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Efficient prediction method for aerodynamic heating in hypersonic
cone boundary-layer transition
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Abstract; To enable efficient prediction of transition heat flux fields under diverse freestream conditions, a generative transition heat flux
prediction model based on variational autoencoder architecture was developed. The hypersonic cone configuration under different freestream
conditions was selected as the research object, with numerical simulation method being employed to generate the transition heat flux dataset. A
variational autoencoder model was constructed and was trained and validated on the transition heat flux dataset. The analysis of results demonstrates
that the latent variables of the heat flux field can be effectively extracted by the variational autoencoder model, and the heat flux structure of the
transition process induced by leeward-side streamwise vortices was accurately reconstructed. A fully connected neural network model was established
to construct a nonlinear mapping relationship between the freestream conditions and the latent variables of the heat flux field. By connecting the
fully connected neural network model with the decoder part of the variational autoencoder model, a hypersonic cone transition heat flux prediction
model was developed. The prediction results indicate that this model effectively learns the characteristics of heat flux distribution under complex
transition mechanisms, achieves high prediction accuracy for heat flux under various freestream conditions, with errors not exceeding 0. 024.
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