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计算轨道追逃闭环均衡的有限差分方法
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摘　要：针对近距离轨道追逃闭环均衡构造问题，提出一种综合运用Ｂｅｌｌｍａｎ最优性原理、有限差分法和
插值技术的计算方法。推导视线坐标系下的博弈系统降维动力学模型，建立近距离轨道追逃博弈模型，降低

系统状态空间维度；基于Ｂｅｌｌｍａｎ最优性原理，重构原问题为哈密顿－雅可比－艾萨克偏微分方程终值问题，
通过逆向分析实现同时处理多组博弈场景；利用Ｃａｒｔｅｓｉａｎ网格离散状态空间，使用有限差分法计算均衡受动
力学驱动的动态演化过程，分析博弈态势；基于控制与均衡空间梯度的关系，使用数值插值构造闭环控制函

数；通过数值仿真验证了方法的有效性。
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　　近年来，轨道追逃问题逐渐成为航天动力学
与控制领域的研究热点，受到越来越多学者的关

注。该问题实质上是一个包含双边控制的连续动

态博弈问题，其中被称为追踪方（ｐｕｒｓｕｅｒ，Ｐ）与逃
逸方（ｅｖａｄｅｒ，Ｅ）的局中人具有相互冲突的目
标［１］。整个博弈过程通过零和微分对策问题进

行描述，通过求解均衡，构造控制函数作为策略，

规划局中人最优轨迹［２］。

均衡是非合作博弈理论的重要概念。研究动

态博弈时，通常会考察开环和闭环两类均衡，其

中：开环均衡是指局中人策略仅依赖于时间的博

弈均衡；闭环均衡是指局中人策略依赖于时间和

当前观测状态量的博弈均衡［３］。目前轨道追逃

领域主要关注开环均衡的构造方法，发展出了两

条技术路线：一条是离散并参数化决策量或状态

量，将问题转化为一个参数优化问题进行求
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解［４］。例如，Ｌｕｋｅ［５］轮流固定一方策略求解另一
方策略，循环迭代直至双方策略收敛；Ｚｈａｎｇ等［６］

针对椭圆参考轨道附近的自由时域问题，设计了

一种基于深度学习的直接法，将训练后网络的输

出作为启动伪谱法的初值。该方法虽然收敛域较

广且无须切换结构先验知识，但解的精度不高，且

最优性无法保证。另一条是基于双边极值原理将

原始问题转化成两点边值问题 （ｔｗｏｐｏｉｎｔ
ｂｏｕｎｄａｒｙｖａｌｕｅｐｒｏｂｌｅｍ，ＴＰＢＶＰ）进行求解。因为
解的精度高，且满足一阶最优性必要条件等特点，

该技术路线是目前求解轨道追逃均衡最常用的方

法，产生了丰富的研究成果［７－１１］。同时，也有学

者针对该技术路线收敛域小、初值敏感等缺陷开

发了改善方法。Ｈａｆｅｒ［１２］针对远距离追逃场景提
出了一种敏感性方法，计算状态和约束条件敏感

性矩阵，基于同伦法实现从无重力问题延拓至真

实问题，提高了计算效率。Ｌｉ等［１３］使用差分进化

为Ｎｅｗｔｏｎ法提供初值猜测，提升了方法稳定性。
随着研究的深入，构造开环均衡的缺陷逐渐

显露，主要表现在以下三点：①由于开环均衡特
性，局中人双方并不能根据实际博弈进程动态调

整自己的控制策略；②最优策略生成依赖均衡轨
迹，当博弈态势偏离均衡轨迹时，需要重新计算；

③受初始博弈态势约束，无法同时处理多组场景。
针对上述问题，部分学者开始关注闭环均衡。

虽然针对线性二次型之类特殊问题构建了相对完

整的理论方法与处理流程［１４－１５］，但总体上说，闭

环均衡求解方法的研究并不充分。当前的主流思

路是通过计算大量开环均衡近似闭环效果。

Ｓｔｕｐｉｋ［１６］针对近距离共面追逃场景，配合 Ｋｒｉｇｉｎｇ
插值以及粒子群优化算法，为均衡求解快速提供

初值。Ｙａｎｇ等［１７］基于深度神经网络（ｄｅｅｐｎｅｕｒａｌ
ｎｅｔｗｏｒｋ，ＤＮＮ）模型对ＴＰＢＶＰ关键参数进行重参
数化，将问题转化为神经网络训练过程，借助

ＤＮＮ模型的记忆能力与效率优势实现闭环均衡
近似。张乘铭等［１８］针对交会型轨道追逃问题，提

出了一种基于神经网络的滚动时域优化方法求解

博弈对策，通过将神经网络猜测轨迹与伪谱法结

合实现策略的快速更新。但该思路存在以下两点

问题：一方面，依然受制于博弈场景初始态势，一

次只能求解一场博弈，难以总结共性规律；另一方

面，单一场景计算成本较高，需要大量计算开环均

衡保证近似效果。

针对上述问题，本论文综合运用 Ｂｅｌｌｍａｎ最
优性原理、有限差分法以及样条插值技术，提出

了一种构造闭环均衡、计算控制函数的方法，实

现同时处理多组博弈场景，为分析博弈态势、总

结共性规律提供支撑。首先推导视线坐标系下

的相对运动方程，降低状态空间维度，明确支付

泛函，建立轨道追逃博弈模型；其次，基于

Ｂｅｌｌｍａｎ最优性原理，将问题重构为哈密顿 －雅
可比 －艾萨克（ＨａｍｉｌｔｏｎＪａｃｏｂｉＩｓａａｃｓ，ＨＪＩ）偏
微分方程（ｐａｒｔｉａｌｄｉｆｆｅｒｅｎｔｉａｌｅｑｕａｔｉｏｎ，ＰＤＥ）终值
问题，通过逆向分析消除场景初始态势可变的影

响；然后利用 Ｃａｒｔｅｓｉａｎ网格离散计算区域，基于
有限差分法使用加权本质无振荡 －总变差不增
（ｗｅｉｇｈｔｅｄ ｅｓｓｅｎｔｉａｌｌｙ ｎｏｎｏｓｃｉｌｌａｔｏｒｙ － ｔｏｔａｌ
ｖａｒｉａｔｉｏｎｄｉｍｉｎｉｓｈｉｎｇ，ＷＥＮＯＴＶＤ）求解器计算均
衡受动力学驱动的演化过程，分析博弈态势；再基

于控制函数与均衡空间梯度之间的关系，为多组

场景同时设计闭环控制函数，总结共性规律；最后

通过数值仿真验证了方法的有效性。

１　问题建模

１．１　视线运动方程

惯性空间中，从Ｐ质心指向 Ｅ质心的单位矢
量称为视线。Ｐ与 Ｅ在地心惯性（ｅａｒｔｈｃｅｎｔｒｉｃａｌ
ｉｎｅｒｔｉａｌ，ＥＣＩ）坐标系中的相对位置关系如图 １
所示。

