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摘　要：为了实现不同自由来流下壁面转捩热流场的高效预测，基于变分自编码器架构建立了生成式转
捩热流预测模型。选取不同自由来流条件下的高超声速圆锥模型作为研究对象，采用数值模拟方法构建转

捩热流数据集。搭建变分自编码器模型，在转捩热流数据集上进行了训练和验证，结果分析表明变分自编码

器模型能够有效提取热流场隐变量，并精准重构了背风面流向涡转捩的热流场结构。搭建全连接神经网络

模型，构建了自由来流与热流场隐变量的非线性映射关系。串联全连接神经网络模型和变分自编码器模型

解码器部分，构建高超声速圆锥转捩热流预测模型，预测结果表明，该模型能够有效学习复杂转捩机制作用

下的热流分布特征，对不同自由来流下的热流预测精度较高，误差不高于００２４。
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　　高超声速飞行技术是２１世纪航空航天技术
领域新的制高点，也是世界各国的重大战略需求

之一［１］。然而，在高超声速飞行器的发展过程中

面临着诸多困难。美国国家航空航天局把转捩列

为第一类急需解决的物理模型问题［２］。高超声

速转捩是指高超声速边界层从层流向湍流的过
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渡，转捩伴随着飞行器表面气动热的陡增，有研究

表明，转捩后的气动热通常为层流状态的 ３～５
倍，这对热防护策略的设计提出了较高的要求。

作为高超声速飞行器热防护策略设计的先决条

件，精准且高效的高超声速转捩热流预测技术能

够有效减少热防护系统设计的冗余度，降低飞行

器的成本与质量，提高飞行器的设计效率和性能。

现有高超声速转捩热流预测技术主要以工程

算法、风洞试验和数值计算为主［３－５］。工程算法

主要通过边界层相似解并经过理论分析和合理的

假设推导得到，或利用试验与数值模拟结果得到

的半拟合公式获得。其具有预测效率高的优点，

但存在泛化性差的缺点。风洞试验在高超声速风

洞中开展模型表面气动热测量，获得的热流结果

较为准确，但试验数据获取成本较高。随着计算

机和数值模拟技术的快速发展，通过计算流体力

学 （ｃｏｍｐｕｔａｔｉｏｎａｌｆｌｕｉｄｄｙｎａｍｉｃｓ，ＣＦＤ）求 解
ＮａｖｉｅｒＳｔｏｋｅｓ方程，可获得飞行器表面热流分布
特征，适用于复杂外形的热流数值预测，是获取高

精度转捩气动热数据较为理想的手段之一。

在多年的数值模拟和风洞试验中积累了大量

高超声速气动热结果，如何对这些数据进行有效

融合和再利用，探索高超领域的“第四范式”，逐

渐成为目前研究的前沿与热点［６－１０］。随着数据

驱动和深度学习方法的快速发展，国内外研究者

尝试采用深度学习方法，基于积累的大量气动数

据，搭建数据驱动的气动特性预示技术，取得了不

少成果［１１－１６］。Ｗａｎｇ等［１７］针对超临界翼型的复

杂绕流场，建立了基于变分自编码器（ｖａｒｉａｔｉｏｎａｌ
ａｕｔｏｅｎｃｏｄｅｒ，ＶＡＥ）的深度学习模型，对翼型周围
的速度场和压力场进行了预测研究，预测模型能

够准确捕捉激波区域的流动细节，并实现了比传

统ＣＦＤ方法快１６００倍的计算加速。在跨音速三
维机翼的压力分布预测方面，ＦｒａｎｃéｓＢｅｌｄａ等［１８］

建立了基于 β－变分自编码器与高斯过程回归
（Ｇａｕｓｓｉａｎｐｒｏｃｅｓｓｒｅｇｒｅｓｓｉｏｎ，ＧＰＲ）的代理模型，
结合主成分分析（ｐｒｉｎｃｉｐｌｅｃｏｍｐｏｎｅｎｔａｎａｌｙｓｉｓ，
ＰＣＡ）预处理数据，对不同飞行条件（马赫数、攻
角）下的机翼压力场预测进行了研究，模型在激

