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摘　要：数据驱动的通用气动分析模型可在任意工况下对任意外形开展实时可信的气动分析，是实现飞
行器极速智能优化设计的关键技术。然而受“维数灾难”的影响，构建复杂气动外形强泛化分析模型的训练

数据需求量极高，严重限制了其发展应用。本研究主要针对数据驱动翼型与机翼极速优化设计方面的两项

工作，通过对气动外形设计空间的合理表征，避开了“维数灾难”的不利影响，基于十万量级计算流体动力学

训练数据构建了具备一定通用性的数据驱动气动分析模型，实现了相关气动外形的极速优化设计。
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　　飞机初步设计阶段需要开展气动外形极速优
化，以快速考察不同约束和设计指标对性能的影

响。然而，常规气动评估方法无法同时兼顾精度

和效率，无法满足设计人员对高效可信气动评估

与极速优化设计手段的工程需求。随着人工智能

（ａｒｔｉｆｉｃｉａｌｉｎｔｅｌｌｉｇｅｎｃｅ，ＡＩ）技术的发展，深度学习
模型与气动优化方法的交叉融合已成为飞行器设

计领域的一个重要研究方向［１－３］。中国空气动力

学会理事长唐志共院士指出，“在飞行器气动外

形设计上，传统方法强烈依靠专家经验，仅能针对

特性构形，进行迭代优化设计，存在初始方案提出

难、参数化设计局限多及气动设计耗时长等问题。

ＡＩ的出现为气动设计带来了新的机遇，通过 ＡＩ
模型的高效、多样化并行能力，为气动外形方案设

计提供了快速多样化灵活生成可能。”发展强泛

化高精度的通用气动分析模型，实现任意气动外

形在任意工况下的极速可信气动分析，是通向气

动外形极速优化设计的关键技术之一［４］，不仅在

提升飞行器气动设计效率和鲁棒性、缩短高成本

风洞实验测试周期、实现气动／结构／控制等多学
科高效协同设计方面具有重大现实意义，还对推

动ＡＩ与航空航天各行业科技创新与交叉融合、提
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升国家核心竞争力具有战略价值。其中一个可行

方案是通过ＡＩ等方法进一步提高几何参数化的
表征效率，另一个方案则是增强数据驱动气动分

析模型的性能。

为了更进一步增强优化的效率和速度，就必

须对现有参数化方法进行进一步的革新，降低它

们的维度，提高它们的几何表征效率。模态参数

化方法通过有效耦合设计变量实现降维。

Ｒｏｂｉｎｓｏｎ和Ｋｅａｎｅ［５］验证指出，仅需少量模态即
可完成二维翼型的参数化表征。Ｌｉ等［６］和 Ａｌｌｅｎ
等［７］的研究表明，基于主成分分析（ｐｒｉｎｃｉｐａｌ
ｃｏｍｐｏｎｅｎｔｓａｎａｌｙｓｉｓ，ＰＣＡ）的翼型／机翼模态在气
动外形优化中展现出卓越性能，其表现优于类别

形状变换（ｃｌａｓｓｓｈａｐｅｔｒａｎｓｆｏｒｍａｔｉｏｎ，ＣＳＴ）参数化
方法和 ＨｉｃｋｓＨｅｎｎｅ型函数等传统参数化方法。
与 ＰＣＡ模态不同，主动子空间方法 （ａｃｔｉｖｅ
ｓｕｂｓｐａｃｅｍｅｔｈｏｄ，ＡＳＭ）通过分析设计变量的输入
空间，识别出对气动输出（如升力、阻力）具有关

键影响的子空间方向，同时剔除次要方向实现降

维。Ｌｉ等［８］将 ＡＳＭ与代理模型优化方法结合，
在机翼气动优化中取得了比基于自由变形（ｆｒｅｅ
ｆｏｒｍｄｅｆｏｒｍａｔｉｏｎ，ＦＦＤ）技术的代理模型优化更显
著的效果。

随着流动大数据的涌现和数据科学技术的快

速发展，基于数据驱动的建模方法正在重塑流体

动力学的研究格局。目前常用的降维数据驱动方

法主 要 有 本 征 正 交 分 解 （ｐｒｏｐｅｒｏｒｔｈｏｇｏｎａｌ
ｄｅｃｏｍｐｏｓｉｔｉｏｎ，ＰＯＤ）方法。ＰＯＤ是一种从流场测
量数据中提取基函数进行模态分解的方法［９］，在

获得高维非线性流动系统的降阶模型方向［１０］和

流场预测方向上表现良好［１１］。该方法的进一步

发 展 即 为 奇 异 值 分 解 （ｓｉｎｇｕｌａｒ ｖａｌｕｅ
ｄｅｃｏｍｐｏｓｉｔｉｏｎ，ＳＶＤ）方法，其在降维与模态提取
领域使用更加普遍。

目前学界在基于 ＡＩ的数据驱动气动分析模
型构建方面取得了初步进展，但整体研究仍处于

早期阶段，模型在泛化能力等方面仍较为局限。

本文介绍了在翼型与机翼数据驱动气动分析建模

与极速优化设计方面的初步研究工作，相关内容

于２０１６年至２０２２年完成［１２－１４］，作为一个侧影展

现了机器学习技术在气动设计领域逐步得到深入

应用的过程。

１　数据驱动的翼型气动分析与极速优化

飞机机翼、安定面和直升机旋翼叶片等重要

部件都是由翼型沿展向分布构成，因此翼型设计

对于飞行器性能至关重要。本节内容面向翼型极

速优化设计需求，提出了一种数据驱动的翼型气

动力评估方法，实现了任意翼型亚跨声速气动力

的快速可信分析，并结合梯度优化算法开发了翼

型极速优化设计方法。有关本节的详细研究内容

可参见相关论文［１２－１３］。

１．１　翼型模态参数化

高效的气动外形参数化方法对于提升数据驱

动气动力模型构建效率至关重要。为此，发展了

一种基于线性正交模态的翼型参数化方法（以下

简称翼型模态）。Ｍａｓｔｅｒｓ等［１５］采用 ＳＶＤ方法从
ＵＩＵＣ（ＵｎｉｖｅｒｓｉｔｙｏｆＩｌｌｉｎｏｉｓａｔＵｒｂａｎａＣｈａｍｐａｉｇｎ）
翼型库提取了正交翼型模态，并开展了两千余翼