图１　博弈双方相对位置关系
Ｆｉｇ．１　Ｒｅｌａｔｉｖｅｐｏｓｉｔｉｏｎｒｅｌａｔｉｏｎｓｈｉｐｂｅｔｗｅｅｎｇａｍｅｐｌａｙｅｒｓ

其中：

ｒ＝ｒＥ－ｒＰ＝ｒｅｒ （１）
式中，ｒ表示Ｐ与Ｅ之间的相对距离，ｅｒ为视线方
向单位矢量。

定义视线的瞬时旋转角速度：

ωｓ＝ωｓｅω （２）
式中，ωｓ表示视线瞬时转率，ｅω为瞬时角速度方

·８４２·
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向单位矢量。以 Ｐ质心为原点，ｅｒ、ｅω以及 ｅθ
ｅω×ｅｒ三组单位矢量组成视线旋转坐标系。

定义ｅω的旋转角速度为：
Ωｓ＝Ωｓｅｒ （３）

归纳（ｅｒ，ｅω，ｅθ）的变化规律，即视线运动方程
如下：

ｄｅｒ
ｄｔ＝ωｓｅθ （４）

ｄｅθ
ｄｔ＝－ωｓｅｒ＋Ωｓｅω （５）

ｄｅω
ｄｔ＝－Ωｓｅθ （６）

１．２　无量纲降维动力学模型

对式（１）求导后代入式（４），整理求导后，再
将式（４）与式（５）代入，可得：
ａＥ－ａＰ＝（̈ｒ－ｒω

２
ｓ）ｅｒ＋（ｒωｓ＋２ｒωｓ）ｅθ＋ｒωｓΩｓｅω

（７）
其中加速度ａＥ、ａＰ包含引力项与推力项两部分。

考虑到近距离追逃博弈

ｒ ｒＥ ２

ｒ ｒ{
Ｐ ２

（８）

的特点，忽略引力项差值的影响，定义 ｖｒｒ，ｖθ
ｒωｓ，整理式（７）得：

ｕＥ－ｕＰ＝ ｖｒ－
ｖ２θ( )ｒｅｒ＋ ｖθ＋ｖｒｖθ( )ｒ ｅθ＋ｖθΩｓｅω

（９）
其中ｕＥ、ｕＰ为Ｅ与Ｐ加速度中的推力项，即博弈
双方的控制量。

由式（９）可知：加速度在ｅω轴的分量只改变速
度量Ωｓ与ｖθ，不影响相对距离ｒ。考虑到追逃问题
通常关注相对距离变化，目标集约束只包含终端相

对距离，追逃动力学模型可以降维简化如下：

ｒ＝ｖｒ

ｖｒ－
ｖ２θ
ｒ＝ｕ

ｒ
Ｅ－ｕ

ｒ
Ｐ

ｖθ＋
ｖｒｖθ
ｒ＝ｕ

θ
Ｅ－ｕθ











 Ｐ

（１０）

引入参考距离 ｒｒｅｆ、参考速度 ｖｒｅｆ进行去量纲化处
理，可以得到无量纲降维动力学模型：

ｄｘｒ
ｄ^ｔ＝ｘω

ｄｘω
ｄ^ｔ＝

ｘ２σ
ｘｒ
＋
ｒｒｅｆ
ｖ２ｒｅｆ
（ｕｒＥ－ｕ

ｒ
Ｐ）

ｄｘσ
ｄ^ｔ＝－

ｘｒｘσ
ｘｒ
＋
ｒｒｅｆ
ｖ２ｒｅｆ
（ｕθＥ－ｕθＰ













 ）

（１１）

其中：

ｘｒ
ｒ
ｒｒｅｆ

ｘω
ｖｒ
ｖｒｅｆ

ｘσ
ｖθ
ｖｒｅｆ

ｔ^
ｖｒｅｆ
ｒｒｅｆ















 ｔ

（１２）

１．３　微分对策

基于微分对策理论描述轨道追逃博弈问题通

常分为动力学模型、目标集和支付泛函三部分［２］。

动力学模型一般使用常微分方程描述如下：

ｘ＝ｆ（ｘ，ｕＥ，ｕＰ，ｔ）

ｘ（ｔ０）＝ｘ{
０

（１３）

式中，ｘ∈ＲＲｎ表示博弈系统状态量，ｕＥ∈ＵＥＲＲ
ｎＥ与

ｕＰ∈ＵＰＲＲ
ｎＰ分别表示 Ｅ与 Ｐ的控制函数。函数

ｆ：ＲＲｎ×ＵＥ ×ＵＰ ×［ｔ０，ｔｆ］→ＲＲ
ｎ有界且 Ｌｉｐｓｃｈｉｔｚ

连续。

目标集Ｇ０表示终端约束：
Ｇ０＝｛ｘ∈ＲＲ

ｎ ψ（ｘ（ｔｆ），ｔｆ）＝０ｎψ×１｝ （１４）
其中Ｇ０ＲＲ

ｎ一般为闭集，可以记为一个有界且

Ｌｉｐｓｃｈｉｔｚ连续的函数ｇ：ＲＲｎ→ＲＲ的零水平子集，即：
Ｇ０＝｛ｘｘ∈ＲＲ

ｎ，ｇ（ｘ（ｔｆ））≤０｝ （１５）
支付泛函

Ｊ（ｕＥ，ｕＰ）＝Ψ（ｘ（ｔｆ），ｔｆ）＋∫
ｔｆ

ｔ０
Ｌ（ｘ，ｕＥ，ｕＰ，ｔ）ｄｔ

（１６）
分为终端支付Ψ（ｘ（ｔｆ），ｔｆ）和过程支付 Ｌ（ｘ，ｕＥ，
ｕＰ，ｔ）两部分，前者表示终端状态对博弈结局的影
响，后者表示整个博弈流程产生的消耗。

２　闭环均衡求解方法

为了消除博弈初始态势对均衡构造的影响，

实现批量处理博弈场景，发展基于非线性动力学

的轨道追逃求解方法，本文通过逆向分析，综合运

用Ｂｅｌｌｍａｎ最优性原理、有限差分法和插值技术
进行均衡构造与策略设计。该方法主要分为问题

重构、ＰＤＥ求解、控制与轨迹生成三部分，方法整
体流程如图２所示，其中箭头表示数据流向，箭头
上方标签表示数据名称，方框表示执行操作。

首先基于博弈问题的动力学模型 ｆ、目标集
Ｇ０以及支付泛函 Ｊ（ｕＥ，ｕＰ）进行重构，获得描述
支付泛函动态演化的 ＨＪＩＰＤＥ；其次选择状态空
间子集作为计算区域 Λ并划分网格 Λｇｒｉｄ；然后使
用ＷＥＮＯＴＶＤ求解器，配合终端支付，在Λｇｒｉｄ节点

·９４２·
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上计算ＨＪＩＰＤＥ终值问题数值解Ｊ＾（ｔ，ｘ）用于分析

