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Data-driven generalizable aerodynamic analysis model for
fast shape design optimization

LI Jichao'**, CHEN Yan'*, NIAN Chenchen'*, CAI Jinsheng'’
(1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. National Key Laboratory of Aircraft Configuration Design, Xi'an 710072, China)

Abstract: Data-driven generalizable aerodynamic analysis models demonstrate strong capability in performing fast aerodynamic analyses under
arbitrary aerodynamic conditions, which provides an emerging technology for intelligent aircraft design optimization. However, training generalizable
analysis models for complex aerodynamic shapes requires a large amount of aerodynamic data due to the curse of dimensionality issue, which
impedes practical applications of this approach in the industry. Two tasks related to data-driven rapid optimization of airfoil and wing shapes were
focused. By providing a proper representation of the aerodynamic shape design space, it effectively avoided the adverse effects of the “curse of
dimensionality”. Demonstrations with approximately 100 000-scale computational fluid dynamics training datasets were provided, which enabled
fast aerodynamic shape optimization of airfoils and wings.
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