型的重构复原实验，表明基于正交翼型模态的参

数化方法在外形表征效率上显著高于ＣＳＴ、Ｈｉｃｋｓ
Ｈｅｎｎｅ等常规方法。

ＳＶＤ方法将一个高维矩阵分解成三个部分：
左特征向量矩阵、特征值矩阵和右特征向量矩阵，

具体形式如下：

Ａｍ×ｎ＝Ｕｍ×ｍΣｍ×ｎＶ
Ｔ
ｎ×ｎ （１）

式中，特征值矩阵 Σｍ×ｎ是一个对角矩阵，其对角
线上的元素值反映了原始数据的主要特征。通过

保留占主导地位的特征值及其对应的左右奇异向

量，可以将原始数据映射到低维空间中。

图１展示了从 ＵＩＵＣ翼型库中提取的翼型
模态，通常 １０多个模态即可高保真地表征翼
型。除按照整条翼型曲线描述翼型外形之外，

还可以通过弯度和厚度曲线导出弯度和厚度模

态表示翼型。翼型弯度 －厚度模态表征方法［１２］

与翼型模态的几何控制效率基本一致，尤其是

模态个数大于１０的情况下。然而，在翼型设计
中弯度 －厚度模态更为直观和有效。如图１所
示，每个翼型模态都占有弯度和厚度信息，很难

直接根据厚度约束选择合适的模态边界，而弯

度 －厚度模态则无须面对该问题，设计空间可
以更紧致。最终采用了弯度 －厚度模态表征翼
型外形。

图１　翼型模态
Ｆｉｇ．１　Ａｉｒｆｏｉｌｓｈａｐｅｍｏｄｅｓ

·１６１·
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跨声速翼型（如超临界翼型）具有与亚声速

翼型不同的几何特征，因此采用专门的翼型模态

分别对亚跨声速翼型进行参数化更为高效。

ＵＩＵＣ翼型多数为亚声速翼型，因此可以基于
ＵＩＵＣ翼型数据库提取亚声速翼型模态。ＮＡＳＡ
ＳＣ（２）系列包含２１种不同厚度和升力特性的超
临界翼型，可以基于该系列翼型提取跨声速翼型

模态。亚声速模态和跨声速模态分别用于亚声速

翼型和跨声速翼型的几何外形控制。

１．２　翼型气动数据采样与数据驱动建模

气动数据库是建立数据驱动模型（ｄａｔａｂａｓｅｄ
ｍｏｄｅｌ，ＤＭ）的根本。分别通过采用计算流体动
力学（ｃｏｍｐｕｔａｔｉｏｎａｌｆｌｕｉｄｄｙｎａｍｉｃｓ，ＣＦＤ）计算构建
亚跨声速气动力数据库：采用 Ｐｙｔｈｏｎ脚本自动生
成翼型样本，采用ＰｙＨｙｐ［１６］自动生成每个采样翼
型的ＣＦＤ网格，采用 ＡＤｆｌｏｗ［１７］进行 ＣＦＤ数值模
拟。其中，ＣＦＤ求解器采用雷诺平均纳维 －斯
托克斯方程 ＳｐａｌａｒｔＡｌｌｍａｒａｓ湍流模型，ＣＦＤ收
敛指标为能量方程残差比自由来流下降 １５个
量级。对于每一个采样翼型，自动记录其升力、

阻力和力矩系数，并通过伴随程序计算并保存

其对输入变量的导数信息。

在亚声速数据库中，翼型几何外形由１４个亚
声速模态表示，攻角范围为 －２°到６°，马赫数为
０３到０６。考虑巡航高度１万ｍ的标准大气，根
据马赫数变化，雷诺数在 ２５×１０６到 ５１×１０６

范围内变化。在跨声速数据库中，翼型由８个跨
声速模态表示，攻角范围为 －１５°到４５°，马赫
数为０６５到０８５，雷诺数为５５×１０６到７２×
１０６。流动变量选取范围的确定标准为满足飞机
典型巡航需求。需要注意的是，不论是亚声速

还是跨声速，其数据库采样针对的均是小攻角

状态。即对于大形变翼型可能出现的非定常涡

等非定常效应来说，数据驱动模型尚未考虑相

关情况。

为提高数据驱动模型的构建效率，使用基于

流动变量和占优翼型模态的方法将采样空间划分

为多个子区域，在每个子区域内采用拉丁超立方

抽样（Ｌａｔｉｎｈｙｐｅｒｃｕｂｅｓａｍｐｌｉｎｇ，ＬＨＳ）方法生成一
定量样本，并以增量ＬＨＳ的方式生成新样本作为
验证数据。实际构建过程中选择攻角和马赫数作

为流动变量。占优翼型模态的选取是依据 ＳＶＤ
后所得的各模态能量分布占比（即相应特征值分

布）择优选取，能量分布越高意味着模态的相关

性越强。子区域划分成功将对应的高阶模态边界

进行了分解，通过子区域范围反向限制高阶模态

边界。这样相比直接在全局进行拉丁超立方抽

样，获取的空间更加紧致，模型构建效率自然

更高。

由于翼型高阶模态的边界随占优模态的变化

而不同，在采样过程中首先生成高阶模态的归一

化系数，然后根据其上下边界计算其真实的模态

系数。完成训练样本和验证样本的ＣＦＤ模拟后，
在每个小区域内开展模型精度验证，如精度不满

足要求，则将验证样本添加至训练样本库，继续以

增量ＬＨＳ方法生成新的验证样本库，并重复以上
操作。

最终构建了一个包含８１０００个翼型样本的
亚声速数据库和一个包含３２４００个翼型样本的
跨声速数据库，这些样本分别由１６个和１０个设
计变量生成。一般来讲，基于ＣＦＤ的梯度优化需
要５０到１００次 ＣＦＤ和伴随程序的调用，因此构
建这两个数据库的花费大概是翼型优化花费的