演化规律，同步记录数值梯度ｘＪ
＾
（ｔ，ｘ）用于生成插

值函数ｘＪ
＾
Ｉ；在完成上述准备工作之后，将代求博

弈问题初始态势组成初值序列，与ｆ、ｘＪ
＾
Ｉ一起输入

ＲＫ（ＲｕｎｇｅＫｕｔｔａ）积分器求解轨迹与控制序列。接

下来对方法各部分进行详细介绍。

图２　方法流程
Ｆｉｇ．２　Ｍｅｔｈｏｄｐｒｏｃｅｓｓ

２．１　问题重构

设ｕＥ∈ＵＥ与ｕＰ∈ＵＰ表示局中人在［ｔ，ｔｆ］上

的各自控制，则均衡可以用式（１７）表示。根据
Ｂｅｌｌｍａｎ最优性原理，最优策略（ｕＥ，ｕＰ）的求解
过程可以分为两步：先选择区间［ｔ＋Δｔ，ｔｆ］上的最

优控制函数，再选择区间［ｔ，ｔ＋Δｔ）上的最优控制

函数。这样式（１７）可以写为如式（１８）所示形式。

Ｊ（ｘ（ｔ），ｔ）＝ｍａｘ
ｕＥ∈ＵＥ
　ｍｉｎ
ｕＰ∈ＵＰ
［Ψ（ｘ（ｔｆ），ｔｆ）＋

∫
ｔｆ

ｔ
Ｌ（ｘ，ｕＥ，ｕＰ，ｔ）ｄｔ］ （１７）

　Ｊ（ｘ（ｔ），ｔ）

＝ ｍａｘ
ｕＥ∈ＵＥ［ｔ，ｔ＋Δｔ）

ｍｉｎ
ｕＰ∈ＵＰ［ｔ，ｔ＋Δｔ）

ｍａｘ
ｕＥ∈ＵＥ［ｔ＋Δｔ，ｔｆ］

ｍｉｎ
ｕＰ∈ＵＰ［ｔ＋Δｔ，ｔｆ］∫

ｔ＋Δｔ

ｔ
Ｌ（ｘ，ｕＥ，ｕＰ，ｔ）ｄ[ τ{ ＋∫

ｔｆ

ｔ＋Δｔ
Ｌ（ｘ，ｕＥ，ｕＰ，ｔ）ｄτ＋Ψ（ｘ（ｔｆ），ｔｆ ] }）

（１８）

式中∫
ｔ＋Δｔ

ｔ
Ｌ（ｘ，ｕＥ，ｕＰ，ｔ）ｄτ与区间［ｔ＋Δｔ，ｔｆ］上的

控制无关，并且

　Ｊ（ｘ（ｔ＋Δｔ），ｔ＋Δｔ）
 ｍａｘ

ｕＥ∈ＵＥ［ｔ＋Δｔ，ｔｆ］
ｍｉｎ

ｕＰ∈ＵＰ［ｔ＋Δｔ，ｔｆ］
［Ψ（ｘ（ｔｆ），ｔｆ）＋

　∫
ｔｆ

ｔ＋Δｔ
Ｌ（ｘ，ｕＥ，ｕＰ，ｔ）ｄτ］ （１９）

则式（１８）可以改写为：
Ｊ（ｘ（ｔ），ｔ）

＝ ｍａｘ
ｕＥ∈ＵＥ［ｔ，ｔ＋Δｔ）

ｍｉｎ
ｕＰ∈ＵＰ［ｔ，ｔ＋Δｔ）∫

ｔ＋Δｔ

ｔ
Ｌ（ｘ，ｕＥ，ｕＰ，ｔ）ｄ[ ]τ＋

　Ｊ（ｘ（ｔ＋Δｔ），ｔ＋Δｔ） （２０）
根据积分中值定理，式（２０）的第一项可以改

写成：

∫
ｔ＋Δｔ

ｔ
Ｌ（ｘ，ｕＥ，ｕＰ，ｔ）ｄτ＝Ｌ（ｘ（ｔ＋αΔｔ），ｕＥ（ｔ＋αΔｔ），

ｕＰ（ｔ＋αΔｔ），ｔ＋αΔｔ）Δｔ

（２１）
式中，α∈（０，１）。基于连续可微的假设，式（２０）
的第二项可以展开成如下Ｔａｙｌｏｒ级数：

　Ｊ（ｘ（ｔ＋Δｔ），ｔ＋Δｔ）

＝Ｊ（ｘ（ｔ），ｔ）＋ Ｊ
（ｘ（ｔ），ｔ）
ｘ（ｔ[ ]）

Ｔｄｘ（ｔ）
ｄｔΔｔ＋

　Ｊ
（ｘ（ｔ），ｔ）
ｔ Δｔ＋ｏ［（Δｔ）２］ （２２）

式中，ｏ［（Δｔ）２］表示 Δｔ的高阶小量。将式（２１）
与式（２２）代入式（１８）可知：

　－Ｊ
（ｘ（ｔ），ｔ）
ｔ

＝ ｍａｘ
ｕＥ∈ＵＥ［ｔ，ｔ＋Δｔ）

　 ｍｉｎ
ｕＰ∈ＵＰ［ｔ，ｔ＋Δｔ）

Ｊ（ｘ（ｔ），ｔ）
ｘ（ｔ[ ]）{ Ｔ

ｆ（ｘ，ｕＥ，ｕＰ）＋

　Ｌ（ｘ（ｔ＋αΔｔ），ｕＥ（ｔ＋αΔｔ），ｕＰ（ｔ＋αΔｔ），ｔ＋αΔｔ）＋

　ｏ［（Δｔ）
２］

Δ }ｔ （２３）

上式令Δｔ→０可得：

－Ｊ
（ｘ，ｔ）
ｔ

＝ｍａｘ
ｕＥ∈ＵＥ
　ｍｉｎ
ｕＰ∈ＵＰ

Ｌ（ｘ，ｕＥ，ｕＰ，ｔ）{ 　
　
＋

　 Ｊ（ｘ，ｔ）
[ ]ｘ

Ｔ

ｆ（ｘ，ｕＥ，ｕＰ，ｔ}） （２４）

式（２４）称为ＨＪＩＰＤＥ，属于泛函与ＰＤＥ的一种混

·０５２·
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合形式。配合约束条件

Ｊ（ｘ（ｔｆ），ｔｆ）＝Ψ（ｘ（ｔｆ），ｔｆ） （２５）
原问题便转化为偏微分方程终值问题。

通过定义Ｈａｍｉｌｔｏｎ函数

　Ｈｘ，ｕＥ，ｕＰ，ｔ，
Ｊ

( )ｘ
Ｌ（ｘ，ｕＥ，ｕＰ，ｔ）＋

Ｊ（ｘ，ｔ）
[ ]ｘ

Ｔ

ｆ（ｘ，ｕＥ，ｕＰ，ｔ）

（２６）
并根据极值原理推导最优闭环控制函数的隐

式解：

ｕＥ ＝ｕＥ ｘ，
Ｊ

( )ｘ
ｕＰ ＝ｕＰ ｘ，

Ｊ

( ){
ｘ

（２７）

原方程可以转化为：

Ｊ（ｘ，ｔ）
ｔ

＋Ｈｘ，Ｊ
（ｘ，ｔ）
