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组合式细节特征增强的隔离段流场智能重构方法

吴京润１，邓　雪２，田　野１，２，胥梦绮１，２，张　华１

（１．西南科技大学信息工程学院，四川绵阳　６２１０００；２．中国空气动力研究与发展中心空天技术研究所，四川绵阳　６２１０００）

摘　要：针对超声速流场智能重构方法存在的复杂波系结构特征丢失、无法有效捕捉非定常流场的时间
演化特性，以及共同导致的无法准确辨识激波串前缘位置（ｓｈｏｃｋｔｒａｉｎｌｅａｄｉｎｇｅｄｇｅ，ＳＴＬＥ）等问题，提出基于组
合式细节特征增强的神经网络模型。基于稀疏压力数据实现密度梯度场的高精度预测，模型通过多层卷积

网络串联建立流场的主要波系结构特征，利用残差网络通过跳跃连接将不同尺度感受野的特征进行融合，增

强重构流场的细节特征表达能力。基于冲压发动机数值模拟计算构建的数据集进行验证，结果显示，与多层

卷积神经网络相比，该方法在整个测试集上的平均峰值信噪比提升了９．５％。重构流场的 ＳＴＬＥ与数值计算
结果高度吻合，进一步证明了所提方法的有效性。
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　　作为超声速飞行器的理想动力系统，冲压发
动机已成为国内外研究热点之一［１－２］。冲压发动

机主要由进气道、隔离段、燃烧室和尾喷管等组

成［３］。其中，隔离段作为冲压发动机的重要部

件，处于进气道与燃烧室之间，负责隔离燃烧产生

的高压对进气来流的影响［４］。激波串是超声速

气流在隔离段减速增压过程中出现的一种以激

波／边界层干扰为主要特征的复杂流动现象。当
激波串前缘位置（ｓｈｏｃｋｔｒａｉｎｌｅａｄｉｎｇｅｄｇｅ，ＳＴＬＥ）
接近隔离段入口时，可能引起进气道不启动［５－６］

或燃烧室熄火［７］等现象，严重影响发动机的工作

性能。因此，对隔离段 ＳＴＬＥ进行高精度检测，为
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评估发动机运行状态提供可靠数据具有重要意义。

目前，已有众多学者对隔离段的流动特性进

行了深入研究［８－１２］，提出了多种 ＳＴＬＥ检测方
法［１３］，包括压升法、压力比法、标准差法、谱分析

法、静压法和背压法。然而，这些传统方法都是基

于离散压力传感器的测量来直接检测ＳＴＬＥ，计算
成本过高，预测精度较低［１４－１６］。同时，面对隔离

段中的复杂流动特性，传统检测方法难以有效捕

捉流场动态变化特性。

近年来，神经网络在图像分类［１７］、目标检

测［１８］、语音识别［１９］和超分辨率重建［２０－２１］等领域

表现出强大的非线性拟合能力，因此，也被广泛应

用于流体力学领域中。研究者们起初利用神经网

络来建立隔离段流场信息与 ＳＴＬＥ之间的映射关
系，然而，通过大量且复杂的流场信息直接辨识

ＳＴＬＥ会导致计算资源的巨大消耗［２２－２３］。由于从

流场结构中可以更直观且准确地获得 ＳＴＬＥ的位
置，因此，通过神经网络实现隔离段流场的精准预

测成为ＳＴＬＥ高精度检测的重要前提。目前，大
量研究已经证明了神经网络作为流场求解器的可

行性和有效性。Ｌｉ等［２４］构建了一种对称式神经

网络模型来重构超声速级联通道内流场结构，证

明了深度学习能够有效捕捉复杂多变工况下的流

场结构和对未知工况流场预测的强泛化能力。

Ｋｏｎｇ等［２５］构建卷积神经网络 （ｃｏｎｖｏｌｕｔｉｏｎａｌ
ｎｅｕｒａｌｎｅｔｗｏｒｋｓ，ＣＮＮ）进行流场重构，并通过模型
提供的流场结构对 ＳＴＬＥ进行检测，相比压力比
法和压升法，该方法成功基于重构流场实现了对

ＳＴＬＥ的高精度检测。为进一步提高 ＳＴＬＥ检测
精度，Ｃｈｅｎ等［２６］提出了一种多层 ＣＮＮ进行隔离
段流场重构并检测 ＳＴＬＥ，与数值模拟相比，该方
法得到的 ＳＴＬＥ均方根误差为 ３２８ｍｍ，实现了
较低的检测误差。相比单路径网络，多路径神经