波区域和高攻角条件下能够高效高精度预测机翼

表面压力场分布。

在气动热预测方面，Ｌｉｕ等［１９］构建了流 －
热－结构耦合的二维圆柱气动热数据库，采用本
征正交分解 （ｐｒｏｐｅｒｏｒｔｈｏｇｏｎａｌｄｅｃｏｍｐｏｓｉｔｉｏｎ，
ＰＯＤ）技术，结合径向基函数构建不同来流条件下
圆柱气动热流场的高效、高精度预测模型。袁佳

铖等［２０］建立了基于卷积神经网络的预测模型，对

钝锥、钝双锥、升力体和双椭球四类典型外形的表

面热流分布进行了预测研究，预测模型对复杂外

形预测精度较 ＵＮｅｔ更高，且在较少训练样本时
仍保持良好的性能。晏筱璇等［２１］针对高超声速

机翼表面气动热流场，采用ＰＯＤ方法对其进行特
征降维，得到热流场 ＰＯＤ基和基系数，基于
Ｃｈｅｂｙｓｈｅｖ多项式构建输入为来流参数、输出为
ＰＯＤ基系数的代理模型，实现气动热的快速预
测。陈鑫等［２２］使用 ＰＯＤ方法对 １００个 Ｆ１０４机
翼表面气动热流场进行特征降维，构建了输入为

来流参数、输出为温度场 ＰＯＤ基系数的代理模
型，该方法在预测效率上相比于数值计算方法提

高了５个量级。基于通过空间散点代表全局气动
热分布的思想，张智超等［２３］提出了基于径向基函

数神经网络的气动热逐点快速预测代理模型，通

过多个模型的协调训练与预测，高效获得飞行器

表面热流场分布。Ｄｉｎｇ等［２４］利用直接 Ｍｏｎｔｅ
Ｃａｒｌｏ模拟数据构建稀薄流下圆柱表面气动热数
据集，搭建输入为自由流参数、输出为圆柱表面９
个位置气动热分布向量的人工神经网络。上述气

动热特征空间降维建模和逐点建模两类预测方法

因线性降维和缺失外形对热流分布的影响信息等

特点，无法做到在不同自由来流参数条件下开展

受复杂转捩机理控制的气动热流场高效高精度

预测。

综上，本文以在不同自由来流条件下高超声

速圆锥的壁面转捩热流场高效高精度预测为目

标，采用具有非线性降维能力和耦合外形参数能

力、基于变分自编码器架构的生成式深度学习方

法，建立转捩复杂机制控制下的高超声速气动热

高效高精度预测模型。采用数值模拟方法建立不

同自由来流和几何参数下的转捩气动热数据集，

利用生成式深度学习模型对气动热分布进行训练

和预测，展示了预测模型的热流场重构能力和预

测效果。

１　研究方法

１．１　基于变分自编码器的壁面热流预测模型

１．１．１　主成分分析
主成分分析是一种统计分析方法，将多组具

有一定相关性的样本数据，重新组合成一组新的

线性无关向量的线性组合。这是一种最小均方意

义上的最优变换，目的是去除输入随机向量之间

的相关性，突出原始数据中的隐含特性。主成分

分析方法的优势在于数据压缩以及对多维数据进

·８１２·
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行降维，操作简单且没有参数限制，已被广泛应用