１０００到２０００倍。后续验证可以说明，一旦数据
驱动模型构建完成，基于该模型的外形优化设计

可在１ｓ以内完成。
数据驱动模型为耗时的高精度气动力评估方

法提供一个快速的替代方法。Ｋｒｉｇｉｎｇ模型［１８］是

其中比较著名的一个，其训练是通过求解一个多

极值问题，即最大化似然函数以确定最合适的超

参数。这个过程需要反复对其中的相关矩阵进行

求逆操作。而相关矩阵的规模会随着样本量或输

入维度的增加而增大。当样本量或问题维度较高

时，矩阵求逆变得更为耗时，因而训练模型变得较

为困难。为了减轻这个问题，可以在模型训练中

采用偏最小二乘（ｐａｒｔｉｃａｌｌｅａｓｔｓｑｕａｒｅｓ，ＰＬＳ）方法
对问题进行简化处理，并利用梯度信息以提高模

型精度，对应的代理模型称为基于偏最小二乘的

梯度 增 强 克 里 金 方 法［１９］ （ｇｒａｄｉｅｎｔｅｎｈａｎｃｅｄ
Ｋｒｉｇｉｎｇｗｉｔｈｐａｒｔｉａｌｌｅａｓｔｓｑｕａｒｅｓ，ＧＥＫＰＬＳ）。ＧＥ
ＫＰＬＳ方法可将超参数个数从问题维度降至１～
３，可显著减少模型训练时间。但样本量过大的时
候仍会受矩阵病态等问题的影响，因此单独采用

一个ＧＥＫＰＬＳ模型来处理一个包含十几万样本
的数据库仍不现实。

而在高维代理模型领域，常用的方法主要有

高 维 模 型 表 示 （ｈｉｇｈｄｉｍｅｎｓｉｏｎａｌ ｍｏｄｅｌ
ｒｅｐｒｅｓｅｎｔａｔｉｏｎ，ＨＤＭＲ）、降维代理建模（ｄｉｍｅｎｓｉｏｎ
ｒｅｄｕｃｔｉｏｎｓｕｒｒｏｇａｔｅｍｏｄｅｌ，ＤＲＳＭ）、深度神经网络
（ｄｅｅｐｎｅｕｒａｌｎｅｔｗｏｒｋ，ＤＮＮ）。其中ＨＤＭＲ方法是
最早被用于高维问题的高维代理模型［２０］。

ＨＤＭＲ与代理模型相结合，如基于克里金的高维
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模型表示（ＫｒｉｇｉｎｇｂａｓｅｄＨＤＭＲ，ＫｒｉｇｉｎｇＨＤＭＲ）
方法、基于径向基函数的高维模型表示（ｒａｄｉａｌ
ｂａｓｉｓｆｕｎｃｔｉｏｎｂａｓｅｄＨＤＭＲ，ＲＢＦＨＤＭＲ）、基于支
持向量回归的高维模型表示（ｓｕｐｐｏｒｔｖｅｃｔｏｒ
ｒｅｇｒｅｓｓｉｏｎｂａｓｅｄＨＤＭＲ，ＳＶＲＨＤＭＲ）等方法，虽
然获得了对高维输出响应的近似，但随着设计变

量个数的增多，用于近似ＨＤＭＲ的低维代理模型
个数也在快速增多［２１－２２］，因此，ＨＤＭＲ仍是一种
昂贵的高维代理建模途径。

为解决上述问题，需要通过进一步采用基于

机器学习的多专家模型［２３］（ｍｉｘｔｕｒｅｏｆｅｘｐｅｒｔｓ，
ＭＥ）构造数据驱动模型。ＭＥ是一种组合不同数
据驱动模型的方法，能有效处理大样本、强非线性

问题。ＭＥ基于“分而治之”的思想将原问题划分
为不同子区域，在每个子区域内训练一个代理模

型（专家）。这种策略极大地降低了单个模型中

的样本数量，减缓了模型训练中相关矩阵病态的

现象。首先根据流动参数将整个设计空间简单均

匀划分为较小区域，然后在每一个小区域内采用

聚类算法对几何设计空间进行自动划分。根据流

动参数划分的小区域在亚声速和跨声速模型中分

别为９个和１２个。在每个小区域内根据 ＭＥ的
表现选用最佳的聚类个数。最终的亚声速和跨声

速模型分别由１０８和７２个簇类组成，在每个簇类
层面基于ＧＥＫＰＬＳ构建气动力子模型，并基于概
率密度函数将子模型融合为统一的数据驱动预测

模型。

１．３　数据驱动翼型气动分析模型的精度验证

图２展示了亚声速数据驱动模型对２７４１个
随机翼型的气动预测误差。左图中的散点图和箱

线图显示了三个气动系数的绝对误差分布（箱线

图正中的白线为中位数）。其中，８６６％的升力
系数Ｃｌ误差低于１匡（０００１），９９６％的阻力系
数Ｃｄ和 ６３８％的力矩系数 Ｃｍ 误差低于 １匡
（００００１）。图中显示的所有系数相对误差均小
于０３％，表明模型在亚声速区具有较高预测
精度。

图２　亚声速数据驱动模型的误差分析
Ｆｉｇ．２　Ｐｒｅｄｉｃｔｉｏｎｅｒｒｏｒｓｏｆｔｈｅｓｕｂｓｏｎｉｃ

ｄａｔａｄｒｉｖｅｎｍｏｄｅｌ

图３为跨声速数据驱动模型在９８９个测试翼
型上的误差表现。阻力系数 ７７％的误差小于
１匡，最大为２３匡；升力系数中有１４个翼型误差
超过１０匡，但多数低于１匡；力矩系数有８０３％
的误差低于１０匡。三项系数的相对误差均低于
１％。相比亚声速模型，升力、阻力和力矩系数的
平均绝对误差分别增长３２、８９、６．７倍，相对误
差增长１７８、２２３、５０３倍，源于跨声速区复杂流
动及激波导致的强非线性，尤其对阻力与力矩影

响更显著。尽管如此，跨声速模型总体精度仍处

于较高水平。

图３　跨声速数据驱动模型的误差分析
Ｆｉｇ．３　Ｐｒｅｄｉｃｔｉｏｎｅｒｒｏｒｓｏｆｔｈｅｔｒａｎｓｏｎｉｃ

ｄａｔａｄｒｉｖｅｎｍｏｄｅｌ

进一步对 ３个亚声速翼型（ＮＡＣＡ４４１２、
ＮＬＦ１０１５、ＣｌａｒｋＹ）和３个跨声速翼型（ＳＣ２－０４０４、
ＳＣ２－０６０６、ＳＣ２－０７１０）进行攻角范围内的验证
（图４～９）。亚声速模型在马赫数Ｍａ＝０４５下的
升力、阻力、力矩平均绝对误差为３４匡、０３匡、
９９匡；跨声速模型在 Ｍａ＝０７３下的升力、阻力、
力矩平均绝对误差为４０匡、４５匡、１４９匡。亚
声速最大误差（２３匡）出现在ＮＬＦ１０１５翼型攻角