网络架构可以从压力数据中捕捉更多流场信息，

获得波系特征更丰富的流场图像。Ｋｏｎｇ等［２７］提

出了一种基于多路径融合的卷积神经网络结构，

用于在不同马赫数和不同背压条件下的流场重

构，Ｋｏｎｇ等［２８］还提出了一种基于壁面压力序列

的多路径流场预测模型，利用不同演化规律下的

实验数据建立了实验数据集。虽然文献［２７］和
文献［２８］均实现了流场的高精度重构，但是模型
训练需要大量的先验知识，耗费大量的计算资源

和时间。为了通过少量壁面压力数据实现流场高

质量重构，Ｃｈｅｎ等［２９］构建了一种基于多分支融

合卷积神经网络（ｍｕｌｔｉｂｒａｎｃｈｆｕｓｉｏｎｃｏｎｖｏｌｕｔｉｏｎａｌ
ｎｅｕｒａｌｎｅｔｗｏｒｋ，ＭＢＦＣＮＮ），用于拟合上下壁面压

力与冲压发动机燃烧室流场的非线性耦合关系，

随着压力测点的减少，重构流场从视觉上来看仍

在可接受范围内，但重构精度有所下降。此外，

Ｄｅｎｇ等［３０］引入多头注意力机制［３１］提升模型的全

局感知能力，利用注意力机制来提取不同的特征，

结果表明该方法能有效重构出燃烧室流场波系结

构。尽管上述方法在流场重构方面已经取得不错

效果，但重构流场分辨率较低，波系结构细节特征

存在较强的平滑现象，因此，有必要通过超分辨率

重建网络来提升流场细节，以便更加直观分析流

场波系结构。为了实现低分辨率流场图像的超分

辨率重建，Ｌｉｕ等［３２］提出了一种静态卷积神经网

络以及一种多路径卷积神经网络。

上述多数方法利用多路径网络结构来提取

流场特征信息，然而，多路径网络结构复杂，容

易导致模型过拟合，从而丢失复杂波系结构特

征，无法有效捕捉非定常流场的时间演化特性

等问题。因此，如何通过一个简化的模型来降

低计算成本，同时保持良好的特征提取能力，是

目前需要解决的问题。对此，本文提出一种基

于组合式细节特征增强的神经网络模型（ｎｅｕｒａｌ
ｎｅｔｗｏｒｋｍｏｄｅｌｂａｓｅｄｏｎｃｏｍｂｉｎｅｄｄｅｔａｉｌｆｅａｔｕｒｅ
ｅｎｈａｎｃｅｍｅｎｔ，ＮＮＣＤＦＥ），以基于稀疏压力数据实
现密度梯度场的高精度预测。模型首先通过多层

卷积网络串联建立流场的主要波系特征，然后利

用残差结构，通过跳跃连接将不同尺度感受野的

特征进行融合，增强重构流场的细节特征表达能

力。该方法将多层神经网络的特征提取能力与残

差网络的细节增强能力有机地结合起来，有效提

升隔离段流场重构精度，从而提高 ＳＴＬＥ的检测
精度。

１　数据集

１．１　物理模型及工况条件

本 次 研 究 采 用 计 算 流 体 动 力 学

（ｃｏｍｐｕｔａｔｉｏｎａｌｆｌｕｉｄｄｙｎａｍｉｃｓ，ＣＦＤ）数值模拟软件
Ｆｌｕｅｎｔ模拟获取冲压发动机隔离段的上下壁面压
力数据和流场图像，该软件采用有限体积法对基

本控制方程进行离散。本文采用“凹腔 ＋后向台
阶”型的冲压发动机燃烧室，如图１所示，隔离段
长３４０ｍｍ、宽１５０ｍｍ、高３０ｍｍ。来流通过隔离
段流入，并从出口流出。隔离段下游由燃烧室凹

腔和扩张段构成，凹腔深２８ｍｍ、长２７８ｍｍ，尾部
后沿斜坡角为４３６°。凹腔下游的扩张段由两部
分组成，第一部分长２３０ｍｍ、带１°扩张角，第二

·５７２·
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（ａ）三维构型
（ａ）Ｔｈｒｅｅｄｉｍｅｎｓｉｏｎａｌｃｏｎｆｉｇｕｒａｔｉｏｎ

（ｂ）二维构型
（ｂ）Ｔｗｏｄｉｍｅｎｓｉｏｎａｌｃｏｎｆｉｇｕｒａｔｉｏｎ

图１　吸气式发动机构型
Ｆｉｇ．１　Ａｉｒｂｒｅａｔｈｉｎｇｅｎｇｉｎｅｃｏｎｆｉｇｕｒａｔｉｏｎ

部分长３９０ｍｍ、带３°扩张角。燃料由１０个直径
为１ｍｍ的圆孔喷注进入燃烧室，喷注位置位于
凹腔上游６９ｍｍ处。由喷注形成的激波和膨胀
波在超声速混合和燃烧过程中起着至关重要的

作用。

使用 ＡＮＳＹＳＩＣＥＭ软件对模型进行网格划
分。该模型采用二维平面计算，为保证边界层网

格划分精度，第一层网格高度为１０６×１０－３ｍｍ，
网格增长率为１２。为验证网格无关性问题进行
了三组网格划分，网络总量分别为 ９００００、
１３００００和１８００００。通过分析壁面压力发现，采
用不同网格尺寸进行数值计算的结果差异较小，

如图２所示，为减少计算量和成本，采用网格总数
为１３００００的网格开展后续计算。

计算过程设定的气流为可压缩理想气体，黏

度采用Ｓｕｔｈｅｒｌａｎｄ公式进行计算。依据真实试验
条件设定模拟来流条件，如表１所示。输入 Ｍａ
为 ２５，入口气流总压为 １７５ＭＰａ，总温为
１３５０Ｋ。本研究以氢气为燃料，采用正弦型脉冲
喷注技术，具体表示为：

Ｑ＝Ａｓｉｎ（２πｆ）＋Ａ （１）

式中，Ｑ为质量流量，ｆ为喷注频率，Ａ为振幅。

Ｑ的值域为［０，２Ａ］，周期为１／ｆ。为了使激波结

构保留在隔离段内以便于观察和分析且不超过

发动机的设计极限，一个周期内氢气平均当量

比设置为０７２７４，喷注频率为１０９８ｋＨｚ，振幅

为０４２０５ｋｇ／ｓ。

图２　网格无关性验证
Ｆｉｇ．２　Ｇｒｉｄｉｎｄｅｐｅｎｄｅｎｔｖａｌｉｄａｔｉｏｎ

·６７２·
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表１　来流条件
Ｔａｂ．１　Ｉｎｃｏｍｉｎｇｃｏｎｄｉｔｉｏｎ

参数 空气 燃料喷口

总温Ｔ０／Ｋ １３５０ ３００

总压Ｐ０／ＭＰａ １．７５

马赫数Ｍａ ２．５ １
氧气质量分数ＹＯ２／％ ２０．０９ ０
水蒸气质量分数ＹＨ２Ｏ／％ １９．２６ ０
氮气质量分数ＹＮ２／％ ６０．６５ ０
氢气质量分数ＹＨ２／％ ０ １００