于人脸识别、图像压缩和特征提取等领域，是在高

维数据中寻找特征模式的一种技术。

主成分分析方法被用于确定变分自编码器模

型最优隐变量空间维数，以实现特征空间的有效

提取和高精度热流场重构。最优隐变量空间维数

是从香农熵的概念中得出的，利用每个状态出现

的可能性来确定保存最多有用信息所需的最小隐

向量空间维数［２５］，通过确定在主成分分析中保留

主成分的数量实现。从数学上讲，当仅使用线性

变换模块搭建自动编码器时，隐变量空间维数将

近似为主成分分析的主成分模式［２６］。基于上述

考虑，本文通过主成分分析方法研究了不同隐变

量空间维数对热流重构精度的影响。

１．１．２　变分自编码器模型
首先构建以卷积神经网络［２７］为基础，包含残

差卷积编码器［２８］和解码器的变分自编码器［１７］。

所谓的“变分”，是指变分自编码器认为数据是由

某些涉及连续随机变量的随机过程生成的［２９－３０］。

因此，变分自编码器中的编码器作为推理模型，在

训练过程中通过学习到的概率分布 ｐ（ｚｘ）从输
入ｘ中分别推断 ｋ个隐变量对应的均值与标准
差，并利用下式得到隐变量ｚ：

ｚ＝μ＋ｒ⊙ｅｘｐ（σ） （１）
式中，ｒ是分量均在０～１之间的随机向量。从数
学上看，ｋ个隐变量的后验分布 ｑ（ｚｘ）是均值
μ＝（μ１，…，μｋ）、标准差 σ＝（σ１，…，σｋ）的对角
高斯分布；先验分布 ｐ（ｚ）是均值 μ＝０、标准差
σ＝１的标准高斯分布。ＫＬ（ＫｕｌｌｂａｃｋＬｅｉｂｌｅｒ）散
度被用于描述先验分布与后验分布的差异程度，

在此，ＫＬ散度作为损失函数直接参与模型训练和
参数学习过程。

ＬＫＬ（ｑ（ｚｘ）ｐ（ｚ））＝　　　　　　

１
２∑

ｋ

ｉ＝１
［ｅｘｐ（σｉ）－（σｉ＋１）＋μ

２
ｉ］ （２）

解码器作为生成模型，基于给定的隐变量 ｚ，
在学习到的概率分布ｐ（ｚ）中随机采样，在训练过
程中重构出与输入ｘ尽可能接近的 ｘＲ。因此，构
建重构均方根损失（ｘ，ｘＲ），最小化输入ｘ与重构
输出ｘＲ的区别：

ＬＭＳＥ（ｘ，ｘ
Ｒ）＝１Ｎ∑

Ｎ

ｉ＝１

１
２ ｘｉ－ｘ

Ｒ( )ｉ
（３）

变分自编码器网络训练过程中减小式（４）所
示损失函数，每个训练迭代过程采用反向传播算

法更新网络参数，整个训练过程结束后，变分自编

码器网络能够精准重构输入ｘ。

　 ＬＶＡＥ＝ＬＫＬ（ｑ（ｚｘ）ｐ（ｚ））＋ａＬＭＳＥ（ｘ，ｘ
Ｒ）（４）

综合编码器与解码器结构，变分自编码器模

型结构如图１所示。

图１　变分自编码器模型结构
Ｆｉｇ．１　Ｓｔｒｕｃｔｕｒｅｏｆｖａｒｉａｔｉｏｎａｌａｕｔｏｅｎｃｏｄｅｒｍｏｄｅｌ

输入数据 ｘ为真实壁面热流场，以三维张量
１×５１２×５１２形式输入编码器，获得热流场有效
特征编码，即隐变量ｚ；解码器基于隐变量 ｚ重构
输出ｘＲ，同样以三维张量 １×５１２×５１２形式输
出。通过Ａｄａｍ优化算法减小以式（４）构建的损
失函数，迭代训练模型参数，得到预训练变分自编