（ａ）升力系数随攻角变化对比
（ａ）Ｃｌｖｓａｎｇｌｅｏｆａｔｔａｃｋ

（ｂ）阻力系数随攻角变化对比
（ｂ）Ｃｄｖｓａｎｇｌｅｏｆａｔｔａｃｋ
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（ｃ）力矩系数随攻角变化对比
（ｃ）Ｃｍｖｓａｎｇｌｅｏｆａｔｔａｃｋ

图４　亚声速ＮＡＣＡ４４１２翼型数据驱动模型与ＣＦＤ对比
Ｆｉｇ．４　Ｃｏｍｐａｒｉｓｏｎｏｆｓｕｂｓｏｎｉｃｄａｔａｄｒｉｖｅｎｍｏｄｅｌａｎｄ

ＣＦＤｆｏｒＮＡＣＡ４４１２

（ａ）升力系数随攻角变化对比
（ａ）Ｃｌｖｓａｎｇｌｅｏｆａｔｔａｃｋ

（ｂ）阻力系数随攻角变化对比
（ｂ）Ｃｄｖｓａｎｇｌｅｏｆａｔｔａｃｋ

（ｃ）力矩系数随攻角变化对比
（ｃ）Ｃｍｖｓａｎｇｌｅｏｆａｔｔａｃｋ

图５　亚声速ＮＬＦ１０１５翼型数据驱动模型与ＣＦＤ对比
Ｆｉｇ．５　Ｃｏｍｐａｒｉｓｏｎｏｆｓｕｂｓｏｎｉｃｄａｔａｄｒｉｖｅｎｍｏｄｅｌａｎｄ

ＣＦＤｆｏｒＮＬＦ１０１５

为３５°处，因ＭＥ将攻角划分为［－２０°，０６７°］、
［０６７°，３３３°］、［３３３°，６０°］三段，误差常出
现在分段交界。跨声速模型亦类似。总体看，数

据驱动模型在全攻角范围内仍保持良好精度。

（ａ）升力系数随攻角变化对比
（ａ）Ｃｌｖｓａｎｇｌｅｏｆａｔｔａｃｋ

（ｂ）阻力系数随攻角变化对比
（ｂ）Ｃｄｖｓａｎｇｌｅｏｆａｔｔａｃｋ

（ｃ）力矩系数随攻角变化对比
（ｃ）Ｃｍｖｓａｎｇｌｅｏｆａｔｔａｃｋ

图６　亚声速ＣｌａｒｋＹ翼型数据驱动模型与ＣＦＤ对比
Ｆｉｇ．６　Ｃｏｍｐａｒｉｓｏｎｏｆｓｕｂｓｏｎｉｃｄａｔａｄｒｉｖｅｎｍｏｄｅｌａｎｄ

ＣＦＤｆｏｒＣｌａｒｋＹ

（ａ）升力系数随攻角变化对比
（ａ）Ｃｌｖｓａｎｇｌｅｏｆａｔｔａｃｋ

（ｂ）阻力系数随攻角变化对比
（ｂ）Ｃｄｖｓａｎｇｌｅｏｆａｔｔａｃｋ
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（ｃ）力矩系数随攻角变化对比
（ｃ）Ｃｍｖｓａｎｇｌｅｏｆａｔｔａｃｋ

图７　跨声速ＳＣ２－０４０４翼型数据驱动模型
与ＣＦＤ对比

Ｆｉｇ．７　Ｃｏｍｐａｒｉｓｏｎｏｆｔｒａｎｓｏｎｉｃｄａｔａｄｒｉｖｅｎｍｏｄｅｌａｎｄ
ＣＦＤｆｏｒＳＣ２－０４０４

（ａ）升力系数随攻角变化对比
（ａ）Ｃｌｖｓａｎｇｌｅｏｆａｔｔａｃｋ

（ｂ）阻力系数随攻角变化对比
（ｂ）Ｃｄｖｓａｎｇｌｅｏｆａｔｔａｃｋ

（ｃ）力矩系数随攻角变化对比
（ｃ）Ｃｍｖｓａｎｇｌｅｏｆａｔｔａｃｋ

图８　跨声速ＳＣ２－０６０６翼型数据驱动模型与ＣＦＤ对比
Ｆｉｇ．８　Ｃｏｍｐａｒｉｓｏｎｏｆｔｒａｎｓｏｎｉｃｄａｔａｄｒｉｖｅｎｍｏｄｅｌａｎｄ

ＣＦＤｆｏｒＳＣ２－０６０６

１．４　基于数据驱动模型的翼型极速优化设计

非梯度优化算法如遗传算法收敛较慢，对于

翼型优化需要万次以上气动分析，即便数据驱动

（ａ）升力系数随攻角变化对比
（ａ）Ｃｌｖｓａｎｇｌｅｏｆａｔｔａｃｋ

（ｂ）阻力系数随攻角变化对比
（ｂ）Ｃｄｖｓａｎｇｌｅｏｆａｔｔａｃｋ

（ｃ）力矩系数随攻角变化对比
（ｃ）Ｃｍｖｓａｎｇｌｅｏｆａｔｔａｃｋ

图９　跨声速ＳＣ２－０７１０翼型数据驱动模型
与ＣＦＤ对比

Ｆｉｇ．９　Ｃｏｍｐａｒｉｓｏｎｏｆｔｒａｎｓｏｎｉｃｄａｔａｄｒｉｖｅｎ
ｍｏｄｅｌａｎｄＣＦＤｆｏｒＳＣ２－０７１０

模型可以进行快速气动分析，其优化效率仍不高，

无法满足极速气动优化需求。而梯度优化算法在

翼型优化中一般只需要调用１００次左右气动分
析，尽管多极值问题使得梯度气动优化问题受到

一定质疑，但多数文献说明翼型优化是一个单极

值问题［２４－２５］。因此采用梯度算法建立翼型极速

优化框架，由 ＧＥＫＰＬＳ内置函数提供气动力梯
度。在基于数据驱动优化过程中，气动分析单纯

依赖数据驱动模型而不再调用任何ＣＦＤ程序。
在马赫数０４５的亚声速区进行翼型优化设

计，目标为最小化阻力系数，设计变量包括１４个
弯度－厚度模态与攻角，约束条件为升力系数和
５个翼型厚度限制（ｘ／ｃ为 ０１，０３，０５，０７，
０９）。厚度下限基于 ＮＡＣＡ００１２设定，优化翼型
在各位置的厚度不小于其９０％。为验证该优化
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问题是否为单极值，从 ５０个 Ｓｏｂｏｌ采样点出发
进行梯度优化，并比较其升力约束 Ｃｃｏｎｌ 、阻力目
标 Ｃｏｐｔｄ 与设计变量 ａｃｔ的收敛过程，结果如图１０
所示。图中红线表示５０次优化的平均值，蓝线
表示最大和最小值范围。结果显示，阻力系数