燃料开始喷注后，由于燃烧释热，燃烧室压力

快速上升并前传，当出口压力逐渐增加到５５１９８×
１０４Ｐａ时，在隔离段内形成激波串。受正弦型脉
冲喷注影响，隔离段出口压力稳定后呈类正弦变

化，从开始出现激波串结构到停止计算，总时间为

４１５ｍｓ，每０１ｍｓ采样一次数据，获得氢气燃烧
状态下的非定常流场数据。隔离段出口压力随时

间变化曲线如图３所示。

图３　隔离段出口压力随时间变化曲线
Ｆｉｇ．３　Ｉｓｏｌａｔｉｏｎｓｅｃｔｉｏｎｏｕｔｌｅｔｐｒｅｓｓｕｒｅｃｕｒｖｅｏｖｅｒｔｉｍｅ

为了进行燃烧过程中流场的波系演化分析，

分别选取四个时刻的密度梯度场，如图４所示。
由图４可知，当隔离段出口压力增加时，逆压梯度
沿着隔离段附面层亚声速低动能流动区域向上游

传播，导致分离区域向隔离段上游传播，从而导致

激波串逐渐向上游移动。当隔离段出口压力增加

时，逆压梯度沿着隔离段附面层亚声速低动能流

动区域向上游传播，导致分离区域向隔离段上游

传播，从而导致激波串逐渐向上游移动。在每一

个激波串中，沿气流流动的方向，每一道激波的高

度和跨度均减小，即激波强度逐渐减弱，激波与边

界层的强干扰造成边界层严重分离并且其厚度迅

速增加。

（ａ）ｔ＝５．７ｍｓ

（ｂ）ｔ＝８．９ｍｓ

（ｃ）ｔ＝１４．５ｍｓ

（ｄ）ｔ＝２１．９ｍｓ

图４　不同时刻的密度梯度场
Ｆｉｇ．４　Ｄｅｎｓｉｔｙｇｒａｄｉｅｎｔｆｉｅｌｄａｔｄｉｆｆｅｒｅｎｔｔｉｍｅｓ

１．２　数据预处理

通过数值模拟获得４１５组数据，本研究选取ｔ
从３３～２２２ｍｓ，共１９０组数据作为数据集，这些
数据位于激波串明显变化的区间，能够表征隔离

段波系结构演化特性。

每组数据由２６００个上下壁面压力数据和对
应时刻的流场图像组成。针对上下壁面压力数据

过多导致网络难以拟合的问题，在随时刻移动且

压力值呈现有典型特征变化的区间里，选取３０个
压力测试点作为每时刻的压力数据。同时，为了

更好地训练，将压力数据归一化后作为网络模型

的输入。

由于激波串前缘位置在燃料喷注点到隔离段

入口处变化，在此区间进行重构流场可以直观获

得激波串前缘位置，因此将密度梯度场进行裁剪，

取燃料喷注点到隔离段入口处的部分，同时增加

对比度和亮度，提高激波串波系结构特征。为了

减少网络训练所需的计算时间和参数，流场图像

的分辨率降低到３５像素 ×２７０像素，图４中四个
时刻预处理后的流场图像如图５所示。为了加速
网络的收敛，将图像像素值从０～２５５归一化为
０～１。

最后，将这１９０组数据按照８∶２的比例分为
训练集和测试集，即训练集中有１５２组数据，测试
集中有３８组数据。在模型训练过程中，训练集用
于更新模型的参数，而测试集不参与参数更新，仅

用作评估模型的泛化能力。

·７７２·
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（ａ）ｔ＝５．７ｍｓ

（ｂ）ｔ＝８．９ｍｓ

（ｃ）ｔ＝１４．５ｍｓ

（ｄ）ｔ＝２１．９ｍｓ

图５　四个时刻预处理后的流场图像
Ｆｉｇ．５　Ｆｌｏｗｆｉｅｌｄｉｍａｇｅａｆｔｅｒｆｏｕｒｍｏｍｅｎｔｓｐｒｅｐｒｏｃｅｓｓｉｎｇ

２　方法

２．１　组合式细节特征增强网络

本文提出一种基于隔离段流场重构的

ＮＮＣＤＦＥ方法，由波系结构特征提取网络和波系
细节特征增强网络组成，如图 ６所示，其中
“Ｄｅｃｏｎｖ”表示上采样层，“Ｃｏｎｖ”表示卷积层，
“ＦＣ”表示全连接层，“Ｍａｘｐｏｏｌ”表示最大池化

层，“ＢＮ”表示批归一化层，“ＲｅＬＵ”表示激活函
数。波系结构特征提取网络采用编码－解码的结
构，利用多层反卷积、卷积、最大池化和全连接等

操作进行串联，提取高维非线性特征，建立流场的

主要波系结构特征。其中，编码部分由反卷积层

组成，从压缩的输入数据中逐渐重构出更高分辨

率的特征图。由于输入压力数据的张量过小，利

用全连接层将输入数据重塑成适合进行反卷积操

作的形状。为充分提取压力的特征信息，网络的

解码部分由卷积层组成，进一步处理和细化从反

卷积层得到的特征图，并通过最大池化层进行下

采样，在保留特征的同时，减少计算复杂度。利用

全连接层对流场中的主要波系结构进行重塑。为

了进一步增强模型对流场细节特征的重建性能，

构建了基于残差网络的图像细节特征增强网络，

用于波系结构特征图的细节增强，弥补多层卷积

网络在特征提取时忽略的流场细节。通过１５组
残差块串联并进行多次卷积操作，能够有效学习

波系结构特征提取网络缺失的流场图像特征，使

得流场图像的细节更加清晰，增加图像的表现力。

同时，通过跳跃连接将不同尺度感受野的特征进

行融合，提高网络的学习能力和精准度。最后，模

型输出得到具有丰富波系结构细节特征的隔离段

流场图像。此外，批归一化层在每个卷积和激活

函数之间使用，以便稳定和加速训练过程。

图６　基于组合式细节特征增强的神经网络结构
Ｆｉｇ．６　Ｔｈｅｎｅｕｒａｌｎｅｔｗｏｒｋａｒｃｈｉｔｅｃｔｕｒｅｂａｓｅｄｏｎｃｏｍｐｏｓｉｔｅｄｅｔａｉｌｆｅａｔｕｒｅｅｎｈａｎｃｅｍｅｎｔ

