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摘  要： 高性能互连网络是决定超算与智算系统可扩展性的关键因素之一。拓扑是互连网络可扩展性设计的核心。拓扑设计既要考虑应用与软硬件系统等宏观设计需求，也需要考虑路由器芯片端口数、虚拟通道数量、封装密度等多种制约因素。本文较为系统地分析总结了学术和工业界的重要拓扑结构，并对有代表性的新型拓扑进行了详细阐述；分析了自适应路由在高阶数网络中的设计难点，对比了典型拓扑的性能和成本，并讨论了选型建议；初步探讨了未来拓扑设计的挑战与发展趋势，包括从智算应用特点出发针对性地设计高性价比的网络拓扑，供电制约的拓扑设计需要拓扑和大楼供电能力的配合，超节点内外网络拓扑的融合与协同设计等。
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Survey on topology of high-performance interconnection networks
DONG Dezun, WANG Ziyu, LEI Fei
College of Computer Science and Technology, National University of Defense Technology, Changsha 410073 , China 
Abstract: High-performance interconnection networks are among the key factors determining the scalability of supercomputing and intelligent computing systems. Topology serves as the core of scalability-oriented interconnection network design. The design of topology must not only address macro-level requirements from applications and hardware–software systems, but also consider multiple constraints such as router chip port count, number of virtual channels, and packaging density. Significant topological structures from both academia and industry were systematically analyzed and summarized , and a detailed exposition of representative novel topologies was provided. The design challenges of adaptive routing in high-radix networks were examined, the performance and cost of typical topologies were compared, and recommendations for topology selection were discussed. Furthermore, it preliminarily explored future challenges and trends in topology design, including developing cost-effective network topologies tailored to the characteristics of intelligent computing applications, coordinating topology design with building power supply constraints, and integrating and co-designing intra- and inter-supernode network topologies.
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近年来，高性能计算(High Performance Computing，HPC)持续快速发展，已迈入后E级时代，并稳步向Z级计算规模演进。随着大语言模型(Large Language Models，LLM)应用等对智算需求的快速增长，人工智能(Artificial Intelligence，AI)数据中心规模亦高速扩张。xAI、OpenAI、Meta 等全球领先企业竞相建设规模超过十万加速卡、功耗达到GW级的AI数据中心集群[1, 2]。高性能互连网络是决定超算与智算系统可扩展性的关键因素。互连网络拓扑决定了网络中节点、路由器以及链路的连接方式，是互连网络可扩展性设计的核心。
拓扑的可扩展性设计应同时考虑成本效益、高带宽、低网络直径等关键特性。胖树(Fat-tree)拓扑是当前互连网络事实上的标准方案，其能够在任意流量模式下提供无阻塞的网络带宽，并表现出优异的网络性能。然而，成本始终是互连网络设计的重要制约因素。在面向Z级计算及超十万加速卡互连的过程中，节点规模与计算能力显著提升，随之而来的高带宽需求迫使网络规模进一步扩大。对于无阻塞的胖树结构而言，这意味着将消耗数十亿美元的互连成本，因此推动了学术界与工业界对高成本效益拓扑的持续探索。
拓扑设计不仅受制于成本，还受到路由器芯片架构、物理封装密度、路由算法特性、功耗约束以及容错能力等多方面因素的影响。例如，在国产路由器芯片端口数受限的条件下，构建具备高带宽、良好扩展性且成本可控的拓扑是一大挑战；在虚拟通道(Virtual Channel, VC)数量受限的情况下，实现易部署、精准且拥有丰富路径集的自适应路由算法亦存在难度；面对链路或交换机失效，网络的容错设计同样是重要问题。多种工程性约束叠加，显著提高了拓扑设计的复杂性。
过去数十年间，学术界与工业界已提出数十种具有代表性的拓扑方案，它们在路由器芯片封装形式、端口数量需求、物理布局要求、网络生成方式、光纤类型等方面各有差异。本文对现有的典型拓扑进行了系统分类与综述，随后探讨了拓扑设计中面临的主要挑战，并展望了未来的发展趋势。
1  拓扑发展脉络与分类标准
[bookmark: OLE_LINK5][bookmark: OLE_LINK4]自20世纪八十年代以来，互连网络领域已提出数十种具有代表性的拓扑结构。在早期的互连系统设计中，路由器芯片通常与计算芯片集成封装。这类系统多采用 Mesh 和 Torus 等规则的多维网格型拓扑结构。随着互连规模的扩大及路由器芯片带宽的迅速提升，Dally 等人在 2005 年提出了高阶(高基数)路由器的概念：在路由器芯片总带宽一定的情况下，将路由器设计成总端口数量较多、单端口带宽较低的方案，并证明：随着网络规模的扩大，采用的高阶路由器能够显著降低网络直径，从而有效减少报文传输延迟；促进了拓扑向高基数方向的发展，推动了基于高阶路由器的拓扑(如胖树)的广泛应用，催生了Flattened Butterfly[3]与Dragonfly[4]等一系列经典高阶拓扑结构。
此后，学术界又基于组合数学与代数图论提出了多种拓扑结构[5-8]。Ankit 等人提出了基于随机链路的 Jellyfish[9]网络，并证明该拓扑在成本、平均路径长度及网络容错性方面具有优势，随后学术界和工业界对随机拓扑展开了进一步研究[10, 11]。Maciej等人提出了Slim Fly[12]拓扑，将能够近似求解度–直径问题的MMS图结构[13]引入拓扑构建中。
近年来，以大语言模型为代表的生成式人工智能的迅猛发展，显著推动了AI数据中心对互连规模与通信带宽的需求，规模超过十万加速卡的数据中心已相继建成与部署。为应对超大规模AI数据中心在可扩展性、性能及成本效益方面的挑战，学术界与工业界提出了多种基于应用负载特征优化的网络拓扑设计方案。
本文根据拓扑的主要应用场景，将这些拓扑分为三大类：面向分布式数据中心的拓扑、面向高性能并行计算的拓扑以及面向智能计算的拓扑。下文将分别对这三类拓扑进行系统介绍与分析。在展开讨论之前，先定义如下参数：
表1  拓扑参数定义
Tab.1  Topology parameter setting
	参数
	描述