差异在１０－１２量级，升力系数差异在１０－１０量级，
表明所有初始外形均收敛至同一最优解，验证

了该问题具有单极值性。

（ａ）基于ＣＦＤ的翼型优化设计
（ａ）ＡｉｒｆｏｉｌｏｐｔｉｍｉｚａｔｉｏｎｄｅｓｉｇｎｂａｓｅｄｏｎＣＦＤ

（ｂ）数据驱动翼型优化设计
（ｂ）Ｄａｔａｄｒｉｖｅｎａｉｒｆｏｉｌｏｐｔｉｍｉｚａｔｉｏｎｄｅｓｉｇｎ

图１０　５０个出发点的梯度优化收敛历史
Ｆｉｇ．１０　Ｃｏｎｖｅｒｇｅｎｃｅｈｉｓｔｏｒｉｅｓｏｆｇｒａｄｉｅｎｔｂａｓｅｄ
ｏｐｔｉｍｉｚａｔｉｏｎｓｔａｒｔｉｎｇｆｒｏｍ５０ｄｉｆｆｅｒｅｎｔａｉｒｆｏｉｌｓ

图１１为数据驱动优化和ＣＦＤ优化的结果对

比，Ｏｐｔ为优化后的结果，衬底的灰色阴影是通过
绘制设计空间中的１０００个随机翼型生成，用来
直观展示设计空间大小。对于升力约束 Ｃｌ＝
０５，两种优化方法的阻力系数差别仅为００１匡。
对于Ｃｌ＝０７５的算例，如图１２所示，两者的阻力
系数差别仅为００１匡，可见数据驱动的快速气动
分析模型已足够精确，且数据驱动翼型优化都在

１ｓ以内完成，可用于亚声速区翼型的极速优化
设计。

图１１　亚声速数据驱动模型与ＣＦＤ优化对比（Ｃｌ＝０．５）

Ｆｉｇ．１１　Ｏｐｔｉｍｉｚａｔｉｏｎｃｏｍｐａｒｉｓｏｎｂｅｔｗｅｅｎｔｈｅｓｕｂｓｏｎｉｃ
ｄａｔａｄｒｉｖｅｎｍｏｄｅｌａｎｄＣＦＤ（Ｃｌ＝０．５）

图１２　亚声速数据驱动模型与ＣＦＤ优化对比（Ｃｌ＝０．７５）

Ｆｉｇ．１２　Ｏｐｔｉｍｉｚａｔｉｏｎｃｏｍｐａｒｉｓｏｎｂｅｔｗｅｅｎｔｈｅｓｕｂｓｏｎｉｃ
ｄａｔａｄｒｉｖｅｎｍｏｄｅｌａｎｄＣＦＤ（Ｃｌ＝０．７５）

在此基础上，进一步开展了跨声速区数据驱

动翼型优化设计，并与基于ＣＦＤ的翼型优化进行
对比。与亚声速翼型优化算例类似，施加５个厚
度约束，厚度约束值由 ＳＣ２－０６１０翼型确定。为
增加优化结果的鲁棒性，分别开展了翼型的单点

优化和多点优化设计。图１３为单点优化结果，设
计点马赫数为０７２，升力约束为 Ｃｌ＝０８２，通过
施加不同的力矩约束以考察其影响。总体上，两

种优化方法的差别要比亚声速区大，不过阻力系

数差别仍在２匡以内，升力系数差异在 ００１以
内。跨声速区减阻设计可得到一个超临界翼型，

该翼型通过增大后缘弯度满足升力约束。不过这

会带来负面影响，即导致翼型具有较大力矩，进而

导致飞行器较大的配平阻力。该问题可通过在翼

型优化设计中施加适当力矩约束予以避免。如图

１３所示，与无力矩约束优化结果相比，更严格的
力矩约束导致了更大的翼型阻力。需对飞机整体

气动外形进行综合优化设计才能更好地平衡两者
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影响，而该数据驱动模型能在翼型设计层面提供