( )ｘ ＝０

Ｊ（ｘ（ｔｆ），ｔｆ）＝Ψ（ｘ（ｔｆ），ｔｆ
{

）

（２８）

后续方程计算过程中，省略均衡Ｊ（ｘ（ｔ），ｔ）的上
标，简记为Ｊ。

２．２　ＰＤＥ求解

２．２．１　网格生成
在综合考虑动力学模型的适用范围以及计算

消耗之后，需要将空间计算域限制在一个有限区

域 Λ内，并在此区域内生成均匀 Ｃａｒｔｅｓｉａｎ网
格［１９］，对均衡Ｊ进行离散：

Ｊ＝Ｊｋｄ１，ｄ２，…，ｄｎ （２９）
式中：下标 ｄ１，ｄ２，…，ｄｎ分别表示网格节点（ｘ１，
ｘ２，…，ｘｎ）的坐标；上标ｋ表示时间步。

在设置各空间维度的步长 Δｘ１，Δｘ２，…，Δｘｎ
以及时间步长 Δｔ时，为了保证计算稳定性，需要
满足柯朗 －弗里德里希斯 －列维（Ｃｏｕｒａｎｔ
ＦｒｉｅｄｒｅｉｃｈｓＬｅｗｙ，ＣＦＬ）条件［２０］：

Δｔｍａｘ∑
ｎ

ｉ＝１

Ｈ／Ｊｘｉ
Δｘ( )

ｉ

＝αＣＦＬ （３０）

式中，Ｊｘｉ表示Ｊ对ｘｉ的偏导数，αＣＦＬ∈（０，１）表示
ＣＦＬ数。
２．２．２　空间离散

网格表示允许以一种直接的方式计算均衡 Ｊ
的空间梯度ｘＪ。这里使用了五阶 ＷＥＮＯ格
式［２１］进行近似计算。以Ｊ关于ｘ１的偏导数Ｊｘ１
Ｊ／ｘ１的计算为例进行说明。令 Ｊ关于 ｘ１的一
阶均差定义在网格节点中点处：

Ｄ１ｄ１＋１／２Ｊ
Ｊｋｄ１＋１，ｄ２，…，ｄｎ－Ｊ

ｋ
ｄ１，ｄ２，…，ｄｎ

Δｘ１
（３１）

记：

（Ｄ－Ｊ）ｄ１Ｄ
１
ｄ１－１／２Ｊ

（Ｄ＋Ｊ）ｄ１Ｄ
１
ｄ１＋１／２

{ Ｊ
（３２）

取 模 板 ｛Ｊｋｄ１－３，ｄ２，…，ｄｎ，Ｊ
ｋ
ｄ１－２，ｄ２，…，ｄｎ，Ｊ

ｋ
ｄ１－１，ｄ２，…，ｄｎ，

Ｊｋｄ１，ｄ２，…，ｄｎ，Ｊ
ｋ
ｄ１＋１，ｄ２，…，ｄｎ，Ｊ

ｋ
ｄ１＋２，ｄ２，…，ｄｎ｝，定义

υ１（Ｄ
－Ｊ）ｄ１－２

υ２（Ｄ
－Ｊ）ｄ１－１

υ３（Ｄ
－Ｊ）ｄ１

υ４（Ｄ
－Ｊ）ｄ１＋１

υ５（Ｄ
－Ｊ）ｄ１















＋２

（３３）

偏导数左近似Ｊ－ｘ１可以根据下式计算：
Ｊ－ｘ１＝ω１（Ｊ

－
ｘ１）１＋ω２（Ｊ

－
ｘ１）２＋ω３（Ｊ

－
ｘ１）３ （３４）

式中，

（Ｊ－ｘ１）１
１
３υ１－

７
６υ２＋

１１
６υ３

（Ｊ－ｘ１）２－
１
６υ２＋

５
６υ３＋

１
３υ４

（Ｊ－ｘ１）３
１
３υ３＋

５
６υ４－

１
６υ













５

（３５）

非线性权重ωｍ（ｍ＝１，２，３）为

ωｍ＝
αｍ

α１＋α２＋α３

αｍ＝
ｃｍ
ε＋Ｓ( )ｍ









 ２

（３６）

其中，ε为灵敏度参数，是一个小量，用于避免分
母为零，其取值一定程度上影响收敛精度［２２］，通

常取为ε＝１０－６；ｃｍ为理想权重，以确保在光滑区
域能够获得最优近似，其取值分别为 ｃ１＝０１、
ｃ２＝０６、ｃ３＝０．３；Ｓｍ为光滑因子，表达式为

Ｓ１＝
１３
１２（υ１－２υ２＋υ３）

２＋１４（υ１－４υ２＋３υ３）
２

Ｓ２＝
１３
１２（υ２－２υ３＋υ４）

２＋１４（υ２－υ４）
２

Ｓ３＝
１３
１２（υ３－２υ４＋υ５）

２＋１４（３υ３－４υ４＋υ５）











 ２

（３７）
取 ｛Ｊｋｄ１－２，ｄ２，…，ｄｎ， Ｊ

ｋ
ｄ１－１，ｄ２，…，ｄｎ， Ｊ

ｋ
ｄ１，ｄ２，…，ｄｎ，

Ｊｋｄ１＋１，ｄ２，…，ｄｎ，Ｊ
ｋ
ｄ１＋２，ｄ２，…，ｄｎ，Ｊ

ｋ
ｄ１＋３，ｄ２，…，ｄｎ｝，定义

υ１（Ｄ
＋Ｊ）ｄ１－２

υ２（Ｄ
＋Ｊ）ｄ１－１

υ３（Ｄ
＋Ｊ）ｄ１

υ４（Ｄ
＋Ｊ）ｄ１＋１

υ５（Ｄ
＋Ｊ）ｄ１















＋２

（３８）

重复上述计算流程便可以获得偏导数右近似Ｊ＋ｘ１。

·１５２·
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将 ｄ１替换为 ｄ２，ｄ３，…，ｄｎ可以计算 Ｊ关于 ｘ２，
ｘ３，…，ｘｎ的偏导数左右近似，组成空间梯度的左
右近似：

