y, L &
G RAT AR HE R AGA 0 B, B 9(e) ~
(d) AT, AP CAT 28 7 Gt BA PR 47 B 1 1m0 B LA
] AR R HF — B IR FF a2 370 s,
E19(e) ~ () WL T4 RATERICA S5 il £ ih
25, b BTN BT B A T 2 VR A £ NI A
T4, DASE BN 52 5% 175 00 19 = B2 S5 1) £ e
KEREIRER o LR 25 R BH , JIr $2 G DA I3 1 X0 5
PR B R AR A R B S S T TR s RE A5 2 4
K B A B LR 64T

WA, 2% B R A A B R R R 2
0.282 s, Sifji CATAFFLIL MR TH A FERT 1. 021 s,
PN AT 25 B0 A T SRR B 43531 2 0. 858 s
0.855 5.0.862 s, A4 KAT# A & T K F 45k
TR EAERT /N T 0.01 s, 3B BT $2 350 1 S i
PERCAT, BB I KA 3 J 5 A1 X 3 S AT
SR LI B A, T HE P R 4 B TR A
RIS U RENT A 2o e AN 1 o]
PR, LA e v RIS B RS i

\
35 ADER
\

30+

& /km

254

N\
20 1 \ /
Y 720

[}

15
15 - 1.0
60 62 "““g;(x\_(_ 05
66 a0 o
25/ 68 70-0.5 HE/()

(b) FiBARFFBELIL
(b) FMS trajectory

120

o
115} o SRE

110
105
100

Adwa
o \/ 7\
\\// | |

80

A/ ©)

5t

700 200 400 600 800 1000 1200 1400 1600 1800

mfIH /s
(d) fien £ — B a] 2

(d) Heading angle-time curve



51 FAUOIL, 55 : 2210 F QAT 4% 3 I) Gt BA T A 900320 LS A A - 135 -
25 %0
M
60 / A | i
20 40t Y L
20 - \ i
€, s O ‘ I/ |
€ =2 W /
= _
= = 20 \/ |
J —40 4 7
\ —— | /
10 Frfe—- |
g?’" [ -60 . I
' -80
5 A A A A A A _100 A A "
0 200 400 600 800 1000 1200 1400 1600 1800 0 200 400 600 800 1000 1200 1400 1600 1800

mfIH /s
(e) Muffy — whial £

(e) Angle of attack-time curve

mfIH /s
(£) fisufm ff — psf[i] b 2%

(f) Bank angle-time curve

G/ & QIRE S2 NGRS N

Fig.9 Simulation result curves of rendezvous formation in horizontal plane

3.3 ETFHANEESHEIBE

Nt Y P 4R L I 2 AT 55 38 N, A
TR Xt AP i P G AT 5517 DT JE T Bk
PR RATAECR N =3, 4% WAT AR A AN
10/ o 15 B 20 A ) 2R Oy s e 1 o i o I
50 km i 3 km WSEIE =AML . g AR TS BODLAE
Sews =1 000 km , 2% RATASI 4k 1L (0 B 2 AN
3 PR HABA R AT S 3. 1 1 —E,

B0 Hy T 1E A g BT 5538 (5 Fa b
Fig. 10 Formation mission communication topology in
vertical plane

BT TR AR S G BB R R R L S
BT hy = 35.69 km, Ay = 50.87°, ¢y =
2.44° Vyp =3 432.53 m/s, iy = 103.59°, y,, =
-0.52°, 15 =1 104.29 s, fESLIERE |, R FFR
AT I NS 5 PR R Pl MR B B AS0
HE RN 4 5K 11 R,

K3 HETEARMNESE CUTHRVBMLRGCE
Tab. 3

Initial and terminal positions of each aircraft for

formation missions in vertical plane

QEESi N A (%) ¢/ (%)
1 0 0
PG r 2 0 3
3 0 -3
A 1 60 0

A G TR ATAR RS RURZS i 225 T
RATARR RS R 2E . o, & RAT AR D RIS 2
SRS 22 KB/ 45 s i 22/ T 250 m,
AR 22/ T 100 m, BB 25/ T 0.5 m/s, 24
Mo Ay O 22 /0 T 010, L 1) A O 22 /N T
159, AR ZE/NT 0. 05 s, Boiik 1 P 4 45 il
MUK SEIE BN JE Rl A58, ) o Je 2 25 A PR 4 i
PR AFRI IR AT DI AT E P L s R i 22 7]
FERUIN, P B 2200 259 m, =22 55 m,
B i 25 0 0.289 m/s, 24 M ¥H 160 A i 22 Tl
0. 078°, REAS B Uy i /L 45 TR I 249 0K, LA, i
BA QAT A R f AR R 220 8. 71 km, e K
FRXS S i 25 85. 3 m/s, B4yl G BA T R A o

x4 HETEANRNESZSEVTREERSHRNLIREE
Tab.4 RP and formation terminal states’ deviations of each aircraft for formation missions in vertical plane
(LEE S KT [AsVkm AR km JAVI/Govs)  [ay /() Tagl/(0) | Acl/s
1 0.197 0.019 0.352 0.034 1.452 0.002
A RS 2 0.228 0.051 0.438 0.027 0.152 0.017
3 0.105 0.062 0.276 0.016 0.688 0.021
Ltk 1 0.259 0.055 0.289 0.078
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