一个快速可靠的分析手段，对飞机设计人员提供

一定帮助。

（ａ）无力矩约束
（ａ）Ｎｏｍｏｍｅｎｔｃｏｎｓｔｒａｉｎｔ

（ｂ）Ｃｍ≥－０．１２

（ｃ）Ｃｍ≥－０．０９５

图１３　跨声速数据驱动模型与ＣＦＤ优化
设计对比（Ｃｌ＝０．８２）

Ｆｉｇ．１３　Ａｉｒｆｏｉｌｓｈａｐｅｏｐｔｉｍｉｚａｔｉｏｎｕｓｉｎｇｔｈｅｔｒａｎｓｏｎｉｃ
ｄａｔａｄｒｉｖｅｎｍｏｄｅｌａｎｄＣＦＤ（Ｃｌ＝０．８２）

气动外形优化往往是通过削弱非设计点气动

效率来提高设计点气动效率，因此单点优化结果

一般并不实用。为了提高翼型设计的鲁棒性，还

进一步开展了翼型的多点优化设计，优化目标是

减小如图１４所示的５个设计点下的平均阻力，力
矩约束取为 Ｃｍ≥ －０１２，厚度约束设置与单点
优化一样。施加升力和力矩约束的多点优化需

要更多地调用数据驱动模型进行气动性能评

估，对数据驱动模型的精度提出更大挑战。尽

管如此，图１５的结果显示基于数据驱动模型的
极速优化仍然和基于 ＣＦＤ的优化结果非常接
近，优化后的翼型形状几乎一样，除了激波位置

有些许偏离，５个状态下的压力分布也几乎一致。

图１４　多点优化的设计点马赫数和升力约束
Ｆｉｇ．１４　Ｍａｃｈｎｕｍｂｅｒｓａｎｄｌｉｆｔｃｏｎｓｔｒａｉｎｔｓｆｏｒｔｈｅ

ｍｕｌｔｉｐｏｉｎｔａｉｒｆｏｉｌｓｈａｐｅｏｐｔｉｍｉｚａｔｉｏｎ

阻力系数的差别在２５匡以内，而升力系数和力
矩系数的差别在００３以内。这说明数据驱动模
型在跨声速区也具备足够的精确性以应对多点优

化设计。

（ａ）优化后攻角与外形
（ａ）Ｏｐｔｉｍｉｚｅｄａｌｐｈａａｎｄｓｈａｐｅｓ

（ｂ）设计点１
（ｂ）Ｄｅｓｉｇｎｐｏｉｎｔ１

（ｃ）设计点２
（ｃ）Ｄｅｓｉｇｎｐｏｉｎｔ２

（ｄ）设计点３
（ｄ）Ｄｅｓｉｇｎｐｏｉｎｔ３
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（ｅ）设计点４
（ｅ）Ｄｅｓｉｇｎｐｏｉｎｔ４

（ｆ）设计点５
（ｆ）Ｄｅｓｉｇｎｐｏｉｎｔ５

图１５　翼型多点优化设计结果
Ｆｉｇ．１５　Ｏｐｔｉｍｉｚａｔｉｏｎｒｅｓｕｌｔｓｏｆｍｕｌｔｉｐｏｉｎｔａｉｒｆｏｉｌｄｅｓｉｇｎ

２　数据驱动的ＣＲＭ机翼气动分析与极速
优化

２．１　机翼模态参数化

翼型设计领域拥有丰富数据（如 ＵＩＵＣ翼型
库），支持高效模态表征方法［１２，１５］，以提升数据驱

动气动模型构建效率。但复杂三维气动外形设计

数据稀缺，相关模态化建模应用较少。因而，自动

生成复杂气动外形并自主构建高价值气动外形数

据库，已成为三维复杂气动外形高效参数化的研

究前沿［１］。数据库构建需排除所有不满足约束

的奇异外形，确保仅含气动性能优良的设

计［１４，２６－２７］，避免随机采样带来的无效数据，导致

难以提取有效低维模态［１］。

本研究利用多种深度学习模型处理翼型数

据，建立快速通用的翼型奇异性分析模型［２６－２７］。

数据驱动的翼型奇异性分析如图１６所示，该模型
可识别不同翼型的奇异程度，基于此施加外形约

束，有效剔除高维机翼设计空间中的不可行域。

进一步提出基于奇异性的约束优化采样方法，快

速填充三维几何空间的可行域，构建机翼气动外

形数据库［２８－２９］。在此基础上，采用 ＳＶＤ方法建

立机翼外形的全局模态表征（见图１７）。

图１６　数据驱动的翼型奇异性分析
Ｆｉｇ．１６　Ｄａｔａｄｒｉｖｅｎａｎａｌｙｓｉｓｏｆａｉｒｆｏｉｌａｂｎｏｒｍａｌｉｔｉｅｓ

图１７　基于数据库与数据驱动的机翼模态表征
Ｆｉｇ．１７　Ｗｉｎｇｄａｔａｂａｓｅａｎｄｄａｔａｄｒｉｖｅｎｍｏｄａｌ

ｐａｒａｍｅｔｅｒｉｚａｔｉｏｎｏｆｗｉｎｇｓ

为验证模态表征效率，采用伴随梯度方法分

别在２００维ＦＦＤ设计空间和４０维模态空间进行
机翼减阻优化［２８］。ＦＦＤ空间与模态空间优化对
比如图１８所示，其中Ｃｐ为压力系数，两者最优外
形高度一致，阻力系数仅相差０３匡。表明该全
局模态方法显著提升外形表征效率，可有效降低

复杂气动外形空间维度约８０％。

图１８　ＦＦＤ空间与模态空间优化对比
Ｆｉｇ．１８　ＣｏｍｐａｒｉｓｏｎｏｆＦＦＤｓｐａｃｅａｎｄｍｏｄａｌ

ｓｐａｃｅｏｐｔｉｍｉｚａｔｉｏｎ

２．２　机翼气动训练数据与数据驱动气动模型

ＣＦＤ训练数据在６０维设计空间内采样生成，
参数包括马赫数、飞行高度、攻角、机翼不同站位

的扭转角和５０个机翼模态。为降低 ＣＦＤ采样成
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本，选择采用较为稀疏的机翼网格进行数值计算，

该网格在气动外形优化设计方面的有效性已在前

期工作中得到验证。为实现不同机翼外形 ＣＦＤ
网格的自动生成，采用 ＩＤＷａｒｐ［１６］对基础网格进
行变形处理。ＣＦＤ数值模拟采用 ＡＤｆｌｏｗ求解雷
诺平均纳维 －斯托克斯方程，湍流模型采用
ＳｐａｌａｒｔＡｌｌｍａｒａｓ。部分数值模拟结果如图 １９所
示，马赫数大于１．０的区域用灰色显示以凸显激
波强度。

