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Intelligent reconstruction method of isolator flow field with
combined detail feature enhancement
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(1. School of Information Engineering, Southwest University of Science and Technology, Mianyang 621000, China;
2. Space Technology Research Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China)

Abstract; Aiming at issues such as the loss of complex wave system structural features in intelligent reconstruction methods for supersonic flow
fields, along with the inability to effectively capture the temporal evolution characteristics of unsteady flow fields, which together lead to the
inaccurate identification of the STLE (shock train leading edge). A neural network model based on combined detail feature enhancement to address
these issues was proposed. High-precision predictions of the density gradient field was achieved based on sparse pressure data. The main wave
system structure features of the flow field was established by connecting multiple layers of convolutional networks in series. A residual network with
skip connections was used to integrate features from receptive fields of different scales, enhancing the model’s ability to express detail features in
reconstructed flow fields. Validation was conducted using a data set constructed from numerical simulations of ramjet engines. Compared to
multilayer convolutional neural networks, this method improves the average peak signal-to-noise ratio across the entire test set by 9.5% . Moreover,
the reconstructed flow field’s STLE position closely matches the numerical computation results, further demonstrating the effectiveness of the
proposed method.
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Tab.4  Average metrics on the test set for five models
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