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Decoupled prediction-differential neural networks for solving high-
order differential equations

PENG Bo'?, ZHOU Shiming"?, LI Daokui'**
(1. College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China; 2.
Hunan Key Laboratory of Intelligent Planning and Simulation for Aerospace Missions, Changsha 410073, China)

Abstract: Physics-informed operator learning methods, while advantageous for accelerating the solution of PDEs (partial
differential equations), face challenges of high training costs in high-order problems due to limitations of automatic differentiation.
A novel prediction-differential decoupled neural network architecture named UNet-RBF was proposed. It employed U-Net neural
network as the prediction network to extract spatial features of PDEs parameters and utilized a lightweight RBF (radial basis
function) network as the differential network to impose physical constraints. By freezing the RBF network parameters during
training, the prediction task was decoupled from differential computation, significantly reducing the computational overhead of
automatic differentiation. Numerical experiments demonstrate that UNet-RBF substantially improves the training efficiency and
stability for solving high-order PDEs while maintaining high prediction accuracy (relative error less than 1%). Compared to the
traditional physics-informed operator learning model, the training efficiency for fourth-order problems is increased by over 1500%,
and the model exhibits stronger robustness, offering an effective pathway for the rapid and accurate solution of complex physical
problems.
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—Bir sy DeepONet-S 16 [8,16,32,64] [32,32,32,32] [1,16] 256
DeepONet-L 16 [8,16,32,64] [32,32,32,32] [1,50,50,16] 256
N UNet-RBF 16x16 [16,32,64,128,256]  [80,80,80,80,80] [2,256] 16
e
i DeepONet-S 16x16 [16,32,64,128,256]  [80,80,80,80,80] [2,256] 16
Pfl i)
DeepONet-L 16x16 [16,32,64,128,256]  [80,80,80,80,80]  [2,256,256,256] 16
UNet-RBF 16x16 [4,8,16,32,64] [20,20,20,20] [2,256] 16
VU By
e DeepONet-S 16x16 [4,8,16,32,64] [20,20,20,20] [2,256] 16
= iy ]
DeepONet-L 16x16 [4,8,16,32,64] [20,20,20,20]  [2,256,256,256] 16
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Tab.2 Performance comparison of different models on test examples

TN RR S f5 UNet-RBF DeepONet-S DeepONet-L
4 i) 0.24%+0.23% 4.93%+4.80% 0.34%%0.27%

HEHR /% Fazs e 5 i i 0.93%+0.31% 8.27%+6.42% 0.92%+0.33%
AR 25 ] 5 0.091%+0.052% 0.72%+0.39% 0.13%0.09%
Tl 1) 12.41 6.14 17.10

YIZ5H [B] /min TS #viE 5 i 38.18 13.71 67.75
AR S [ R 122.46 2243 2003.32

UNet-RBF #5R7E = ANJUR i 88 (1 AE 5 R ZE bk
HEZ AT DeepONet-L #7173 HIFEAIK T 14.8%-
6.1%F1 42.2%, X—25 8457~ T UNet-RBF %Y
SERMITEA R E BRI RIS RS, A g
(Pl HA AR IIFRE P . UNet-RBF £
A% O 38 AR IR AE HN 0K | A HR 4
ZH) RBF W% (FEb&ETiZR)E) LR T-
T RFENLE, UNet-RBF A &5k 1 7611 2t
P o6 52 2% 5 2 AT B8 () i AN B T B
R, wF 2 Frw, E=R A8, UNet-
RBF HJYIZRAS (A AH % T DeepONet-L #7473 51 (2
ZIDT 37.79%. T4.44%F A 1535.80%. TG
HIRAE VYRR 25 i 7] @, DeepONet-L ()11 5
i EJ#E I 2000 43044, 17 UNet-RBF (X 7547 122 43
B, B R HAEAC IR S 3 i) @S, UNet-RBF £
WERECR R B

xR 33— PVEARE R T UNet-RBF 4 514
RETEARIY) DeepONet-L A5 Y £EAN [F] 5451 e s 1
AR TR 285 5 B R R (38 4B R 2 50 AT . AN
3 MTIME = B P LAE PR R 24 e DAL
G FEAAE PDEs BUEARM F ZRFER S Aia s .
XoT EU P SR (R 2 06T 158 22 2= B U AT LUK B, UNet-
RBF A5 5% 22 73 A7 8 230 H A0 )~ P
AR 1, EARAARIIAE 7% 22 Y B M BEAH T L)
RS AL EBAR, Jf HREAD R ST
HIRN I B EWE A H R HEZ T,
DeepONet-L A58 [ 15 22 4347 75 52 L2 [X 38 2 I
BRI ZURNEE R AR . XA R ] RE UH (RT3
RZ FNN T E S IR I 2576 20
T, EHREANRERIEECRRE E S, G
FEAE RN ST 5l NSRZREREEAS BN i,
FEVUR AR i) b, b ik is ST el

% 3 UNet-RBF 5 DeepONet-L A5 7 5550451 A 1) I 25 SR % 6 iR 22 AT

Tab.3 Prediction results and absolute error distributions for UNet-RBF and DeepONet-L models on test examples
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Fig.4 Training loss curves for different models on the first-
order differential problem
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Fig.5 Breakdown of training time for different models across
various computational tasks
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Fig.6 Influence of model complexity on prediction accuracy

and training time
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