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Analysis of non-constant aerodynamic characteristics on
flight performance of morphing vehicles

LI Yong' , YANG Zhao** , TIAN Linfeng', LIU Luhua'
(1. School of Aeronautics and Astronautics, Sun Yat-sen University, Shenzhen 518107, China;
2. Beijing Aerohydrodynamic Research Center, Beijing 100011, China)

Abstract; The non-constant aerodynamic effects on the flight performance of morphing aircraft remain unclear. The non-constant aerodynamic
characteristics during morphing were investigated, and their impact on flight performance was quantitatively analyzed. A dynamic model
Incorporating non-constant aerodynamic effects was established, with morphing rate and flight velocity as key parameters. A qualitative comparison
was conducted between the flight performance under non-constant and quasi-constant aerodynamic models. Two typical flight scenarios were
designed, and the pseudo-spectral method was employed to quantify the influence of non-constant aerodynamic effects on mission performance in
maximum range operations and no-fly zone avoidance. The results indicate that the non-constant aerodynamic model introduces deviations in flight
state accuracy compared to the quasi-steady model, which correlate with morphing rate and flight velocity. These deviations predominantly occur in
low-altitude, low-speed ( below Mach 3) flight regimes. During no-fly zone avoidance, where morphing is more pronounced, a trajectory deviation
of approximately 1 800 m accumulates within 250 s. In contrast, maximum range operations exhibit a smaller deviation of around 350 m over
1 000 s of flight.
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Tab.1 Parameters of non-constant effect

aerodynamic model example
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Fig.2 Non-constant aerodynamic model and factors

affecting the size of the hysteresis loop
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