	

	网络中任何两个路由器间最短路径的最长跳步数，即网络直径

	

	路由器端口数

	

	与端点有连接的路由器连接的端点数量

	

	网络端点数


2  面向分布式数据中心的拓扑

拓扑发展历程中提出了多种面向分布式数据中心的网络拓扑，它们通常具有高带宽，可拓展和高容错的特点。胖树拓扑是数据中心网络的典例，胖树网络中每台交换机的端口数都相同，其中接入层的路由器与端点直接连接，汇聚层的路由器将接入层路由器向上连接到核心层路由器。每一层网络都具有相同的上下行链路数这意味着胖树网络具有完全的二分带宽，即对于任何排列的流量模式，总能找到一组路径为拓扑中的所有端点都提供完全的可用带宽[14]。然而胖树网络的可拓展性较弱，如公式1所示，其中表示胖树的层数。

             
多轨胖树是胖树网络的一个实用变体。如图1所示，多轨胖树是指在原有的胖树网络上，端点具有多条独立的接入网络的物理链路(轨道)，每个轨道都可以承担一部分流量。实现多轨胖树的常见方法是每个节点配备一个多端口网卡或配备多块网卡。多轨胖树在HPC和数据中心领域应用广泛，它的主要优势在于使端点具备更好的负载均衡和冗余容错能力。
一种优化多轨胖树[15, 16]的方法是将端点的不同端口接入到网络不同的接入层交换机下，这样做可以让端点在一跳内直接到达更多其他端点，在流量均匀时减少数据包平均跳数[17]，此外还可以降低流量冲突的概率。图1展示了多轨胖树和轨道优化的多轨胖树网络。然而，由于端点需连接至较远位置的接入层交换机，这些连接通常必须采用成本高于电缆的光纤链路，从而增加了光模块的数量与系统总体成本，同时提高了故障风险[18]。
[image: ]
图1  多轨胖树和轨道优化的多轨胖树网络示意图
Fig.1  Illustration of multi rail fat tree and optimized multi rail fat tree networks



微软在2008年提出了Dcell[19]拓扑。Dcell以服务器为中心，其中交换机之间没有链路连接，一台服务器在网络中既是计算节点也是网络转发节点，且具有2个及以上的网卡端口并与其他多台服务器相连接。网络被递归构造并可被表示为Dcell (,)。图2展示了一个Dcell(4, 1)网络，它共有20台服务器，并由个仅包含4台服务器和一个交换机的Dcell(4, 0)网络构成。Dcell网络的可拓展性如公式2和3所示。