　　通过两部分串联，建立隔离段上下壁面压力
数据到激波串流场图像的映射关系：

Ｙ＝Ｆ（θ，Ｆ１（θ１，Ｐ）） （２）
式中，Ｙ表示由模型重构的隔离段流场图像像素
值，Ｐ表示数值模拟获取的隔离段的上下壁面压
力值，Ｆ１（·）和Ｆ（·）分别表示第一部分网络的

函数和整个网络的函数，θ１和 θ分别表示第一部
分网络的学习参数和整个网络的学习参数。输入

参数Ｐ为经归一化处理的壁面压力数据，来源于
上、下壁面各１５个测点，其表达式为：

Ｐ＝
ｐ１，１ ｐ１，２ … ｐ１，１５
ｐ２，１ ｐ２，２ … ｐ２，







１５

（３）

·８７２·
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式中，ｐ１，ｊ（ｊ＝１，２，…，１５）表示隔离段上壁面压力
数据，ｐ２，ｊ（ｊ＝１，２，…，１５）表示隔离段下壁面压力
数据。

２．２　卷积与激活函数

卷积层是深度学习模型中的核心组件，通过

在输入数据上应用多个卷积核，提取局部特征等。

卷积操作的输出特征图ｙｃ可表示为：

ｙｃ（ｉ，ｊ）＝δ∑
Ｍ－１

ｍ＝０
∑
Ｎ－１

ｎ＝０
ｙｃ－１（ｉ＋ｍ，ｊ＋ｎ）·ｋ（ｍ，ｎ）＋Ｂ( )ｃ

（４）
式中：ｙｃ－１（ｉ＋ｍ，ｊ＋ｎ）表示前一层特征图在位置
（ｉ＋ｍ，ｊ＋ｎ）处的值，表示加性偏移量；ｋ（ｍ，ｎ）表
示卷积核在位置（ｍ，ｎ）的权重，Ｂｃ表示第 ｃ层卷
积的偏置项；δ表示激活函数，本文激活函数选择
ＲｅＬＵ激活函数，引入非线性特性，提升模型的表
达能力和训练稳定性。

２．３　上采样

由于压力数据尺寸较小且流场图像尺寸较

大，需要扩大压力数据尺寸，以便后续卷积操作。

本文采用转置卷积对压力数据进行上采样。转置

卷积是一种通过逆向执行卷积操作来扩展特征图

的方法，转置卷积操作如图７所示。

图７　转置卷积过程
Ｆｉｇ．７　Ｔｒａｎｓｐｏｓｅｄｃｏｎｖｏｌｕｔｉｏｎｐｒｏｃｅｓｓ

２．４　池化

池化操作是一种用于减小数据尺寸并提取主

要特征的技术。常见的池化操作包括最大池化和

平均池化。本文采用最大池化法，假设输入张量

为Ｘ，输出张量为Ｙ，池化窗口大小为（２，２），步长
为２，其公式为：

Ｙ（ｉ，ｊ）＝ｍａｘ｛Ｘ（ｍ，ｎ）｝ （５）
式中，ｍ∈［２ｉ，２ｉ＋１］，ｎ∈［２ｊ，２ｊ＋１］，输出张量
Ｙ（ｉ，ｊ）包含输入张量 Ｘ上从位置（２ｉ，２ｊ）到位置
（２ｉ＋１，２ｊ＋１）的最大值。

２．５　全连接层

全连接层将每个输入特征与每个神经元连

接，使得网络能够学习到特征之间的复杂关系。

全连接层的核心是线性变换，通常会在线性变换

之后应用一个 ＲｅＬＵ非线性激活函数，增加模型
表达能力，其公式为：

ｙ＝δ（Ｗｘ＋ｂ） （６）
式中，ｙ是输出向量，Ｗ是权重矩阵，ｘ是输入矩
阵，ｂ是偏置向量。

３　试验与分析

３．１　模型训练与测试

本次研究使用的计算平台为 Ｗｉｎｄｏｗｓ１０，
ＣＰＵ为１６ＧＢ的 Ｉｎｔｅｌ酷睿 ｉ９－１４９００ｋ，ＧＰＵ为
１２ＧＢ的ＲＴＸ４０９０，使用开源软件库ＰｙＴｏｒｃｈ来训
练模型。训练模型波系结构特征提取网络，训练

