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Kriging-based aerodynamic/aerothermal surrogate models and
aerothermoelastic analysis of TPS panel

YI Zijun, JI Chunxiu, XIE Dan", TANG Shuo
(School of Astronautics, Northwestern Polytechnical University, Xi’an 710072, China)

Abstract: To address the contradiction between efficiency and accuracy that exists among different computational methods for high-speed
aerodynamic/thermal loads, a typical TPS ( thermal protection system) panel of a high-speed vehicle was focused, and aerodynamic and
aerothermal surrogate models based on the Kriging method were developed, which achieved a four-orders-of-magnitude improvement in
computational efficiency. Based on these surrogate models, a computational framework for the aerothermoelastic analysis of the TPS panel was
established using the finite element method and a self-developed heat conduction program. The aerothermoelastic behavior of the TPS panel was then
analyzed within this framework. This research will provide an important theoretical foundation for the rapid and accurate prediction of aerodynamic
and thermal loads, the design of thermal protection systems, and the flight safety assessment of high-speed vehicles.
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Tab.1 Relevant parameters of the TPS panel
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Fig.2  Aerothermoelastic analysis flow of TPS panels
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Tab.4 Evaluation metrics of aerodynamic surrogate

models with different sample sizes

%
- AR N
K EEFE b SCHk[ 11 ]
1 200 1 500
Exnuise 1.23 1.04 1.03 2
L, 4.12 3.54 3.44 ~5
Ly 20. 90 13.07 11. 46 ~20
Pr, <10% 97.33 99.33 99.33 95

Bl 6 J&m T 38h S AR PTAN 48 b Bl A 4
BOEmy A e, FEASKIGR M 200 35 Hm 3] 1 500, fCHE
B (PR RE PR 48 b A FREE T, B R 1 A2 A U
B P AR AR B S

100 100 s 720 60
80 80 i 50
15
S.60F £ 60 40 ¢
g ™ 4 ~
I 2 ; < %
y £
& é s §
A, 40 I 40 10 30 N
20 20F g J
e 20
ey 5
0 LTy 35 |y,
200 500 1000 1500
FEAL R

K6 sl I CBA RPN FEARRIAE AR B i A2
Fig.6  Variation of aerodynamic surrogate models

evaluation metrics with sample size

BT JE/R T 1500 MREAS S AR s s AR
PR Y ) 3h 3 RO A5 RS CFD 5 kit
A RAHRRZE T . 22 F R T R A
BERFT IS ZRAL , 7T L Kriging AABRBRLVE g ) SCid
(BRI A7 A7 (R ABE 7R 7 0 % X B a2 R i)
WG o AT IE S — PR R DR SR A A 3
S TS B
2.3.2 FERFAHARBER

X FAE R A S 1 A EI AR ER AR
RSN Ient I 45 A = phis e dE e W

x/m

7 ARl T AR RSP A 0 5 2 (0 B A
Fig.7 Position distribution of average relative error for

aerodynamic surrogate models

RONEIT , 3 ST A A BE AT B Al Bl AR A
B, AUBEARE R E 7 Motk REG TR~ 0N -
Cp(x,1) =Cp o (x) +Cp(a,t) +y.,(d)  (19)
Ky, (d) Sy AR R A Aoy B A 3% 1 i 5 AR
BHHE, Cp a5 Co AEET =BG EHIE S
S e,
IR BENR AR E WUl s R 0 -

1
q.(x,1) =5Cp (%, 1)ps Us (20)

2.3.3 FRFAIHALALIE
RS AR BRI X 8 1 iz 3 TE X A BE AR
AR BT R B 1A T T gk 5L A A
YRR H B A B e M
IR AR
Fo(t) = [(@(2) - q,(x,00)dx (21)
Kp, @ () WEASPREL, BEMIRS T RE N -
y(x,t) = 0.005sin(2mft) ; nism(m- ﬁ)
(22)
Kl 8 J/n T iz s BEMRAE 5 ) LR B 14
o I —PrESAE M BENR iz 3B, g, =12,
WK f =140 Hz, TR T80 RIS HECH 10, BE
MR B0 1200 K, Z5 58300 fC ALY il
MpgE e w T X 45585 CFD JE&E % it 5
SR IR T S FABEAL R AR E W R )
T uERYE. B 8 AR s T SCHR [ 11 ] FiA 3¢
ERAEE W = is EHe R4 R, 5 CFD 3
EFWITENS R B ES , B—RERT &
S AR A T AR AR Y R
R B BE IR ) e K TG R AR AR R 12,
TACPRBIAYPRRR A 25 (6], i A AR B AT ] DAk Ay
WERfAEE &) SCR B I il . X B Kriging £5
T Ay ORI (B B 78, HLAT — 2 1 iz fb g



oy 189, 4  Kriging “{ 3 J1/ A CBAE L 15 AT 47 BEAR IR Sl 3 10 A - 145

Z 50
LLO
T - O SCREZEHIG
— TREEIES
1ol — AR
A CFDBRAHE
0 2 4 6 8
X 1073
mfIH /s

K8 malEEMRAEEH F.