图１９　机翼样本的ＣＦＤ模拟结果
Ｆｉｇ．１９　ＣＦＤｓｉｍｕｌａｔｉｏｎｒｅｓｕｌｔｓｏｆｗｉｎｇｓａｍｐｌｅｓ

从设计空间中选择训练样本的过程称为试验

设计（ｄｅｓｉｇｎｏｆｅｘｐｅｒｉｍｅｎｔｓ，ＤｏＥ），通过采用多轮
ＤｏＥ策略可以逐步生成机翼样本数据，并在每一
步构建数据驱动的气动分析模型并开展精度验

证。与基于期望改进准则的自适应采样算法相

比，这种多轮采样策略简单且稳健。在第一轮采

样中，采用ＬＨＳ方法生成初始样本集，并采用增量

ＬＨＳ方法生成验证样本集。在下一轮 ＤｏＥ中，将
前一轮所有数据（包括训练集和验证集）作为训

练数据重新构造数据驱动模型，并使用增量 ＬＨＳ
生成新的验证数据集，重复该过程直到满足指定

的精度要求。本研究共进行了五轮 ＤｏＥ采样，除
了少数样本的 ＣＦＤ模拟未收敛，最终共得到
１３５１０８个训练样本和４７９６７个验证样本。

在数据驱动的翼型优化设计工作中，通过采

用ＭＥ＋ＧＥＫＰＬＳ模型处理了包含十余万样本的
大规模数据集，但该混合模型在不同专家模型的

交界处存在函数不光滑问题。这在翼型设计中通

常不会给优化带来问题，因为优化搜索通常由于

几何约束而在同一专家模型范围内进行。然而，

对于机翼外形优化设计问题，优化搜索跨越不同

专家模型的情况更加常见，预测函数不光滑问题

易导致优化失败。因此 ＭＥ＋ＧＥＫＰＬＳ模型在机
翼极速优化设计问题中并非理想选择。由于

ＤＮＮ模型具有拟合复杂非线性函数和处理大数
据集的强大能力［１，３０－３２］，最终选用ＤＮＮ模型作为
本研究中的数据驱动模型。实际上，即使在翼型

设计问题中，后续研究［３３－３４］也表明 ＤＮＮ模型可
能是一个更好的选择。

对于ＤＮＮ模型而言，通常情况下更多网络层
数和神经元个数可提供更高拟合自由度，进而提

升预测精度。ＤＮＮ超参数对比如图２０所示，图
中对比了超参数（节点数 Ｎｎｏｄｅ和层数 ｎｌａｙｅｒ）对模
型精度的影响，随着超参数个数增加ＤＮＮ模型精

图２０　ＤＮＮ超参数对比
Ｆｉｇ．２０　ＣｏｍｐａｒｉｓｏｎｏｆＤＮＮｈｙｐｅｒｐａｒａｍｅｔｅｒｓ
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度呈现先增高后降低的趋势。对于升力系数，当

网络层数增加到６时，ＤＮＮ模型训练易出现过拟
合问题，模型在训练数据集上的表现虽更为精确，

但在验证数据集上的精度并未提高。对于阻力系

数和力矩系数的预测，网络层数分别达到５和４
时出现类似问题。根据以上对比结果，分别选择

了合适层数的ＤＮＮ模型构建机翼升力系数、阻力
系数和力矩系数的预测模型，每层神经网络包含

１００个神经元。对于所有气动系数的预测，在
４７９６７个验证样本中的平均误差均小于１匡。

采用ＤＮＮ单独对每个网格点压力系数进行
建模比较困难，因此决定采用ＳＶＤ方法对压力分
布进行降维处理，通过对模态系数建模来重构机

翼压力分布。为避免过拟合，采用了较为保守的

ＤＮＮ模型设置（３层网络，每层 ７０个神经元）。
如图２１所示，数据驱动的压力分布预测模型几乎
能给出与ＣＦＤ分析相同的分布形态，表现出较高
的预测精度。

（ａ）ＣＲＭ机翼
（ａ）ＣＲＭＷｉｎｇ

　　　
（ｂ）随机机翼１
（ｂ）Ｒａｎｄｏｍｗｉｎｇ１

（ｃ）随机机翼２
（ｃ）Ｒａｎｄｏｍｗｉｎｇ２

　　　
（ｄ）随机机翼３
（ｄ）Ｒａｎｄｏｍｗｉｎｇ３

（ｅ）随机机翼４
（ｅ）Ｒａｎｄｏｍｗｉｎｇ４

　　　 （ｆ）随机机翼５
（ｆ）Ｒａｎｄｏｍｗｉｎｇ５

图２１　数据驱动模型压力分布预测与ＣＦＤ对比
Ｆｉｇ．２１　Ｐｒｅｓｓｕｒｅｄｉｓｔｒｉｂｕｔｉｏｎｐｒｅｄｉｃｔｉｏｎｂｙｔｈｅ

ｄａｔａｄｒｉｖｅｎｍｏｄｅｌａｎｄＣＦＤ

该数据驱动模型的采样稀疏度比率约为

１２１７，与１３节翼型分析模型采样稀疏度比率（亚
声速和跨声速模型分别为２０２７和２８２５）相比，有

显著下降，不过这并未对本研究中的模型精度产生

明显的负面影响。升力系数、阻力系数和力矩系数

的平均相对误差分别为０２０％、０３５％和０３６％，
精度与翼型模型类似，采用该模型进行机翼优化设

计有望得到与基于ＣＦＤ优化设计相同的结果。

２．３　基于数据驱动模型的机翼外形极速优化设计

为满足机翼气动外形的极速优化设计需求，

需要将数据驱动的机翼气动分析模型与几何约束

模块［３５］和梯度优化模块［３６］耦合，建立数据驱动

的机翼气动外形极速优化框架。该优化框架可同

时考虑一个至多个（可达数千个）设计点与目标

函数，以解决机翼优化设计中单点、多点、多目标

等优化问题。数据驱动的机翼气动分析模型极为

高效，在对４７９６７个机翼样本的验证测试中，总
耗时为７２６ｓ，除去模型加载时间，每个机翼样本
的气动分析仅需１／１００００ｓ。

采用序列最小二乘二次规划（ｓｅｑｕｅｎｔｉａｌｌｅａｓｔ
ｓｑｕａｒｅｓｑｕａｄｒａｔｉｃｐｒｏｇｒａｍｍｉｎｇ，ＳＬＳＱＰ）算法求解
单目标优化问题，其中气动力导数由 ＴｅｎｓｏｒＦｌｏｗ
中自动微分功能求解。对于多目标优化问题，尽

管进化算法可直接求解，但其在高维问题中效率

极低，因此选择采用ＳＬＳＱＰ开展一系列不同组合
权重的多点优化设计问题来求解此类问题。不同

组合权重对目标函数有不同侧重，可有效表示多

目标优化问题的帕累托前沿线。

针对气动优化设计讨论组 （ａｅｒｏｄｙｎａｍｉｃ
ｄｅｓｉｇｎｏｐｔｉｍｉｚａｔｉｏｎｄｉｓｃｕｓｓｉｏｎｇｒｏｕｐ，ＡＤＯＤＧ）案例
４１单点优化问题，采用该数据驱动模型开展优化
设计，设计点巡航高度１１７４０ｍ，马赫数０８５，升力
系数０５，并施加一组厚度约束以保证有效容积。
数据驱动的机翼优化设计在一个１７ＧＨｚＣＰＵ处
理器上仅耗时３３ｓ。而基于ＣＦＤ的机翼优化设计
在２６ＧＨｚ处理器上需耗费１８４ｈ。图２２为两种
优化设计方法的结果对比，其中各点红色实线为基