完成后保存权重，再冻结其参数并加载权重，加入

波系细节特征增强网络进行训练与测试，即只更

新波系细节特征增强网络的参数权重。表２为波
系结构特征提取网络结构参数，表３为波系细节
特征增强网络结构参数。其中，输入、输出尺寸由

通道数×高度×宽度表示。

表２　波系结构特征提取网络结构参数
Ｔａｂ．２　Ａｒｃｈｉｔｅｃｔｕｒａｌｐａｒａｍｅｔｅｒｓｏｆｔｈｅｗａｖｅｓｙｓｔｅｍ

ｓｔｒｕｃｔｕｒｅｆｅａｔｕｒｅｅｘｔｒａｃｔｉｏｎｎｅｔｗｏｒｋ

网络架构 输入尺寸
是否使用

ＲｅＬＵ
输出尺寸

ＦＣ１ １×２×１５ 是 １×２×２０

Ｄｅｃｏｎｖ１ １×２×２０ 是 ３２×４×４０

Ｄｅｃｏｎｖ２ ３２×４×４０ 是 １６×８×８０

Ｄｅｃｏｎｖ３ １６×８×８０ 是 １４×１６×１６０

Ｄｅｃｏｎｖ４ １４×１６×１６０ 是 １０×３２×３２０

Ｃｏｎｖ１ １０×３２×３２０ 是 ８×１６×１６０

Ｃｏｎｖ２ ８×１６×１６０ 是 ２０×８×８０

Ｍａｘｐｏｏｌ ２０×８×８０ 否 ２０×４×４０

Ｃｏｎｖ３ ２０×４×４０ 是 ２０×４×４０

ＦＣ２ ２０×４×４０ 是 ３２００

ＦＣ３ ３２００ 否 ３５×２７０

两次训练均使用在回归问题中表现较好的均

方误差（ｍｅａｎｓｑｕａｒｅｅｒｒｏｒ，ＭＳＥ）函数，其计算公
式为：

ＬＭＳＥ ＝
１
Ｎ·ｎ∑

Ｎ

ｉ＝１
∑
ｎ

ｊ＝１
（ｆｉ，ｊ－ｆｉ，ｊ）

２ （７）

·９７２·
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表３　波系细节特征增强网络结构参数
Ｔａｂ．３　Ｗａｖｅｓｙｓｔｅｍｄｅｔａｉｌｆｅａｔｕｒｅｓｅｎｈａｎｃｅ

ｎｅｔｗｏｒｋｓｔｒｕｃｔｕｒａｌｐａｒａｍｅｔｅｒｓ

网络结构 输入尺寸
是否使用

ＲｅＬＵ
输出尺寸

波系结构特征

提取网络
１×２×１５ １×３５×２７０

Ｃｏｎｖ１ １×３５×２７０ 是 ３２×３５×２７０

残差块－１５
３２×３５×２７０ 是 ３２×３５×２７０

３２×３５×２７０ 否 ３２×３５×２７０

Ｃｏｎｖ２ ３２×３５×２７０ 是 １×３５×２７０

式中：ＬＭＳＥ表示均方误差损失函数；ｆｉ，ｊ为第 ｉ个样
本的第ｊ个像素点的 ＣＦＤ计算值；ｆｉ，ｊ为对应的模
型预测值；Ｎ表示每轮训练加载的数据组，本研究
设置为２５６；ｎ为每张图像的总像素数，由于预处
理后的图像分辨率为 ３５像素 ×２７０像素，所以
ｎ＝９４５０。网络训练的优化器选择 Ａｄａｍ，ｂａｔｃｈ
ｓｉｚｅ设置为 ２５６，初始学习率设置为 ０００１，每
５０个轮次（ｅｐｏｃｈ），学习率下降１０％。

随着迭代的深入，损失函数的下降速度逐

渐减缓，曲线变得更加平滑，这表明模型开始

精细调整参数，以更好地拟合数据。波系结构

特征提取网络训练和细节特征增强网络训练

分别在１０００次和 ５００次迭代后，损失函数收
敛至０００１，训练过程在此点终止。两部分训
练集损失函数和测试集损失函数的变化如图８
所示。

（ａ）波系结构特征提取网络训练与测试的
损失函数变化曲线

（ａ）Ｃｈａｎｇｅｃｕｒｖｅｏｆｌｏｓｓｆｕｎｃｔｉｏｎｉｎｔｒａｉｎｉｎｇａｎｄ
ｔｅｓｔｉｎｇｏｆｗａｖｅｓｙｓｔｅｍｓｔｒｕｃｔｕｒｅ
ｆｅａｔｕｒｅｅｘｔｒａｃｔｉｏｎｎｅｔｗｏｒｋ

３．２　结果分析

本研究测试指标选用峰值信噪比（ｐｅａｋ
ｓｉｇｎａｌｔｏｎｏｉｓｅｒａｔｉｏ，ＰＳＮＲ）、结构相似性系数
（ｓｔｒｕｃｔｕｒｅｓｉｍｉｌａｒｉｔｙｃｏｅｆｆｉｃｉｅｎｔ，ＳＳＩＭ）和相关系数

（ｂ）波系细节特征增强网络训练与测试的
损失函数变化曲线图

（ｂ）Ｃｈａｎｇｅｃｕｒｖｅｏｆｌｏｓｓｆｕｎｃｔｉｏｎｆｏｒｔｒａｉｎｉｎｇａｎｄ
ｔｅｓｔｉｎｇｏｆｗａｖｅｓｙｓｔｅｍｄｅｔａｉｌｆｅａｔｕｒｅ

ｅｎｈａｎｃｅｍｅｎｔｎｅｔｗｏｒｋ

图８　损失函数变化曲线
Ｆｉｇ．８　Ｌｏｓｓｆｕｎｃｔｉｏｎｖａｒｉａｔｉｏｎｃｕｒｖｅ

（ｃｏｒｒｅｌａｔｉｏｎｃｏｅｆｆｉｃｉｅｎｔ，ＣＯＲＲ）。ＰＳＮＲ主要评估
图像重构质量的误差，通常以 ｄＢ为单位表示。
ＰＳＮＲ值越大表示重构图像与原始图像越接近，
质量越好，其计算公式为：