Fig.8 Unsteady F, of moving panel
J1o B9 R T = AN [R) BEAR 4= 0 iR {5 0T b 1Y)
ARFEA Y T 45 SR CFD AR Ew ) LA E)
TR, n, =15 BHR 2 & KR 13.4% , 1M
7, =20 BFACHAE A 0 152 25 e KoKy 17. 2% ,
I SHH R 2 ARE ) 2 TR S B
B AT 7 2 8505 () R Al b 35 4 4 e v Y L, H
EAEWUKRZ,

200 || An=12 RIBBTM —-= 7-12, CFDBZ ]
Q

0 715, fREHETHN — — 7=15, CFDBZSH 5|
100 1O 7=20, FRELBAITHIY =--ee - 7=20, CFDgZs I+

0 _f
A - K
M ;L :A-A-A--ﬁ—x‘:é f

> Q, -8
M
= 00 | “Q L. R

Bk /s X1

K9 AIRR SR (AR CFD JEEH F 4520
Fig.9 Surrogate model and CFD unsteady F, results under
different vibration amplitudes

THRCR T, F = Birid 22308 DL KR8
DI A, T+ 5 Uk T 50 BT I R X 7E 0.5 s
AN o T CFD J7 kgt A7k w6 s Jrith &
AOFEITTE 8 h LA b, S AR R Ay 6 J7 4% (CPU .
Gold 6152 2. 10 GHz) , PR AFREE AL I Al T
CFD 773k B AseRfem 1 4 MUY
2.4 ET Kriging SRR EKRE
2.4.1 R TFHMA IS0 A HARIEBA RSN

AR SCAE ST RSN PR S TR o, st % 2
1% (genetic algorithm, GA ) , DI RURT B2 P41 45 A
ARAL FAR, X Kriging SRS (AR SE SR 0 9647
T,

S5 R TSRS, B 1200
FEABE L S PR R A PP F bR . 1h

&5 AL, B FH AL S VE T, ennse L+ Lo U
/N »Pr, <10% R a*ﬁﬁﬁgﬁgﬁ%él“?%ﬂo

x5 BEEZEALITENEIRITMNISIR
Tab.5 Model evaluation metrics before and after

optimization by genetic algorithm

%
PN R AR HRfHH GA il GA
exsk 2.94 1.87
L, 9.26 6. 06
Ly as 47. 41 15.70
Pr, <10% 69. 00 87. 67

2.4.2 A FHBREBERKEIFE

6y T AN R REAS M B i s 1 X
S BRI ARG BE PR 45 b, 45 th SCHR[ 11 ]
R SRR S %, i ak 6 Al
2 000 712 400 ASAEA A3 AT 21 Yl 7 AR AR
R PP R bR 20 TSGR 1L ] o

®6 ARBAHENSIHAREERITNIER
Tab.6 Evaluation metrics of aerothermal surrogate

models with different sample sizes
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Tab.7  Aerothermoelastic calculation conditions of TPS panel

T

1 2 3 4

L TR DAL 10 8 8 11.5
PAESITAREREA R PR R FER
PR GRS R 10 8 1.5 11.5

3.1 #HJEM

THL2 AL 60 5,100 s i1 180 s B ZI3H
FES T, BE AR AR B s ma 1 R 234 S B it
Bl 12(a) J&7s 7 60 s I ZIR 3 T, BE AR ) 07 N
i, B 12(b) JBR T 05,60 5,100 s F1 180 s i}
ZNRSEG T BEAR A e 7 i S0k B RS E I, BE
WAL AR Z, vl WAE MM AR E S Z )5, BEAR
FEET RAR . B3 JBIR T AR 3 BE AR
Y )5 o A B IR S F g e i b 2 e
IR T 53 AT o O s I 2N Z5AE A THIR, $A0 J1 h
0, B B3 BE SR IR 2R T , IR S N
JE 8y, P M T 5 | S () PN, 7 K, 0 S B
HIEDRE 2SR NS

0
= -05
B

-1.0 L

0 1 2 3 4 5
t/s
(a) BFEE
(a) Time history diagram
057
0 ] 7
AN K
—05 NN /1
AN S
\\ . e
\ \“\ /' /
g 713 s R
3 S S’ ’
A ’
N
L a
-2.5 S N ,
~ 7’
S
357 0s 60s ===-100s = = 180s
0 0.2 04 0.6 0.8 1.0
x/a

(b) Jm M BEAR
(b) Displacement of buckled panel

P12 i R R P R N 22 BE AR (02 7%
Fig. 12 Buckling time history & panel displacement at
response stabilization
3.2 RRINIEF
B3 FEAR 4R 300 s 2GRS T, BEAR
PSR N O R iz s, 18] 14 R



oy 189, 4  Kriging “{ 3 J1/ A CBAE L 15 AT 47 BEAR IR Sl 3 10 A $ 147 -

i
55 1 1
0.10 T e
R I %,
P B i N e,
" .
< 005 Kt 0s —====60s T
A S
& — = 1005 e 1805 %
0 AN
0 0.2 04 0.6 0.8 1.0
x/a
(a) PIEAE
(a) Thermal deformation