码器模型。

１．１．３　全连接神经网络模型
根据预训练变分自编码器提取的壁面热流场

有效特征编码（即隐变量 ｚ），搭建全连接神经网
络以构建自由来流参数与隐变量ｚ之间的映射关
系，全连接神经网络结构如图２所示。

图２　全连接神经网络模型结构
Ｆｉｇ．２　Ｓｔｒｕｃｔｕｒｅｏｆｆｕｌｌｙｃｏｎｎｅｃｔｅｄｎｅｕｒａｌｎｅｔｗｏｒｋｍｏｄｅｌ

全连接神经网络的优化目标为最小化预测隐

变量ｚｐ与真实隐变量ｚ的均方根损失函数：

Ｌｍｌｐ ＝
１
Ｍ∑

Ｍ

ｉ＝１

１
２ ｚｉ－ｚ

ｐ( )ｉ
（５）

式中，Ｍ为采样点数量。神经网络损失通过反向
传播算法优化神经网络参数。全连接神经网络拥

有６４个隐藏神经元构成的４层隐藏层和对应的
４层Ｔａｎｈ激活函数层。

·９１２·
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完成变分自编码器模型与全连接神经网络模

型的训练后，串联全连接神经网络模型与变分自

编码器中的解码器部分，搭建转捩热流预测的预

训练模型。给定自由来流参数，预训练模型中全

连接神经网络生成对应的隐变量（特征向量），随

后，隐变量通过解码器，得到高精度预测壁面热流

场。转捩热流预测预训练模型结构如图３所示。

图３　高超声速转捩热流预测预训练模型结构
Ｆｉｇ．３　Ｐｒｅｔｒａｉｎｉｎｇｍｏｄｅｌｓｔｒｕｃｔｕｒｅｆｏｒｐｒｅｄｉｃｔｉｎｇ

ｈｅａｔｆｌｕｘｄｕｒｉｎｇｈｙｐｅｒｓｏｎｉｃｔｒａｎｓｉｔｉｏｎ

１．２　高超声速转捩数值模拟

１．２．１　计算模型和条件
转捩热流预测模型训练、验证数据集均利用

Ｆｌｕｅｎｔ软件数值模拟生成。采用圆锥模型，头部
钝度（圆锥前端球形钝头半径）为００５ｍｍ，半锥
角为 ７°，圆锥长为 ０５５ｍ。计算模型示意图如
图４所示。其中，（ｘ，ｙ，θ）是圆锥坐标系。气体
参考量选取参考温度为５２Ｋ，来流马赫数为６，单
位雷诺数选取范围为４０×１０６～９０×１０６／ｍ，攻
角α选取范围为１°～９°。

图４　计算模型示意图
Ｆｉｇ．４　Ｓｋｅｔｃｈｍａｐｏｆｃｏｍｐｕｔａｔｉｏｎａｌｍｏｄｅｌ

圆锥计算域及网格如图 ５所示，采用
Ｐｏｉｎｔｗｉｓｅ软件进行网格划分，圆锥流向网格间距
为１ｍｍ，法向上一个边界层内至少布有５０个点，
第一层法向网格间距为０００００５ｍｍ，保证第一
层网格ｙ＋小于１。无黏通量采用 ＡＵＳＭ格式，选
用ＳＳＴ四方程湍流模型。
１．２．２　网格无关性验证

图６给出了１５００万、３０００万、６０００万三
种规模网格在背风面中心线（θ＝１８０°）的热流
曲线，可以看出，三种网格模型计算得到的结果

（ａ）整体网格
（ａ）Ｇｌｏｂａｌｍｅｓｈ

（ｂ）近壁局部网格
（ｂ）Ｌｏｃａｌｍｅｓｈｎｅａｒｗａｌｌ

图５　高超声速圆锥计算网格
Ｆｉｇ．５　Ｃｏｍｐｕｔａｔｉｏｎａｌｍｅｓｈｏｆｈｙｐｅｒｓｏｎｉｃｃｏｎｅ

基本一致。为了平衡计算精度与计算效率，采

用３０００万网格进行计算。

图６　背风面中心线热流曲线
Ｆｉｇ．６　Ｃｅｎｔｅｒｌｉｎｅｈｅａｔｆｌｕｘｃｕｒｖｅｓｏｎｔｈｅｌｅｅｗａｒｄｓｉｄｅ

２　结果与讨论

２．１　数据集构建

数据集的构建是模型训练前最重要的步骤

之一，数据集的好坏直接影响着预测模型训练

·０２２·
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的成败。

２．１．１　数据准备
高超声速圆锥三维边界层转捩过程及机理较

为复杂，导致不同来流参数下模型表面转捩阵面

及热流分布差别较大。为保证数据集样本的可靠

性与特征鲜明，在圆锥三维边界层转捩参数研究

的基础上，对自由来流参数空间进行均匀采样，共

获得９１个圆锥三维边界层转捩热流分布样本，其
中随机选取 ７７个样本作为训练数据集，其余
１４个样本作为验证数据集，具体参数空间采样如
图７所示。

图７　训练集和验证集样本对应的参数空间采样点
Ｆｉｇ．７　Ｐａｒａｍｅｔｅｒｓｐａｃｅｓａｍｐｌｉｎｇｐｏｉｎｔｓｃｏｒｒｅｓｐｏｎｄｉｎｇｔｏ

ｔｒａｉｎｉｎｇａｎｄｖａｌｉｄａｔｉｏｎｄａｔａｓｅｔｓ

２．１．２　数据预处理
首先，考虑到圆锥三维边界层转捩特征，数据

集样本采用背风面转捩区热流分布。选取流向坐

标ｘ为０１～０５ｍ和周向坐标θ为４５°～１３５°的
区域作为热流计算及预测区域。

其次，将圆锥壁面三维热流分布通过坐标变

换，映射到二维坐标平面上。由于壁面热流在圆

锥表面分布，即法向坐标 ｙ＝０，则可忽略法向坐
标，三维热流分布自动坍缩为二维热流分布，仅包

含流向坐标ｘ与周向坐标 θ。为保证卷积操作的
可行性，生成均匀结构网格（ｘｎ，ｙｎ）∈［０，１］，网
格量为５１２×５１２，通过式（６）所示坐标变换将（ｘ，
θ）热流分布线性插值到（ｘｎ，ｙｎ）结构网格上。