Ｑｐ＝１０·ｌｇ
Ｍ２
Ｌ( )
ＭＳＥ

（８）

式中，Ｑｐ表示 ＰＳＮＲ的量化值，Ｍ表示图像像素
值的理论最大值，本研究中Ｍ＝２５５。

ＳＳＩＭ主要考虑图像结构的相似性，旨在模拟
人类视觉系统对图像质量的感知。ＳＳＩＭ不仅考
虑图像像素之间的误差，还考虑了亮度、对比度和

结构信息的相似性。ＳＳＩＭ值的范围是［０，１］，越
接近１，表示重构图像与原始图像的相似度越高，
其计算公式为：

Ｑｓ＝
（２μｘμｙ＋Ｃ１）（２σｘｙ＋Ｃ２）
（μ２ｘ＋μ

２
ｙ＋Ｃ１）（σ

２
ｘ＋σ

２
ｙ＋Ｃ２）

（９）

其中，Ｑｓ表示 ＳＳＩＭ的量化值，μｘ和 μｙ分别是图
像ｘ和ｙ的平均值，σｘ和σｙ分别是图像ｘ和ｙ的
方差，σｘｙ是图像ｘ和ｙ的协方差，Ｃ１和Ｃ２是用于
稳定计算的常数。

ＣＯＲＲ用于衡量两幅图像之间的线性相关性
程度，反映了图像间的相似性。ＣＯＲＲ的取值范
围是［－１，１］，１表示两幅图像完全正相关，－１
表示两幅图像完全负相关，０表示两幅图像无相
关性，其计算公式为：

ρ（ｘ，ｙ）＝ ∑（ｘｉ－珋ｘ）（ｙｉ－珋ｙ）
∑ （ｘｉ－珋ｘ）槡

２· ∑ （ｙｉ－珋ｙ）槡
２

（１０）

·０８２·
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式中，ρ（ｘ，ｙ）表示图像ｘ和ｙ的ＣＯＲＲ值，ｘｉ和ｙｉ
分别是图像ｘ和ｙ的像素值，珋ｘ和 珋ｙ分别是图像ｘ
和ｙ的平均值。

将 ＭＢＦＣＮＮ［２９］、Ｌｉ模型［２４］、Ｋｏｎｇ模型［２７］和

多层 ＣＮＮ［２６］四个已提出的模型与本研究的
ＮＮＣＤＦＥ进行对比。值得注意的是，多层 ＣＮＮ与
ＮＮＣＤＦＥ波系结构特征提取网络结构相同，因此，
可以作为去掉波系细节特征增强网络部分的

ＮＮＣＤＦＥ与 ＮＮＣＤＦＥ的模型性能对比。分别选
取激波串前缘位于不同位置的流场重构结果，对

应ｔ１＝５７ｍｓ、ｔ２＝８９ｍｓ、ｔ３＝１４５ｍｓ和 ｔ４＝
２１９ｍｓ四个不同时刻，与 ＣＦＤ计算结果进行对
比，结果如图９所示。从图９可以看出，由于时刻
往后激波逐渐稳定，变化不明显，神经模型对后面

时刻流场图像足以拟合，五个模型在 ｔ４时刻均能
大致重构出激波结构。然而，ＭＢＦＣＮＮ与Ｌｉ模型
在其他时刻的重构图像指标偏低，上壁面波系结

构不明显并且激波串有重影，重构质量较差。

Ｋｏｎｇ模型与多层 ＣＮＮ重构指标较好，激波串基
本可以重构出来，但激波噪点较多。而 ＮＮＣＤＦＥ
重构的流场图像，ＰＳＮＲ值均高于其他四种模型，
且ＮＮＣＤＦＥ重构流场质量明显优于 ＭＢＦＣＮＮ与
Ｌｉ模型，激波串波系结构细节清晰，更能体现激
波结构演化规律，从而能够精准检测ＳＴＬＥ。

图１０为五个模型重构流场图像在ｔ１、ｔ２、ｔ３和
ｔ４四个不同时刻重构流场的绝对误差云图。由
图１０可知，ＭＢＦＣＮＮ与 Ｌｉ模型明显误差较大，
Ｋｏｎｇ模型、多层ＣＮＮ和ＮＮＣＤＦＥ的误差较小，误
差主要分布在激波结构的内部区域，对整体结构

的观察基本不构成影响，这表明 Ｋｏｎｇ模型、多层
ＣＮＮ和ＮＮＣＤＦＥ都能有效地重构与隔离段流场
的波系结构，而ＮＮＣＤＦＥ重构流场激波的主要特
征和轮廓误差在所有模型中最小，因此，更能准确

地预测出ＳＴＬＥ。

（ａ）ｔ１与ｔ２时刻的重构指标对比

（ａ）Ｃｏｍｐａｒｉｓｏｎｏｆｒｅｃｏｎｓｔｒｕｃｔｉｏｎｉｎｄｅｘｅｓａｔｔ１ａｎｄｔ２

（ｂ）ｔ３与ｔ４时刻的重构指标对比

（ｂ）Ｃｏｍｐａｒｉｓｏｎｏｆｒｅｃｏｎｓｔｒｕｃｔｉｏｎｉｎｄｅｘｅｓａｔｔ３ａｎｄｔ４

图９　五个模型在四个不同时刻的重构指标对比
Ｆｉｇ．９　Ｃｏｍｐａｒｉｓｏｎｏｆｒｅｃｏｎｓｔｒｕｃｔｉｏｎｍｅｔｒｉｃｓｆｏｒｆｉｖｅｍｏｄｅｌｓａｔｆｏｕｒｄｉｆｆｅｒｅｎｔｔｉｍｅｐｏｉｎｔｓ