于ＣＦＤ的优化设计，蓝线虚线为基于数据驱动的
优化设计，尽管数据驱动的优化结果在翼尖附近仍

有微弱激波，且升力系数与需求设定相差了０．００３，
但两个机翼外形几乎一致且具有相同阻力系数。

数据驱动模型使得机翼优化设计提升了５０００倍，
成本显著降低，几乎可实时地为飞机设计人员提供

与基于ＣＦＤ优化相当的机翼设计结果。
单点优化设计结果缺乏鲁棒性，工程实际中

飞机机翼设计需要进行多点优化。如图２３所示，
对ＣＲＭ机翼进行了九点优化设计，以进一步验证
所发展的数据驱动优化设计方法，设计点和组合

权重参照 ＡＤＯＤＧ案例４５进行定义。图２４展

·０７１·
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图２２　数据驱动的机翼单点优化设计
Ｆｉｇ．２２　Ｓｉｎｇｌｅｐｏｉｎｔｗｉｎｇｓｈａｐｅｏｐｔｉｍｉｚａｔｉｏｎ

ｕｓｉｎｇｔｈｅｄａｔａｄｒｉｖｅｎｍｏｄｅｌ

图２３　多点优化问题的马赫数和升力约束
Ｆｉｇ．２３　Ｍａｃｈａｎｄｌｉｆｔｃｏｎｓｔｒａｉｎｔｓｏｆ

ｍｕｌｔｉｐｏｉｎｔｏｐｔｉｍｉｚａｔｉｏｎ

示了优化后的机翼外形和其在设计点 ５（Ｍａ＝
０８５，Ｃｌ＝０５）下的压力分布，同时与基于 ＣＦＤ
的优化结果进行了对比，其中各点红色实线为基

于ＣＦＤ的优化设计，蓝线虚线为基于数据驱动的
优化设计。可以看出，由于考虑了其他设计点下

的气动性能，优化后的机翼在该设计点并非无激

波，故此设计点的阻力系数相比单点优化有所增

加。数据驱动的优化设计方法有效地捕捉了这种

权衡，得到了与 ＣＦＤ优化相似的机翼外形，两者
在大多数设计点的阻力系数差异不超过１匡。在
优化耗时方面，基于 ＣＦＤ的优化计算成本为２７０
核时，而数据驱动的优化设计仅耗时２ｍｉｎ。

更进一步地，选择在双目标优化问题中验证

数据驱动方法的有效性，目标函数为两个巡航状

态下的阻力系数。结果如图２５所示，数据驱动优
化结果接近 ＣＦＤ优化求解的帕累托前沿线。基

图２４　数据驱动的机翼多点优化设计
Ｆｉｇ．２４　Ｍｕｌｔｉｐｏｉｎｔｗｉｎｇｓｈａｐｅｏｐｔｉｍｉｚａｔｉｏｎｕｓｉｎｇ

ｔｈｅｄａｔａｄｒｉｖｅｎｍｏｄｅｌ

于ＣＦＤ的优化花费６００核时，计算成本极高，相
比之下，数据驱动的优化仅需数分钟，阻力系数差

异仅１～２匡。

图２５　数据驱动的机翼两目标优化设计
Ｆｉｇ．２５　Ｔｗｏｏｂｊｅｃｔｉｖｅｗｉｎｇｓｈａｐｅｏｐｔｉｍｉｚａｔｉｏｎｕｓｉｎｇ

ｔｈｅｄａｔａｄｒｉｖｅｎｍｏｄｅｌ

此外，使用低成本的数据驱动优化设计框架，

可以新颖视角进行机翼设计。例如，通过执行一系

列气动外形优化，可研究在不同高度和马赫数下巡

航的益处。如图２６所示，采用数据驱动优化方法
可快速给出不同飞行状态下的最优机翼外形与气

动性能，不同任务下外形优化的收益并不恒定（马

赫数和飞行高度较高的任务中减阻效果更为显

著），这种研究能为飞机设计提供快速指导，但如果

使用基于ＣＦＤ的优化设计，计算代价则会过高。
基于数据驱动模型还可以进行大规模多点优

化设计，轻松平衡不同飞行任务的影响。如图２７
所示，使用数据驱动模型对４４１个状态进行了大

·１７１·
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　　　　注：图中虚线为ＣＲＭ阻力分布结果，实线为数据驱动优化设计的阻力分布结果。

图２６　数据驱动优化给出的不同巡航状态下最优机翼外形
Ｆｉｇ．２６　Ｏｐｔｉｍａｌｗｉｎｇｓｈａｐｅｓｆｏｒｄｉｆｆｅｒｅｎｔｃｒｕｉｓｅｃｏｎｄｉｔｉｏｎｓｇｉｖｅｎｂｙｔｈｅｄａｔａｄｒｉｖｅｎｍｏｄｅｌ

　　　　注：图中虚线为ＣＲＭ阻力分布结果，实线为数据驱动优化设计的阻力分布结果。

图２７　数据驱动的大规模多点机翼优化设计
Ｆｉｇ．２７　Ｍａｓｓｉｖｅｌｙｍｕｌｔｉｐｏｉｎｔｗｉｎｇｓｈａｐｅｏｐｔｉｍｉｚａｔｉｏｎｕｓｉｎｇｔｈｅｄａｔａｄｒｉｖｅｎｍｏｄｅｌ

·２７１·
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规模多点优化设计。优化后的机翼与 ＣＲＭ机翼
平均减阻为０８ｋＮ，虽然比单点优化更小，但这
种折中优化降低了大多数任务中的阻力。

３　结论

本文介绍了数据驱动的气动分析模型在翼型

与机翼优化设计方面的研究工作，展示了深度学

习算法在气动外形极速优化设计方面的成效与潜

力。构建通用数据驱动模型虽可行，却面临维数

灾难挑战，需严格筛选设计空间；采用数据驱动的

模态化外形表征方法可有效缩减无效自由度，对

提升气动预测模型的泛化性至关重要。在优化策

略上，梯度算法因其显著提升收敛速度而适用于

快速设计需求，非梯度算法则需谨慎选用。最后，

该领域研究仍处于早期阶段，尤其需深入探索能

够同时考虑机翼－机身等复杂外形耦合变化的快
速优化设计方法。
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