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Max-Max type entry trajectory optimization for testing vehicle by
successive difference-of-convex programming
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Abstract; Simulating the extreme boundaries of the entry vehicle using trajectory optimization methods is an effective simulation method before
the range test. The DC ( difference-of-convex) programming method was employed to study the extreme performance of the testing entry vehicle in
terms of peak heat flux. The DC decomposition method was utilized to handle constraints such as heat flux, dynamic pressure, and normal load,
and this method was extended to Max-Max type cost functions, such as peak heat flux, peak dynamic pressure, and peak normal load. The Big-M
method was adopted to transform the primal problem into a mixed-integer nonlinear programming sub-problem, combining concave-convex
decomposition with penalty function technique to address the oscillation and non-convergence issues for the cost function during the iteration
process. An improved successive DC programming algorithm based on the DC relaxation model was proposed. Numerical experiments show that the
DC relaxation model-based approach has higher approximation accuracy than traditional direct linearization methods, and the proposed algorithm
demonstrates high numerical stability, robustness, and optimality of the cost function.
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Tab. 1 Initial and terminal conditions
S8 A Bl
Lhy,hy] km [80,25]
[Ag,A¢] ° [120,180]
[do,d] ° [ -25,15]
[Vo,Vi] m/s [6500,2 000]
[6,,06;] ° [ -2, -4]
Loy,0(] ° [80,100]
R2 RELEEMHRAE
Tab.2 Box constraints of the decision variables
S box #J5 S8 box #J5
r Lhe + Ry, hy + R, ] Kp [InV,,,InV,, ]
A [0%,360°] L [%i Zli]
0 b
b [ -90°,90°] Timax Timin
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L, s
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L ’
K [InV, ,InV . ] ’ Tiax Timin
K, [InV, ,InV . ] Z [ -1x10°,1x10°%]
K, [V, ,InV,; ] n [0,1x10°]
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convex programming method , SCP) {E 52 %} . )y
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% o, FULH SARKHIE B IR 2 o, 16 h 3 k0 1
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4.1 HFNERIREBNHIT Fig.3  Altitude-vs-velocity histories by SDCP
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Tab.3 Comparison results in example 1 Fig.4 Longitude-latitude-altitude footprints
(terminal error index)
P AR scp SDCP
4000 e N e e e e =
iter. 26 14
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3000 »
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B wol Fig.5 Heat flux density histories( terminal error index)
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Fig.2  Altitude-vs-velocity histories by SCP
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Fig.6 Dynamic pressure histories( terminal error index)
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Fig.8 Angle of attack profiles( terminal error index)
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Fig.9 Bank angle profiles( terminal error index)
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Tab.4 Comparison results in example 2

5 N R ter. CPU I} a)/s V' /(m/s) 0° /(kW/m?) &/ %
1 25  MMP-1 33 51.152 0 6 006.980 9 5383.3222 1.846 5x10°"
2 50  MMP- 1 17 54.449 8 6 076.944 7 5512.284 3 2.666 4 x10°"
3 100 MMP-T1 50° 450.793 8 6 110.580 8 5573.8750 6.298 3 x107%
4 200 MMP-1 50° 1338.431 8 6 127.059 4 5568.915 3 1.4100x107%
5 25  MMP-T 22 60.548 2 6132.9715 5516.795 6 6.5832x107"
6 50  MMP-1I 15 118.014 5 6 076.944 7 5511.9512 2.7329x107"°
7 100  MMP-T 25 554.763 0 6110.582 0 5 574.985 8 8.114 4 x107"
8 200 MMP-T 21 2814.450 9 6 127.060 8 5601.107 1 6.627 1 x10"
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Fig. 12 Cost function iteration process (peak heat flux index)
100 X —0.694 552
Istiter. = = =SIMU 6000 — 12557499
—dthiter. s Qmax ( \‘\\ 5575 .
80 WA TR Sth iter. Do 5000 3570 K \
— 12thiter, memem n.. 5565
_13thiter. _._.-Dmm —0.690 —0.695
ol — MMP-II Rl i [
g £
< £ 300 [—MMP-TI
40 + 8) - = MMP-1
5000 —==-0__=3900 kW/m’
20 F
1 000
0 ' ' ' — 0 : : : .
7 000 6 000 5000 4000 3000 2 000 —-0.6 -0.7 —-0.8 —-0.9 -1.0
V/(m/s) E

EI13 (& - R (N =200)
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Fig. 16 Dynamic pressure histories( peak heat flux index)
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