ｘｎ＝（ｘ－ｘｍｉｎ）／（ｘｍａｘ－ｘｍｉｎ）

ｙｎ＝（θ－θｍｉｎ）／（θｍａｘ－θｍｉｎ{ ）
（６）

最后，采用最小值－最大值归一化操作，使热
流值均处于［０，１］的范围内。

如图８所示，对所有壁面转捩热流样本开展
以上数据预处理操作，构建生成式热流预测模

型训练数据集，以提高模型训练过程的数值稳

定性。

图８　数据预处理示意图
Ｆｉｇ．８　Ｄｉａｇｒａｍｏｆｄａｔａｐｒｅｐａｒａｔｉｏｎ

２．２　高超声速圆锥转捩热流预测模型

２．２．１　最优隐变量空间维数
图９所示为不同主成分数量下的可解释方差

比。可解释方差比用于量化流场特征模态对原始

流场总方差的贡献程度，定义为流场模态的特征

值占总方差的比例。对于第 ｋ个主成分，可解释
方差比为：

Ｒｋ ＝
λｋ

∑
ｄ

ｉ＝１
λｉ

（７）

式中：λｋ是流场数据协方差矩阵的第 ｋ个特征
值，对应第ｋ个主成分的方差；ｄ为流场数据的总

数量；∑
ｄ

ｉ＝１
λｉ是总方差，即协方差矩阵的迹———所

有特征值之和。

图９　前２０个主成分的可解释方差比
Ｆｉｇ．９　Ｅｘｐｌａｉｎｅｄｖａｒｉａｎｃｅｒａｔｉｏｓｏｆ
ｆｉｒｓｔ２０ｐｒｉｎｃｉｐｌｅｃｏｍｐｏｎｅｎｔｓ

前１０个主成分方差比能够达到９９８６％，而

·１２２·
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１６个主成分方差比达到９９９８％，热流场重构精
度较高。随着主成分数量继续增多，重构精度会