S e e e e e T == == = === === 1.001

51 0s JII60s ZIZI100s Z Z 180s
iy - T p = o 1000
R A Y ot il v I
> |7 L St . >

o b 1 0.999

s
0 ‘ ' , 0.998
0 0.2 0.4 0.6 0.8 1.0

x/a
(b) RIS
(b) Dimensionless stress of the neutral layer
B 13 BIBAS MR TC i A )
Fig. 13 Thermal deformation and dimensionless

stress of the neutral layer

BT 7 Fof A PR P T P o il BR3P a2 B
FelE o, BE AR IR Sh 12 3052 B — 7 A9 ) S0 v LA
P 14 () HORER i 7 2R 6T T OR LR
7o FHRLARF- P U B B AT AR AP T 2K

5
=
§ 0
=5 i
0 1 2 3 350 3.75 4
t/s
(a) MR
(a) Time history diagram
ar
9t
£
=
1 0
"
-2
_4 L L 1 J
=5.0 -25 0 25 5.0

w/h
(b) A1 &
(b) Phase plane diagram

Bl 14 tRBR¥R izl 1
Fig. 14 Limit cycle oscillation response diagram
3.3 ERBE
TOL3 R 100 s 20T T, BEAR

Bk Y X0 e g, B 1S JEoR
T BEAS R 7 S R PO P RIAR - 1A A% S
1B SR A b BEAR R ST 3 B 1 )
PERLEE, 18] 15 (a) FPIRBEREAT T HOKR, (H HERRBR 3
18 SRS TR A% o BT ] h 25 I
BOA A R 10. 22 Hz 20 Hz . 30. 22 Hz #1140 Hz, Ny
123 4 B0 R HF WA 2 A B 2k
e AR o

2
s o
=
-2
0 1 2 3 350 3.75 4
t/s
(a) MWFFEE
(a) Time history diagram
15
1.0 I »
=
=
0.5
. U. |-
0 50 100 150
f/Hz
(b) B
(b) Spectrum diagram
1571
1.0
05
£
=~ 0
=
"
—0.5
—-1.0}
-15 :
-3 -2 -1 0 1 2 3
w/h
(c) A1

(¢) Phase plane diagram

K15 A iz sl R P

Fig. 15  Period-doubling motion response diagram
3.4 HERHIED

THL A FEARAR 300 s 2R T, BEAR
PR B R SO E SR Wiz s, 18] 16 JE s
TRER A AR SCEE RIA o HE R WIS Bl 5 A A i
A, A By 1 B — 7 A9 A U (e R 1 o A
TR S AEAF 3 1] v 45 i W f 7 14 3R 22 [ A
FAAEREAG RO, AR T 52 22 25 P 2k S i
R



- 148 - e PN

548 &

S o0
=5
0 1 2 3 350 3.75 4
t/s
(a) HIFEHA
(a) Time history diagram
4
=
T 2
0
0 50 100 150
f/Hz
(b) Hii& A
(b) Spectrum diagram
5 ,
» 0F
E
=
i
=
_5 L

w/h

(¢) HFim
(¢) Phase plane diagram

116 S5 1332 Bl 1 (5]

Fig. 16  Quasi-periodic motion response diagram
3.5 RifiEsh

T 1 P ZEAER100 s BFZITE RS, BEAR A
Sahiptem R RE sh . B 17 JRaR T RERR
M 1o AFSE LS S o TR sl 1o v, IR R B
RENRIR S LR S ] h 2 A (A —
IR NS a3, AT I 2R A3 AT %L
3.6 RS

8 JB/R TA SO L0 R gl stk g
MIE, BRFE 8 HrmsEGIs, irf Lo gkt 5
0 s B Z AL B 3 g 1o 235 SR B8 Ry g e B X
Ul RE A P I v i 5 | P BN ) R eI A
SEIBH TP ERENR I S M R AR R R . AL,
B FIT IR ) R E S ZOR R SR 5, BEAR AR
Sy R T 3 A L PR 7 B A2 2 P iy
V1) R JRERARE o A {75 T, e R Al A i
SRR, T TR i O MR K

=
B
(a) WA
(a) Time history diagram
1.0

|
< o5

tl‘ | :‘

0 \WMMQM—
0 20 40 60 80

f/Hz

(b) ik
(b) Spectrum diagram

=50 =25 0 2.5 5.0

w/h
(c) AP

(¢) Phase plane diagram

B 17 RS Sl ]
Fig. 17 Chaotic motion response diagram
e 8 LBl 4 AXF T 00 3, IR R BN
W BRFR32 3y B0 % o7 1 38 B S B 20 B ST . 3
Ul W UL E R SORR w5 , A7 3 B Al Ol T v i e
JAHAAZ Bl AT W B P12 21 45 2k A i) 2 $E i .
/(U R W 1 = S R 1 2 A AN | £
A A 17 S X B Uk 7 ) 2038 R AR Ak i

®8 FLTRASFEEMAR K
Tab.8 Response forms of aerothermoelastic under

various cases
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