（ｘＪ）
－［Ｊ－ｘ１；Ｊ

－
ｘ２；…；Ｊ

－
ｘｎ］ （３９）

（ｘＪ）
＋［Ｊ＋ｘ１；Ｊ

＋
ｘ２；…；Ｊ

＋
ｘｎ］ （４０）

而 Ｈａｍｉｌｔｏｎ量 的 近 似 Ｈ＾则 使 用 Ｌａｘ
Ｆｒｉｅｄｒｉｃｈｓ格式［２３］计算：

Ｈ＾＝Ｈｘ，
（ｘＪ）

＋＋（ｘＪ）
－( )２
－∑

ｎ

ｉ＝１

βｉ
２（Ｊ

＋
ｘｉ－Ｊ

－
ｘｉ）

（４１）
式中，

βｉ＝ ｍａｘ
［Ｊｍｉｎｘｉ，Ｊ

ｍａｘｘｉ］

Ｈ
Ｊｘｉ

（４２）

表示各维度耗散系数，用于控制数值黏度。

２．２．３　时间离散
时间离散则采用的是三阶ＴＶＤＲＫ方法［２４］。

首先通过一次Ｅｕｌｅｒ步，将方程数值解推进至ｔｋ＋
Δｔ时刻：

Ｊｋ＋１－Ｊｋ

Δｔ
＋Ｈｋ^＝０ （４３）

然后再经过一次 Ｅｕｌｅｒ步，将均衡值推进至 ｔｋ＋
２Δｔ时刻：

Ｊｋ＋２－Ｊｋ＋１

Δｔ
＋Ｈｋ^＋１＝０ （４４）

接着基于输入数据和外推结果的平均步骤

Ｊｋ＋１／２＝３４Ｊ
ｋ＋１４Ｊ

ｋ＋２ （４５）

提供均衡Ｊ在ｔｋ＋１２Δｔ时刻的数值。之后再经历

一次 Ｅｕｌｅｒ步的计算，可以将数值解外推至 ｔｋ＋
３
２Δｔ时刻：

Ｊｋ＋３／２－Ｊｋ＋１／２

Δｔ
＋Ｈｋ^＋１／２＝０ （４６）

最终再次通过平均步骤

Ｊｋ＋１＝１３Ｊ
ｋ＋２３Ｊ

ｋ＋３／２ （４７）

生成均衡在ｔｋ＋Δｔ时刻的三阶精度ＴＶＤ近似。

２．３　控制与轨迹生成

在根据ＷＥＮＯＴＶＤ求解器完成计算域 Λ内
均衡演化的计算之后，可以获得各网格节点上的

均衡数值 Ｊ＾（ｔ，ｘ）和相应的数值梯度ｘＪ
＾
（ｔ，ｘ）。

其中，Ｊ＾（ｔ，ｘ）被用于展示均衡的受动力学驱动的
动态演化过程，分析博弈态势，研判航天器威胁关

系；ｘＪ
＾
（ｔ，ｘ）则用于构造三次样条插值函数

ｘＪ
＾
Ｉ（ｔ，ｘ），与动力学模型式（１１）和控制隐式解

式（２７）一同构成基于ＲＫ方法的数值积分器。之
后，只需要向积分器输入场景初始态势序列以及

博弈时间便可以构造闭环控制函数，外推闭环均

衡轨迹。

３　仿真算例

３．１　场景通用参数设置

首先明确去量纲参数 ｒｒｅｆ＝１００ｋｍ、ｖｒｅｆ＝

１００ｍ／ｓ，并随机设置了６组博弈初始态势，用于
展示博弈场景结果，初始态势详细信息记录在

表１内。

表１　轨道追逃博弈初始场景
Ｔａｂ．１　Ｉｎｉｔｉａｌｓｉｔｕａｔｉｏｎｏｆｏｒｂｉｔａｌｐｕｒｓｕｉｔｅｖａｓｉｏｎｇａｍｅ

场景编号 ｘｒ ｘω ｘσ

１ ０．０６ －０．６３ 　０．７０

２ ０．０９ －０．３８ ０．０８

３ ０．１１ ０．０９ ０．０５

４ ０．１８ －０．５７ ０．１２

５ ０．２５ ０．１４ －０．３１

６ ０．２７ ０．２６ －０．８０

其次设置相对距离为终端约束，明确追逃问

题目标集为：

Ｇ０＝｛ｘ∈ＲＲ
３ ｘｒ≤０．０２｝ （４８）

继而确定相应ｇ（ｘ）：
ｇ（ｘ）＝ｘｒ－０．０２ （４９）

然后使用Ｂｏｌｚａ型性能指标表示支付泛函：

Ｊ（ｕＥ，ｕＰ）＝Ψ（ｘ（^ｔｆ），^ｔｆ）＋∫
ｔ^ｆ

ｔ^０
Ｌ（ｕＥ，ｕＰ）ｄ^ｔ

（５０）
其中，终端支付为：

Ψ（ｘ（^ｔｆ），^ｔｆ）＝
０ ｘ（^ｔｆ）∈Ｇ０
１０ 其{ 他

（５１）

过程支付为：

Ｌ（ｕＥ，ｕＰ）＝
ｒ２ｒｅｆ
ｖ４ｒｅｆ
［（ｕＰ）

ＴＲＴＰＲＰｕＰ－（ｕＥ）
ＴＲＴＥＲＥｕＥ］

（５２）
相关参数设置如下：

ＲＥ＝槡２Ｉ２×２
ＲＰ＝Ｉ２×{

２

（５３）

再设置博弈场景持续时间 ｔ^ｆ－^ｔ０为３６，而计
算空间域Λ的相关信息见表２。

最后，为了在仿真过程中分析支付泛函在计

·２５２·
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算空间域Λ中随时间的演化过程，在 ｘｒ＝｛００５，
０１０，０１５，０２０，０３０｝设置采样平面，通过切片
云图展现演化细节。