随之提高。从重构精度角度考虑，具有较高维度

隐变量空间的模型训练效果更好，但从物理特征

分析的角度考虑，较低维度的隐变量空间更有利

于提取隐变量和热流场之间的联系。综合以上考

虑，主成分数量即隐变量空间维数选为１６。
２．２．２　训练过程

热流预测模型的训练、验证过程均在ＰｙＴｏｒｃｈ
架构下进行。下面简要介绍模型的超参数调节：

模型单步训练的样本数量定为１６；模型隐变量空
间维数为１６；模型优化器采用Ａｄａｍ优化器；利用
学习率预热策略，保证训练过程数值稳定，在前

１０００步中，学习率预热过程使学习率从０逐渐增
大到０００４，随后，进入学习率衰减过程，每１０００
步学习率降低５０％。模型训练过程损失曲线如
图１０所示。

图１０　变分自编码器模型训练损失曲线
Ｆｉｇ．１０　Ｔｒａｉｎｉｎｇｌｏｓｓｃｕｒｖｅｏｆｖａｒｉａｔｉｏｎａｌａｕｔｏｅｎｃｏｄｅｒ

训练４０００步之后，模型在训练集和验证集
上同时具有良好的表现。

２．２．３　特征提取
图１１为热流场重构平均误差和最大误差统

计分布。统计结果表明，变分自编码器模型的重

构平均误差在训练集均小于００３，在验证集均小
于００２８，表明模型具有良好的泛化性。模型平
均误差和最大误差利用以下公式获得：

ｅＭＡＥ ＝
１
ｎｇ∑

ｎｇ

１
ｘＲ－ｘ （８）

ｅＭＡＸＥ＝ｍａｘｘ
Ｒ－ｘ （９）

其中，ｎｇ为网格数。
具体地，选取了训练集与验证集中重构误差

较小（雷诺数５６７×１０６、攻角４°）和较大（雷诺数

（ａ）变分自编码器在训练集及验证集上的平均误差
（ａ）Ｍｅａｎａｂｓｏｌｕｔｅｅｒｒｏｒｏｆｖａｒｉａｔｉｏｎａｌａｕｔｏｅｎｃｏｄｅｒｏｎ

ｔｒａｉｎｉｎｇａｎｄｖａｌｉｄａｔｉｏｎｄａｔａｓｅｔｓ

（ｂ）变分自编码器在训练集及验证集上的最大误差
（ｂ）Ｍａｘｉｍｕｍａｂｓｏｌｕｔｅｅｒｒｏｒｏｆｖａｒｉａｔｉｏｎａｌａｕｔｏｅｎｃｏｄｅｒｏｎ

ｔｒａｉｎｉｎｇａｎｄｖａｌｉｄａｔｉｏｎｄａｔａｓｅｔｓ

图１１　热流场重构平均误差和最大误差统计分布
Ｆｉｇ．１１　Ｄｉｓｔｒｉｂｕｔｉｏｎｓｔａｔｉｓｔｉｃｓｏｆｔｈｅｍｅａｎａｂｓｏｌｕｔｅ

ｅｒｒｏｒａｎｄｍａｘｍｕｍａｂｓｏｌｕｔｅｅｒｒｏｒｆｏｒｔｈｅ
ｒｅｃｏｎｓｔｒｕｃｔｅｄｈｅａｔｆｌｕｘｆｉｅｌｄｓ

７３３×１０６、攻角 ５°）的样本数据以作比较，如
图１２和图１３所示。

（ａ）真实热流分布
（ａ）Ｔｒｕｔｈｈｅａｔｆｌｕｘｆｉｅｌｄｄｉｓｔｒｉｂｕｔｉｏｎ

重构误差较小的样本中，背风面流向涡转捩

区热流场重构结果与真实结果基本一致；重构误

差较大的样本中，背风面流向涡转捩阵面重构较

·２２２·
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（ｂ）重构热流分布
（ｂ）Ｒｅｃｏｎｓｔｒｕｃｔｅｄｈｅａｔｆｌｕｘｆｉｅｌｄｄｉｓｔｒｉｂｕｔｉｏｎ

