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A finite difference method for calculating the closed-loop
equilibrium of orbital pursuit-evasion game

YANG Fuyunxiang' , YANG Leping” , CHAI Hua'"
(1. Space Engineering University, Beijing 101416, China;
2. College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China)

Abstract: The issue of constructing the closed-loop equilibrium for close-range orbital pursuit-evasion games was addressed and a computation
method that integrates Bellman's principle of optimality, the finite difference method, and interpolation techniques was proposed. A dimension-
reduction dynamics of the game system in the line-of-sight coordinate frame was derived, establishing a close-range orbital pursuit-evasion game
model and reducing the dimensionality of the system’s state space. Based on Bellman’s principle of optimality, the original problem was
reformulated as a Hamilton-Jacobi-Isaacs partial differential equation terminal value problem, enabling the simultaneous handling of multiple game
scenarios through reverse-time analysis. The state space was discretized using Cartesian grids, and the finite difference method was employed to
calculate the dynamic evolution process of the equilibrium driven by the dynamics, and analyze the game situation. Utilizing the relationship
between control and the spatial gradient of the equilibrium, numerical interpolation was applied to construct the closed-loop control function. The
effectiveness of the proposed method was demonstrated through numerical simulations.
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