表２　计算空间域网格信息
Ｔａｂ．２　Ｃｏｍｐｕｔａｔｉｏｎａｌｓｐａｔｉａｌｇｒｉｄｉｎｆｏｒｍａｔｉｏｎ

变量 ｘｒ ｘω ｘσ

范围 ［０．０１，０．３］ ［－１，１］ ［－１，１］

网格数 １０００ ２０ ２０

步长 ０．０００２９ ０．１ ０．１

３．２　推力构型Ⅰ：各方向机动能力有限

该推力构型下，双方航天器在各方向上的机动

能力独立、有限且相异，推力加速度可以表示为：

ｕｒＥ∈［－Ｔ
ｒ
Ｅ，Ｔ

ｒ
Ｅ］

ｕσＥ∈［－ＴσＥ，ＴσＥ{ ］
（５４）

ｕｒＰ∈［－Ｔ
ｒ
Ｐ，Ｔ

ｒ
Ｐ］

ｕσＰ∈［－ＴσＰ，ＴσＰ{ ］
（５５）

其中，ＴｒＥ＝０００４ｇ０，ＴσＥ＝０００３ｇ０，Ｔ
ｒ
Ｐ＝００１ｇ０，

ＴσＰ＝０００９ｇ０，ｇ０表示海平面重力加速度。
３．２．１　问题重构

通过计算Ｈａｍｉｌｔｏｎ函数：

　Ｈｘ，ｕＥ，ｕＰ，
Ｊ
( )ｘ

＝Ｌ（ｘ，ｕＥ，ｕＰ）＋
Ｊ
[ ]ｘ

Ｔ

ｆ（ｘ，ｕＥ，ｕＰ）

＝Ｊ
ｘｒ
ｘω＋

Ｊ
ｘω
ｘ２σ
ｘｒ
－Ｊ
ｘσ
ｘωｘσ
ｘｒ
＋
ｒｒｅｆ
ｖ２ｒｅｆ
Ｊ
ｘω
ｕｒＥ＋

Ｊ
ｘσ
ｕσ[ ]Ｅ －

　
２ｒ２ｒｅｆ
ｖ４ｒｅｆ
［（ｕｒＥ）

２＋（ｕσＥ）
２］－

ｒｒｅｆ
ｖ２ｒｅｆ

Ｊ
ｘω
ｕｒＰ＋

Ｊ
ｘσ
ｕσ[ ]Ｐ ＋

　
２ｒ２ｒｅｆ
ｖ４ｒｅｆ
［（ｕｒＰ）

２＋（ｕσＰ）
２］ （５６）

并将推力构型式（５４）～（５５）代入式（５６），根据定
义推导闭环控制ｕＥ 与ｕＰ 的隐式解：

　（ｕｒＥ） ＝

－ＴｒＥ
ｖ２ｒｅｆ
４ｒｒｅｆ

Ｊ
ｘω
≤－ＴｒＥ

ｖ２ｒｅｆ
４ｒｒｅｆ

Ｊ
ｘω

－ＴｒＥ＜
ｖ２ｒｅｆ
４ｒｒｅｆ

Ｊ
ｘω
＜ＴｒＥ

ＴｒＥ
ｖ２ｒｅｆ
４ｒｒｅｆ

Ｊ
ｘω
≥Ｔｒ













 Ｅ

（５７）

　（ｕσＥ） ＝

－ＴσＥ
ｖ２ｒｅｆ
４ｒｒｅｆ

Ｊ
ｘσ
≤－ＴσＥ

ｖ２ｒｅｆ
４ｒｒｅｆ

Ｊ
ｘσ

－ＴσＥ＜
ｖ２ｒｅｆ
４ｒｒｅｆ

Ｊ
ｘσ
＜ＴσＥ

ＴσＥ
ｖ２ｒｅｆ
４ｒｒｅｆ

Ｊ
ｘσ
≥Ｔσ













 Ｅ

（５８）

　（ｕｒＰ） ＝

－ＴｒＰ
ｖ２ｒｅｆ
２ｒｒｅｆ

Ｊ
ｘω
≤－ＴｒＰ

ｖ２ｒｅｆ
２ｒｒｅｆ

Ｊ
ｘω

－ＴｒＰ＜
ｖ２ｒｅｆ
２ｒｒｅｆ

Ｊ
ｘω
＜ＴｒＰ

ＴｒＰ
ｖ２ｒｅｆ
２ｒｒｅｆ

Ｊ
ｘω
≥Ｔｒ













 Ｐ

（５９）

　（ｕσＰ） ＝

－ＴσＰ
ｖ２ｒｅｆ
２ｒｒｅｆ

Ｊ
ｘσ
≤－ＴσＰ

ｖ２ｒｅｆ
２ｒｒｅｆ

Ｊ
ｘσ

－ＴσＰ＜
ｖ２ｒｅｆ
２ｒｒｅｆ

Ｊ
ｘσ
＜ＴσＰ

ＴσＰ
ｖ２ｒｅｆ
２ｒｒｅｆ

Ｊ
ｘσ
≥Ｔσ













 Ｐ

（６０）

配合终端支付构成的终值条件：

Ｊ（ｘ（^ｔｆ），^ｔｆ）＝Ψ（ｘ（^ｔｆ），^ｔｆ） （６１）
组成完整的ＨＪＩＰＤＥ终值问题。
３．２．２　支付泛函演化结果

基于 ＷＥＮＯＴＶＤ求解器完成 ＨＪＩＰＤＥ终值
问题求解之后，以切片云图的方式绘制博弈期间

支付泛函的演化过程，结果如图３所示。
观察计算结果可以发现：支付泛函等值面的

分布关于ｘσ＝０平面对称，说明只有ｘσ数值变化
会影响泛函，即视线旋转的方向不影响博弈过程。

通过切片观察泛函在 ｘσ－ｘω平面上的分布可以
发现极小值一直沿着ｘω轴负方向转移，值的变化
区域越来越小，直至最后形成终端支付。由于该

平面上各个方向的扩散阻力不同，数值的变化速

度有着明显差异。

３．２．３　博弈场景计算结果
给出整个计算域 Λ内的支付泛函信息后，

便可以为博弈场景构造均衡，生成局中人的闭

环控制函数和均衡轨迹。基于表１内６组初始
态势同时计算相应的博弈场景获得均衡轨迹与

闭环控制函数，相应的详细信息记录在图 ４～
９中。

根据计算结果可以发现：博弈双方的控制函

数受到自身机动能力的限制和支付泛函梯度的双

重约束，当机动能力无法满足梯度需求时，会影响

均衡轨迹以及博弈的结果。场景１与场景６由于
追踪方机动能力不足，未能达成终端约束条件，逃

逸方成功逃逸。通过６组博弈场景可以发现博弈
共性：博弈前期首先会逐步降低视线旋转的角速

度，直到视线旋转角速度可以忽略后，开始降低

ｕσ输出，并同步开始缩短相对距离，直至博弈
结束。

·３５２·
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图３　均衡受动力学驱动的演化过程（推力构型Ⅰ）
Ｆｉｇ．３　Ｅｑｕｉｌｉｂｒｉｕｍｅｖｏｌｕｔｉｏｎｐｒｏｃｅｓｓｄｒｉｖｅｎｂｙｄｙｎａｍｉｃｓ（ｔｈｒｕｓｔｃｏｎｆｉｇｕｒａｔｉｏｎⅠ）

（ａ）状态变化
（ａ）Ｓｔａｔｅｃｈａｎｇｅ

（ｂ）控制函数变化
（ｂ）Ｃｏｎｔｒｏｌｆｕｎｃｔｉｏｎｃｈａｎｇｅ

图４　场景１博弈过程（推力构型Ⅰ）
Ｆｉｇ．４　Ｇａｍｅｐｌａｙｐｒｏｃｅｓｓｏｆｓｃｅｎａｒｉｏ１

（ｔｈｒｕｓｔｃｏｎｆｉｇｕｒａｔｉｏｎⅠ）

·４５２·
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（ａ）状态变化
（ａ）Ｓｔａｔｅｃｈａｎｇｅ

