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Analysis of mechanical properties of the rotational re-entry
metastructures skeleton of the aircraft
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2. State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China)

Abstract; To achieve swept-back, variable camber, and torsional deformation of the aircraft’ s morphing wing, a rotating re-entry
superstructure with adjustable elastic parameters was proposed. The rotational re-entrant metastructure was composed of an inwardly concave octagon
rotated 90° and extended ligaments. The wing section was constructed through the spatial topological filling strategy of the extended straight arm
ligaments, forming a bone architecture with deformation capability. Based on the Mohr's theory, a theoretical model of the relative elastic modulus
and Poisson’s ratio of the rotational re-entry metastructures along three directions in space was established. The finite element model of the rotational
re-entry metastructures were established by ANSYS software, and five rotational re-entry metastructures prototypes were processed by 3D printer
technology. The theoretical, simulation and experimental results were compared respectively. The maximum absolute relative error of Poisson's ratio
along the x, y and z directions is 10.22% , indicating the accuracy of the theoretical model and the simulation model. The effects of geometric
parameters on the elastic parameters of metastructures were analyzed, and it is found that the aspect ratio and the structural angle have a great
influence on the mechanical parameters of Poisson’s ratio, which can provide a theoretical basis for the application of morphing wing skeleton of
aircraft.
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Tab.2 Comparison of the theoretical and simulation results of the horizontal direction
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Tab.3 Comparison of experimental and theoretical results
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vary with the concave angle §, when 6, changes
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