·１８２·
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（ａ）ｔ１与ｔ２时刻的绝对误差云图

（ａ）Ａｂｓｏｌｕｔｅｅｒｒｏｒｃｌｏｕｄｉｍａｇｅａｔｔ１ａｎｄｔ２

（ｂ）ｔ３与ｔ４时刻的绝对误差云图

（ｂ）Ａｂｓｏｌｕｔｅｅｒｒｏｒｃｌｏｕｄｐｉｃｔｕｒｅａｔｔ３ａｎｄｔ４

图１０　五个模型重构流场图像的绝对误差云图
Ｆｉｇ．１０　Ａｂｓｏｌｕｔｅｅｒｒｏｒｃｌｏｕｄｍａｐｓｏｆｒｅｃｏｎｓｔｒｕｃｔｅｄｆｌｏｗｆｉｅｌｄｉｍａｇｅｓｆｏｒｆｉｖｅｍｏｄｅｌｓ

　　选取效果较好的 Ｋｏｎｇ模型、多层 ＣＮＮ和
ＮＮＣＤＦＥ进行进一步的像素散点分析和相关系数
分析。图１１、图１２和图１３分别为三个模型重构流
场图像在ｔ１、ｔ２、ｔ３和 ｔ４四个时刻重构流场的像素
散点分析和 ＣＯＲＲ。散点图上的像素点在红线附
近越密集排列表明两组数据的像素强度值越接近。

可以直观得到，Ｋｏｎｇ模型效果最差，ＮＮＣＤＦＥ效果
最好，这说明基于 ＮＮＣＤＦＥ的重构流场在数值上

与ＣＦＤ计算结果一致性最高，具有更丰富的波系
结构特征，同时相关系数能进一步量化预测流场与

真实流场之间的线性相关程度。

为了客观评价五个模型的整体重构效果，利

用测试集计算五个模型的平均 ＰＳＮＲ值、平均
ＳＳＩＭ值和平均ＣＯＲＲ值，如表４所示。对表４中
的平均指标进行分析可得，ＭＢＦＣＮＮ模型的各项
指标均最低，模型性能最差。Ｌｉ模型在 ＳＳＩＭ上

　　（ａ）ｔ１ 　　（ｂ）ｔ２

·２８２·
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　　（ｃ）ｔ３ 　　（ｄ）ｔ４

图１１　Ｋｏｎｇ模型在四个时刻的像素散点图与相关系数
Ｆｉｇ．１１　ＳｃａｔｔｅｒｐｌｏｔｓｏｆｐｉｘｅｌｓａｎｄｃｏｒｒｅｌａｔｉｏｎｃｏｅｆｆｉｃｉｅｎｔｓｏｆｔｈｅＫｏｎｇＭｏｄｅｌａｔｆｏｕｒｔｉｍｅｐｏｉｎｔｓ

　　（ａ）ｔ１ 　　（ｂ）ｔ２

　　（ｃ）ｔ３ 　　（ｄ）ｔ４

图１２　多层ＣＮＮ在四个时刻的像素散点图与相关系数
Ｆｉｇ．１２　ＳｃａｔｔｅｒｐｌｏｔｓｏｆｐｉｘｅｌｓａｎｄｃｏｒｒｅｌａｔｉｏｎｃｏｅｆｆｉｃｉｅｎｔｓｏｆｍｕｌｔｉｌａｙｅｒＣＮＮａｔｆｏｕｒｔｉｍｅｐｏｉｎｔｓ

略优于Ｋｏｎｇ模型，但其 ＰＳＮＲ较低。Ｋｏｎｇ模型
与多层ＣＮＮ则展现出较高的ＰＳＮＲ和 ＣＯＲＲ值，
表明它们在像素误差控制和线性相关性方面表现

更优。然而，ＮＮＣＤＦＥ模型在三项评价指标上均

达到了最高值，与多层 ＣＮＮ相比，ＮＮＣＤＦＥ在整
个测试集上的平均 ＰＳＮＲ提升了９５％。在五个
模型中，ＮＮＣＤＦＥ的平均指标最高，说明ＮＮＣＤＦＥ
重构图像最清晰，模型性能最好。

·３８２·
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　　（ａ）ｔ１ 　　（ｂ）ｔ２

　　（ｃ）ｔ３ 　　（ｄ）ｔ４

图１３　ＮＮＣＤＦＥ在四个时刻的像素散点图与相关系数
Ｆｉｇ．１３　ＳｃａｔｔｅｒｐｌｏｔｓｏｆｐｉｘｅｌｓａｎｄｃｏｒｒｅｌａｔｉｏｎｃｏｅｆｆｉｃｉｅｎｔｓｏｆＮＮＣＤＦＥａｔｆｏｕｒｔｉｍｅｐｏｉｎｔｓ

表４　五个模型在测试集上的平均指标
Ｔａｂ．４　Ａｖｅｒａｇｅｍｅｔｒｉｃｓｏｎｔｈｅｔｅｓｔｓｅｔｆｏｒｆｉｖｅｍｏｄｅｌｓ

模型 平均ＰＳＮＲ／ｄＢ 平均ＳＳＩＭ 平均ＣＯＲＲ

ＭＢＦＣＮＮ １７．５０８ ０．５９４ ０．３９０

Ｌｉ模型 １８．０５２ ０．６７１ ０．５００

Ｋｏｎｇ模型 ２２．０３６ ０．６５５ ０．７８９

多层ＣＮＮ ２２．５２９ ０．８３３ ０．８３０

ＮＮＣＤＦＥ ２４．６６１ ０．８８６ ０．８５７

利用重构流场图像检测ＳＴＬＥ，可以进一步验
证模型重构效果。通过比较流场图像中上壁面和

下壁面的激波分离点与进气道的距离，确定

ＳＴＬＥ，并选取较短距离的分离点作为 ＳＴＬＥ。由
于从氢燃料喷注处开始出现激波串波形且进气道

入口到氢燃料喷注长度为２６９ｍｍ，流场重构图像
的水平像素值为２７０，因此一个像素数约为１ｍｍ。
ＳＴＬＥ如图１４所示，红圈表示 ＳＴＬＥ，与进气道的
距离用Ｘ表示。