（ｂ）控制函数变化
（ｂ）Ｃｏｎｔｒｏｌｆｕｎｃｔｉｏｎｃｈａｎｇｅ

图５　场景２博弈过程（推力构型Ⅰ）
Ｆｉｇ．５　Ｇａｍｅｐｌａｙｐｒｏｃｅｓｓｏｆｓｃｅｎａｒｉｏ２

（ｔｈｒｕｓｔｃｏｎｆｉｇｕｒａｔｉｏｎⅠ）

（ａ）状态变化
（ａ）Ｓｔａｔｅｃｈａｎｇｅ

（ｂ）控制函数变化
（ｂ）Ｃｏｎｔｒｏｌｆｕｎｃｔｉｏｎｃｈａｎｇｅ

图６　场景３博弈过程（推力构型Ⅰ）
Ｆｉｇ．６　Ｇａｍｅｐｌａｙｐｒｏｃｅｓｓｏｆｓｃｅｎａｒｉｏ３

（ｔｈｒｕｓｔｃｏｎｆｉｇｕｒａｔｉｏｎⅠ）

（ａ）状态变化
（ａ）Ｓｔａｔｅｃｈａｎｇｅ

（ｂ）控制函数变化
（ｂ）Ｃｏｎｔｒｏｌｆｕｎｃｔｉｏｎｃｈａｎｇｅ

图７　场景４博弈过程（推力构型Ⅰ）
Ｆｉｇ．７　Ｇａｍｅｐｌａｙｐｒｏｃｅｓｓｏｆｓｃｅｎａｒｉｏ４

（ｔｈｒｕｓｔｃｏｎｆｉｇｕｒａｔｉｏｎⅠ）

·５５２·
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（ａ）状态变化
（ａ）Ｓｔａｔｅｃｈａｎｇｅ

（ｂ）控制函数变化
（ｂ）Ｃｏｎｔｒｏｌｆｕｎｃｔｉｏｎｃｈａｎｇｅ

图８　场景５博弈过程（推力构型Ⅰ）
Ｆｉｇ．８　Ｇａｍｅｐｌａｙｐｒｏｃｅｓｓｏｆｓｃｅｎａｒｉｏ５

（ｔｈｒｕｓｔｃｏｎｆｉｇｕｒａｔｉｏｎⅠ）

（ａ）状态变化
（ａ）Ｓｔａｔｅｃｈａｎｇｅ

（ｂ）控制函数变化
（ｂ）Ｃｏｎｔｒｏｌｆｕｎｃｔｉｏｎｃｈａｎｇｅ

图９　场景６博弈过程（推力构型Ⅰ）
Ｆｉｇ．９　Ｇａｍｅｐｌａｙｐｒｏｃｅｓｓｏｆｓｃｅｎａｒｉｏ６

（ｔｈｒｕｓｔｃｏｎｆｉｇｕｒａｔｉｏｎⅠ）

３．３　推力构型Ⅱ：总机动能力有限

该推力构型下，双方航天器总机动能力有限，

导致两个方向的控制量会相互影响，推力加速度

可以表示为：

ｕｒＥ
ｕσ[ ]
Ｅ

＝ＴＥｍａｘκＥ
υｒＥ
υσ[ ]
Ｅ

（６２）

ｕｒＰ
ｕσ[ ]
Ｐ

＝ＴＰｍａｘκＰ
υｒＰ
υσ[ ]
Ｐ

（６３）

其中：ＴＥｍａｘ＝０００６ｇ０与Ｔ
Ｐ
ｍａｘ＝００１ｇ０表示追逃双方

的最大推力加速度；κＥ，κＰ∈［０，１］表示推力系数；
［υｒＥ　υσＥ］

Ｔ与［υｒＰ　υσＰ］
Ｔ表示推力方向单位矢量。

３．３．１　问题重构
将推力构型Ⅱ中的总机动能力与通用参数一

同代入Ｈａｍｉｌｔｏｎ函数，通过定义

λ Ｊ
ｘ( )
ω

２

＋ Ｊ
ｘ( )
σ槡
２

（６４）

可以推导出ｕＥ 与ｕＰ 的隐式解：

υｒＥ
υσ[ ]
Ｅ



＝
υｒＰ
υσ[ ]
Ｐ



＝１
λ

Ｊ
ｘω
Ｊ
ｘ











σ

（６５）

（κＥ） ＝

ｖ２ｒｅｆλ
４ＴＥｍａｘｒｒｅｆ

λ＜
４ＴＥｍａｘｒｒｅｆ
ｖ２ｒｅｆ

１ λ≥
４ＴＥｍａｘｒｒｅｆ
ｖ２










ｒｅｆ

（６６）

（κＰ） ＝

ｖ２ｒｅｆλ
２ＴＰｍａｘｒｒｅｆ

λ＜
２ＴＰｍａｘｒｒｅｆ
ｖ２ｒｅｆ

１ λ≥
２ＴＰｍａｘｒｒｅｆ
ｖ２










ｒｅｆ

（６７）
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再回代入 Ｈａｍｉｌｔｏｎ函数，设置方程终值为终端
支付：

Ｊ（^ｔｆ）＝Ψ（ｘ（^ｔｆ）） （６８）
构成完整的ＨＪＩＰＤＥ终值问题：

－Ｊ
^ｔ
＝Ｈｘ，Ｊ( )ｘ

Ｊ（^ｔｆ）＝Ψ（ｘ（^ｔｆ
{

））

（６９）

３．３．２　支付泛函演化结果
在ＨＪＩＰＤＥ终值问题求解完成之后，以切片

云图的方式绘制博弈期间支付泛函的演化过程，

结果如图１０所示。
推力构型Ⅱ支付泛函的等值面一开始可以近

似认为是由圆心位于 ｘｒ轴上的圆沿 ｘｒ轴延伸得
到的曲面，分布相对均匀。随着博弈的进行，等值

面与支付的极小值都在向着ｘω负方向偏移，值的
变化区域越来越小，直至最终形成终端支付。但

相比于推力构型Ⅰ，演化过程影响的区域更小。
该构型计算结果同样关于 ｘσ＝０平面对称，也说
明视线旋转的角速度方向对博弈没有影响。通过

切片观察支付泛函在 ｘσ－ｘω平面上的分布可以
明显看出右侧区域各颜色区域更为紧密，色相变

化更剧烈，说明相比于推力构型Ⅰ，该构型下的支
付泛函的演化更为剧烈。

３．３．３　博弈场景计算结果
基于支付泛函结果对６组博弈场景进行计算，

均衡轨迹和控制函数的详细结果记录于图１１～１６
中。从中可以发现：使用推力构型Ⅱ时，博弈双方的
控制函数一方面需要考虑支付函数空间梯度，另一

方面需要考虑自身机动能力如何安排，从而影响了

均衡轨迹以及博弈的结果———与推力构型Ⅰ时只需
增加时间便可完成博弈不同，场景１和场景６完全

图１０　均衡受动力学驱动的演化过程（推力构型Ⅱ）
Ｆｉｇ．１０　Ｅｑｕｉｌｉｂｒｉｕｍｅｖｏｌｕｔｉｏｎｐｒｏｃｅｓｓｄｒｉｖｅｎｂｙｄｙｎａｍｉｃｓ（ｔｈｒｕｓｔｃｏｎｆｉｇｕｒａｔｉｏｎⅡ）