（ｃ）绝对误差分布
（ｃ）Ａｂｓｏｌｕｔｅｅｒｒｏｒｄｉｓｔｒｉｂｕｔｉｏｎ

图１２　误差较小训练样本的热流场重构结果
Ｆｉｇ．１２　Ｒｅｃｏｎｓｔｒｕｃｔｉｏｎｒｅｓｕｌｔｓｏｆｈｅａｔｆｌｕｘｆｉｅｌｄｆｏｒ

ｔｒａｉｎｉｎｇｓａｍｐｌｅｓｗｉｔｈｓｍａｌｌｅｒｒｏｒｓ

（ａ）真实热流分布
（ａ）Ｔｒｕｔｈｈｅａｔｆｌｕｘｆｉｅｌｄｄｉｓｔｒｉｂｕｔｉｏｎ

（ｂ）重构热流分布
（ｂ）Ｒｅｃｏｎｓｔｒｕｃｔｅｄｈｅａｔｆｌｕｘｆｉｅｌｄｄｉｓｔｒｉｂｕｔｉｏｎ

（ｃ）绝对误差分布
（ｃ）Ａｂｓｏｌｕｔｅｅｒｒｏｒｄｉｓｔｒｉｂｕｔｉｏｎ

图１３　误差较大训练样本的热流场重构结果
Ｆｉｇ．１３　Ｒｅｃｏｎｓｔｒｕｃｔｉｏｎｒｅｓｕｌｔｓｏｆｈｅａｔｆｌｕｘｆｉｅｌｄｆｏｒ

ｔｒａｉｎｉｎｇｓａｍｐｌｅｓｗｉｔｈｌａｒｇｅｅｒｒｏｒｓ

为准确，但转捩区热流场重构存在一定的误差。

总体来说，壁面重构热流场较为光滑，并不存在数

值振荡等非物理解。转捩过程的涡破碎和猝发现

象导致转捩狭小区域热流陡增，是变分自编码器

模型重构误差集中分布在转捩区域的主要原因。

因此，图１４展示了训练集与验证集中重构误
差较小和较大的样本数据背风面中心线壁面热流

曲线。重构热流曲线与真实曲线符合较好，转捩

起止点预测有不错的精度，转捩区宽度与真实结

果基本一致。重构误差集中在转捩阵面前缘，是

转捩过程热流剧烈变化的主要表现。总体来说，

变分自编码器模型能够高效、准确地重构高超声

速圆锥转捩热流场。

（ａ）误差较小训练样本的中心线热流曲线
（ａ）Ｃｅｎｔｅｒｌｉｎｅｈｅａｔｆｌｕｘｃｕｒｖｅｓｆｏｒｔｒａｉｎｉｎｇ

ｓａｍｐｌｅｓｗｉｔｈｓｍａｌｌｅｒｒｏｒｓ

（ｂ）误差较大训练样本的中心线热流曲线
（ｂ）Ｃｅｎｔｅｒｌｉｎｅｈｅａｔｆｌｕｘｃｕｒｖｅｓｆｏｒｔｒａｉｎｉｎｇ

ｓａｍｐｌｅｓｗｉｔｈｌａｒｇｅｅｒｒｏｒｓ

图１４　不同训练样本中心线热流曲线重构结果
Ｆｉｇ．１４　Ｒｅｓｕｌｔｓｏｆｔｈｅｒｅｃｏｎｓｔｒｕｃｔｅｄｃｅｎｔｅｒｌｉｎｅｈｅａｔ

ｆｌｕｘｃｕｒｖｅｆｏｒｄｉｆｆｅｒｅｎｔｔｒａｉｎｉｎｇｓａｍｐｌｅｓ

２．２．４　热流场预测
变分自编码器以特征提取得到的隐变量ｚ为

标签，监督学习全连接神经网络，构建自由来流参

数与隐变量ｚ的映射关系，通过串联预训练全连
接神经网络预测模型和变分自编码器模型解码器

部分，构建热流场预测模型。

其中全连接神经网络模型的训练损失曲线如

图１５所示。约３０００步后，训练残差逐渐收敛。

·３２２·
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图１６，全连接神经网络在训练集和验证集表现基
本一致，变分自编码器模型的重构损失在训练集

均小于００２４，预测误差在验证集均小于００２２，
表明该模型的泛化能力较为良好。

图１５　全连接神经网络模型训练损失曲线
Ｆｉｇ．１５　Ｔｒａｉｎｉｎｇｌｏｓｓｃｕｒｖｅｏｆｆｕｌｌｙｃｏｎｎｅｃｔｅｄ

ｎｅｕｒａｌｎｅｔｗｏｒｋｍｏｄｅｌ

图１７和图１８分别是训练集和验证集中预测
误差较小与较大的数据样本热流场预测结果。预

测误差较小的样本中，转捩区热流场预测结果与真

实结果具有较好的一致性，包括转捩阵面、热流陡

增都得到很好的预测；预测误差较大的样本中，转捩

阵面的预测结果与真实结果较为相似，但转捩区热

流场预测存在一定的误差。总的来说，壁面预测热

流场较为光滑，并不存在数值振荡等非物理解。转

捩狭小区域热流的剧烈变化，是生成式热流预测模

型预测误差集中分布在转捩区域前缘的主要原因。

（ａ）全连接神经网络模型在训练集及
验证集上的平均误差

（ａ）Ｍｅａｎａｂｓｏｌｕｔｅｅｒｒｏｒｏｆｆｕｌｌｙｃｏｎｎｅｃｔｅｄｎｅｕｒａｌｎｅｔｗｏｒｋ
ｍｏｄｅｌｏｎｔｒａｉｎｉｎｇａｎｄｖａｌｉｄａｔｉｏｎｄａｔａｓｅｔｓ

（ｂ）全连接神经网络模型在训练集及
验证集上的最大误差

（ｂ）Ｍａｘｉｍｕｍａｂｓｏｌｕｔｅｅｒｒｏｒｏｆｆｕｌｌｙｃｏｎｎｅｃｔｅｄｎｅｕｒａｌ
ｎｅｔｗｏｒｋｍｏｄｅｌｏｎｔｒａｉｎｉｎｇａｎｄｖａｌｉｄａｔｉｏｎｄａｔａｓｅｔｓ