以此方式检测流场重构效果较好的 Ｋｏｎｇ模

图１４　ＳＴＬＥ示意图
Ｆｉｇ．１４　ＳｃｈｅｍａｔｉｃｄｉａｇｒａｍｏｆＳＴＬＥ

型、多层ＣＮＮ和ＮＮＣＤＦＥ重构图像中的ＳＴＬＥ，并
与数值模拟得到的 ＳＴＬＥ进行对比，如图 １５所
示。横坐标代表测试集中的３８张流场图像数据，
纵坐标对应于通过图像检测得到的 ＳＴＬＥ水平像
素值。可直观得到，虽然三个模型在整体上都表

现出不错的ＳＴＬＥ预测效果，但在个别数据，例如
第６、第８、第２１组数据上，ＮＮＣＤＦＥ预测的ＳＴＬＥ
与数值模拟之间的距离曲线吻合程度最高。

为了进一步验证模型的准确性，计算三个模型

的ＳＴＬＥ平均误差精度。平均误差精度越小，说明
模型的预测性能和可靠性越高。对于流场图像

（ｉ＝１，２，…，３８），平均误差精度ｅａ的计算公式为：

ｅａ＝
∑
３８

ｉ＝１

ＸＳ－ＸＤ
ＸＳ







３８
×１００％ （１１）

·４８２·
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图１５　三个模型ＳＴＬＥ与数值模拟结果对比
Ｆｉｇ．１５　ＳＴＬＥｏｆｔｈｅｔｈｒｅｅｍｏｄｅｌｓｃｏｍｐａｒｅｄｗｉｔｈｎｕｍｅｒｉｃａｌｓｉｍｕｌａｔｉｏｎｒｅｓｕｌｔｓ

式中，ＸＤ表示模型重构的 ＳＴＬＥ，ＸＳ表示数值模
拟的ＳＴＬＥ。

经计算，Ｋｏｎｇ模型、多层ＣＮＮ和ＮＮＣＤＦＥ的
平均误差精度分别为 １３６％、１０８％、０７１％。
在三个模型中，ＮＮＣＤＦＥ的平均误差精度最小，说
明激波串前缘波系结构能被更准确地预测，进而

精准获取ＳＴＬＥ，证明了本模型在流场重构任务上
的出色表现。

为了研究不同上下壁面压力量对 ＮＮＣＤＦＥ
重构精度的影响，进行稀疏压力测试。分别将上

下壁面压力量从３０减少至２０、１４、１０，并且这些
压力测点依然是从原来的３０个压力量等间距选
取。不同压力量重构测试集的平均结果指标如

表５所示。可以直观看出，随着压力量的减少，
ＮＮＣＤＦＥ模型平均 ＰＳＮＲ指标依然保持在２３ｄＢ
以上，平均 ＳＳＩＭ 保持在 ０８以上，这证明
ＮＮＣＤＦＥ具有较强的鲁棒性，通过较少的压力量，
流场依然能实现较高质量的重构。

表５　ＮＮＣＤＦＥ模型不同压力量的重构结果平均指标

Ｔａｂ．５　Ａｖｅｒａｇｅｉｎｄｅｘｏｆｒｅｃｏｎｓｔｒｕｃｔｉｏｎｒｅｓｕｌｔｓｏｆ

ｄｉｆｆｅｒｅｎｔｐｒｅｓｓｕｒｅｆｏｒｃｅｓｉｎＮＮＣＤＦＥｍｏｄｅｌ

压力数量 平均ＰＳＮＲ／ｄＢ 平均 ＳＳＩＭ 平均ＣＯＲＲ

３０ ２４．６６１ ０．８８６ ０．８５７

２０ ２３．５６４ ０．８３７ ０．８３１

１４ ２３．４６１ ０．８７８ ０．８４５

１０ ２３．３５４ ０．８５９ ０．８０２

４　结论

为解决超声速流场智能重构方法存在的复杂

波系结构特征丢失、无法有效捕捉非定常流场的

时间演化特性，以及共同导致的 ＳＴＬＥ无法准确
辨识等问题，本文提出一种基于隔离段流场重构

的ＮＮＣＤＦＥ方法，将多层神经网络的特征提取能
力与残差网络的细节增强能力有机地结合，并利

用数值模拟获取的隔离段流场数据集，对该模型

在稀疏压力数据条件下的密度梯度场预测能力进

行验证，得到以下结论：

１）ＮＮＣＤＦＥ模型通过组合式神经网络框架，
能够有效弥补多层卷积神经网络在特征提取时忽

略的流场细节，提高重构流场的细节，从而提升

ＳＴＬＥ的检测精度。
２）在隔离段流场数据集上的预测结果表明，

与其余四种方法相比，本文所提出的 ＮＮＣＤＦＥ方
法的平均ＰＳＮＲ、平均ＳＳＩＭ和平均 ＣＯＲＲ分别达
到了２４６６１ｄＢ、０８８６和０８５７，有着更高质量的
重构精度，体现了更加强大的模型性能。

３）与数值模拟得到的 ＳＴＬＥ相比，ＮＮＣＤＦＥ
模型ＳＴＬＥ的检测平均误差精度达到了０７１％，
进一步证明模型重构波系细节清晰。

４）随着输入压力数据的减少，ＮＮＣＤＦＥ性能
没有明显下降，证明了 ＮＮＣＤＦＥ模型具有较强的
鲁棒性，能够基于稀疏压力数据，实现密度梯度场

的高精度预测。

未来将通过集成更多流场特征和改进网络结

构来进一步探索组合式网络学习方法在流场重构

·５８２·
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方面的应用，进一步地提升流场重构的精度，以便

对ＳＴＬＥ进行直观检测。此外，还将拓展该方法
在其他复杂流场环境中的应用，以验证其可扩展

性，为冲压发动机的设计和控制提供更加精准和

高效的解决方案。
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