·７５２·
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（ａ）状态变化
（ａ）Ｓｔａｔｅｃｈａｎｇｅ

（ｂ）控制函数变化
（ｂ）Ｃｏｎｔｒｏｌｆｕｎｃｔｉｏｎｃｈａｎｇｅ

图１１　场景１博弈过程（推力构型Ⅱ）
Ｆｉｇ．１１　Ｇａｍｅｐｌａｙｐｒｏｃｅｓｓｏｆｓｃｅｎａｒｉｏ１

（ｔｈｒｕｓｔｃｏｎｆｉｇｕｒａｔｉｏｎⅡ）

（ａ）状态变化
（ａ）Ｓｔａｔｅｃｈａｎｇｅ

（ｂ）控制函数变化
（ｂ）Ｃｏｎｔｒｏｌｆｕｎｃｔｉｏｎｃｈａｎｇｅ

图１２　场景２博弈过程（推力构型Ⅱ）
Ｆｉｇ．１２　Ｇａｍｅｐｌａｙｐｒｏｃｅｓｓｏｆｓｃｅｎａｒｉｏ２

（ｔｈｒｕｓｔｃｏｎｆｉｇｕｒａｔｉｏｎⅡ）

（ａ）状态变化
（ａ）Ｓｔａｔｅｃｈａｎｇｅ

（ｂ）控制函数变化
（ｂ）Ｃｏｎｔｒｏｌｆｕｎｃｔｉｏｎｃｈａｎｇｅ

图１３　场景３博弈过程（推力构型Ⅱ）
Ｆｉｇ．１３　Ｇａｍｅｐｌａｙｐｒｏｃｅｓｓｏｆｓｃｅｎａｒｉｏ３

（ｔｈｒｕｓｔｃｏｎｆｉｇｕｒａｔｉｏｎⅡ）

·８５２·
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（ａ）状态变化
（ａ）Ｓｔａｔｅｃｈａｎｇｅ

（ｂ）控制函数变化
（ｂ）Ｃｏｎｔｒｏｌｆｕｎｃｔｉｏｎｃｈａｎｇｅ

图１４　场景４博弈过程（推力构型Ⅱ）
Ｆｉｇ．１４　Ｇａｍｅｐｌａｙｐｒｏｃｅｓｓｏｆｓｃｅｎａｒｉｏ４

（ｔｈｒｕｓｔｃｏｎｆｉｇｕｒａｔｉｏｎⅡ）

（ａ）状态变化
（ａ）Ｓｔａｔｅｃｈａｎｇｅ

（ｂ）控制函数变化
（ｂ）Ｃｏｎｔｒｏｌｆｕｎｃｔｉｏｎｃｈａｎｇｅ

图１５　场景５博弈过程（推力构型Ⅱ）
Ｆｉｇ．１５　Ｇａｍｅｐｌａｙｐｒｏｃｅｓｓｏｆｓｃｅｎａｒｉｏ５

（ｔｈｒｕｓｔｃｏｎｆｉｇｕｒａｔｉｏｎⅡ）

（ａ）状态变化
（ａ）Ｓｔａｔｅｃｈａｎｇｅ

（ｂ）控制函数变化
（ｂ）Ｃｏｎｔｒｏｌｆｕｎｃｔｉｏｎｃｈａｎｇｅ

图１６　场景６博弈过程（推力构型Ⅱ）
Ｆｉｇ．１６　Ｇａｍｅｐｌａｙｐｒｏｃｅｓｓｏｆｓｃｅｎａｒｉｏ６

（ｔｈｒｕｓｔｃｏｎｆｉｇｕｒａｔｉｏｎⅡ）

·９５２·
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无法达成终端约束条件。构造出的控制函数以及

状态变化情况也与推力构型Ⅰ相差较大，但该推
力构型下体现的博弈规律与推力构型Ⅰ的分析结
果类似。

３．４　博弈规则总结

仿真算例验证了方法的有效性。通过对两类

推力构型下支付函数的演化过程进行分析，可以

发现视线旋转角速度的方向对博弈过程没有影

响，支付泛函极小值点一直向着 ｘω负方向转移，
且ｘσ－ｘω平面内的分布受推力构型影响较大，主
要体现在影响区域范围、等值线形状以及变化剧

烈程度三个方面。

通过对６组博弈场景在不同推力构型下的结
局、均衡轨迹以及控制函数进行分析，可以说明机

动能力对博弈的影响，并且视线旋转坐标系下的

博弈可以总结为两个步骤：①校准阶段，发生在博
弈前期，逐步降低视线旋转的角速度，直到视线旋

转角速度趋于０为止；②追赶阶段，降低ｕσ输出，
通过调整ｕｒ缩短相对距离直至在博弈结束时满
足终端约束。

４　结论

本文针对近距离轨道追逃问题，提出了一种

综合运用 Ｂｅｌｌｍａｎ最优性原理、有限差分法和插
值技术的闭环均衡构造、控制函数生成方法。主

要研究结果如下：

１）使用视线旋转坐标系下的降维动力学模
型，实现追逃系统状态空间降维，降低了问题的复

杂度。

２）基于Ｂｅｌｌｍａｎ最优性原理构造ＨＪＩＰＤＥ，描
述均衡解受动力学驱动的演化过程。通过逆向分

析，消除博弈场景初值约束，实现同时处理多组博

弈场景。

３）利用Ｃａｒｔｅｓｉａｎ网格离散状态空间，使用有
限差分法构造 ＷＥＮＯＴＶＤ求解器计算 ＨＪＩＰＤＥ
终值问题，为博弈态势分析和共性规律总结提供

支撑。

４）建立控制与均衡梯度的关系，通过数值插
值计算当前博弈态势下的均衡及其空间梯度，配

合动力学模型使用数值方法外推均衡轨迹以及完

整的闭环控制函数，实现非线性追逃问题闭环均

衡求解。

需要指出的是，当前方法在以下方面存在

限制：

１）降维动力学的推导是基于追逃目标集不

包含Ωｓ进行的，当目标集中包含Ωｓ约束时，无法
实现降维；

２）该方法使用的是均匀 Ｃａｒｔｅｓｉａｎ网格，目前
只适用于规则区域；

３）该方法需要划分网格，当面对高维动力学
模型驱动的博弈问题时，维度的增加会导致网格

点数呈指数级增加，即出现维数灾难。

未来将就方法局限性开展针对性研究：

１）针对复杂目标集、高维状态空间、强非线
性动力学模型以及多局中人博弈场景进行理论研

究，建立相应的数学模型与处理流程，总结一般性

博弈规律；

２）为计算支付泛函长时间演化过程寻找稳
定可靠的无网格方法，尝试与人工智能技术相结

合，开发ＨＪＩＰＤＥ终值问题的智能计算方法；
３）后续进一步细化模型，考虑存在继电器特

性的控制量的输出，增补考虑执行机构特性的追

逃问题求解。
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