图１６　热流场预测平均误差和最大误差统计分布
Ｆｉｇ．１６　Ｄｉｓｔｒｉｂｕｔｉｏｎｓｔａｔｉｓｔｉｃｓｏｆｔｈｅｍｅａｎａｂｓｏｌｕｔｅ

ｅｒｒｏｒａｎｄｍａｘｉｍｕｍａｂｓｏｌｕｔｅｅｒｒｏｒｆｏｒｔｈｅ
ｐｒｅｄｉｃｔｅｄｈｅａｔｆｌｕｘｆｉｅｌｄｓ

（ａ）真实热流分布
（ａ）Ｔｒｕｔｈｈｅａｔｆｌｕｘｆｉｅｌｄｄｉｓｔｒｉｂｕｔｉｏｎ

（ｂ）预测热流分布
（ｂ）Ｐｒｅｄｉｃｔｅｄｈｅａｔｆｌｕｘｆｉｅｌｄｄｉｓｔｒｉｂｕｔｉｏｎ

（ｃ）绝对误差分布
（ｃ）Ａｂｓｏｌｕｔｅｅｒｒｏｒｄｉｓｔｒｉｂｕｔｉｏｎ

图１７　误差较小训练样本的热流场预测结果
Ｆｉｇ．１７　Ｒｅｓｕｌｔｓｏｆｔｈｅｐｒｅｄｉｃｔｅｄｈｅａｔｆｌｕｘｆｉｅｌｄｆｏｒ

ｔｒａｉｎｉｎｇｓａｍｐｌｅｓｗｉｔｈｓｍａｌｌｅｒｒｏｒｓ

·４２２·
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（ａ）真实热流分布
（ａ）Ｔｒｕｔｈｈｅａｔｆｌｕｘｆｉｅｌｄｄｉｓｔｒｉｂｕｔｉｏｎ

（ｂ）预测热流分布
（ｂ）Ｐｒｅｄｉｃｔｅｄｈｅａｔｆｌｕｘｆｉｅｌｄｄｉｓｔｒｉｂｕｔｉｏｎ

（ｃ）绝对误差分布
（ｃ）Ａｂｓｏｌｕｔｅｅｒｒｏｒｄｉｓｔｒｉｂｕｔｉｏｎ

图１８　误差较大训练样本的热流场预测结果
Ｆｉｇ．１８　Ｒｅｓｕｌｔｓｏｆｔｈｅｐｒｅｄｉｃｔｅｄｈｅａｔｆｌｕｘｆｉｅｌｄｆｏｒ

ｔｒａｉｎｉｎｇｓａｍｐｌｅｓｗｉｔｈｌａｒｇｅｅｒｒｏｒｓ

３　结论

本文结合生成式深度学习方法，融合数值仿

真平台转捩热流数据库，基于变分自编码器架构

搭建了一套适用于高超声速圆锥转捩阵面及壁面

热流场高效、精准预测的人工智能模型。训练数

据集和验证数据集误差统计结果及流场重构和预

测结果表明，该模型能够对不同自由来流条件下

圆锥三维边界层转捩热流场进行精准、高效的重

构及预测。主要结论如下：

１）采用主成分分析方法对高超声速圆锥转
捩热流场进行了线性模态分解，获得了各模态对

应的可解释方差比，确定了变分自编码器模型最

优隐变量空间维数为１６。
２）经过超参数调节的变分自编码器模型具

有较好的壁面热流场特征提取和重构能力。其从

５１２×５１２的高精度真实壁面热流场中提取１６个
隐变量。在训练过程中发现，隐变量 ｚ是自由来
流参数的有效潜在特征，因此变分自编码器是有

力的特征提取模型。变分自编码器在训练数据集

上热流场重构平均误差均小于００３，在验证数据
集上的平均误差均小于００２８，表现出较好的泛
化性能。重构热流场分析表明，在转捩起止位置，

热流的剧烈变化是重构误差集中在转捩前缘区域

的主要原因。

３）经过超参数调节的全连接神经网络模型
主要负责建立自由来流参数与热流场潜在特征之

间的非线性映射关系。预训练的全连接神经网络

模型与变分自编码器模型解码器部分串联构成高

超声速圆锥壁面热流预测模型。统计数据表明，

该模型能够高效且准确地预测高超声速三维圆锥

背风面流向涡转捩区转捩阵面及壁面热流场分

布，预测误差不超过００２４。
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