	     

	                        
随着递归层数的不断扩展，DCell 网络的规模将随交换机端口数呈双指数级快速增长。例如，一个DCell(6, 3)网络可容纳超过300万台服务器。DCell网络不仅具备出色的容错性，其分布式递归路由协议在面对严重的链路或节点故障时，仍能够实现接近最短路径的路由性能。总体而言，DCell在可扩展性与可靠性方面表现优异，但其网络布线结构复杂且路径跳数较高，这在一定程度上限制了该拓扑在工业界的大规模实际部署。
[image: ]
图2  Dcell(4, 1)网络
Fig.2  Dcell (4, 1) network



微软在2009年进一步提出了Bcube[20]网络，并同样是一种以服务器为中心，可递归构造的拓扑。与Dcell相比，Bcube具有更简洁的网络结构、更好的性能和更简单的布线。网络可被表示为Bcube (,)，其中表示网络层数，网络的可拓展性如公式4所示。

                     





Bcube网络的每台服务器配备块网卡，每块网卡连接到不同层的交换机。服务器地址可被编码为一个位的向量。两台服务器之间的路由可被视为对齐两个地址向量中不同位的过程，其中最多有！条最短路径，表示地址向量中不同位的数量。图3给出了Bcube (4, 2)网络的示意图。Bcube网络的主要优势在于网络直径小，布线模块化，易于封装。然而Bcube在路由过程中流量需要经过(-1)次服务器内转发，这可能会引入额外的网络延迟并成为性能瓶颈。
在2012年，Anki等人提出基于随机链路的Jellyfish网络[9]。该架构中每台交换机拥有相同数量的端口，并连接相同比例的端点，交换机之间的链路通过随机方式生成。与胖树网络相比，Jellyfish 在扩展性方面表现更优：在互连相同数量的端点时，可节省约15%～20%的交换机和链路；同时，其平均路径长度显著更短，并具有更强的链路容错能力。此外，Jellyfish 支持简单的增量部署策略：当新增一台交换机时，可随机断开原有网络的若干链路，并将这台新增交换机接入至这些断开链路的中继位置即可。
[image: ]
图3  Bcube(4, 2)网络
Fig.3  Bcube (4, 2) network
3  面向高性能并行计算的拓扑
在早期的互连系统网络设计中路由器芯片常和计算芯片封装在一起。这类系统的路由器芯片通常具有较低的端口数并使用高维Mesh或Torus拓扑，图4为2D 4x4 Mesh和Torus网络的示意图。二者的区别在于Torus网络的每个节点连接相同数量的链路，且每个维度的边界节点会连接到对面的边界节点，实现“环绕”，这也使得Torus具有比Mesh更高的二分带宽和更低的直径。
[image: ]
图4  4x4 Mesh和Torus网络示意图
Fig.4  Illustration of Mesh and Torus networks
国际高性能计算排行榜TOP500中使用Mesh或Torus的经典机器包括Intel的Paragon计算机，IBM的蓝色基因系列计算机，日本的K系列和富岳[21]计算机。Torus网络还在Google的张量加速器(tensor processing unit, TPU)[22]系列AI数据中心中与光交换机结合使用以实现根据应用程序的需求重新配置拓扑。
高带宽和低延迟始终是互连系统的两个重要的性能指标。然而使用低阶路由器所搭建的网络如高维Torus难以在大规模互连中保持高的二分带宽且高维度还会导致高直径和高延迟问题。为了简化互连网络的设计并降低网络直径，John Kim在2005年提出了高阶路由器的体系结构[23]。数据包的网络延迟与网络端点数，路由器芯片带宽，路由器延迟以及报头网络穿透延迟有关。公式5给出了数据包网络延迟的表达式。

                












其中表示数据包的零负载网络穿透延迟，它等价于数据包在网络中传输的跳数乘以路由器延迟，表示为数据包的序列化延迟，等价于，其中表示数据包的长度，表示为通道带宽。对于由基数为的路由器构建的节点数为的无阻塞网络(如胖树)，数据包的跳数至少为[23]。假设路由器带宽为并被所有通道平分，则有，将其带入公式5则有：

                   



令并分离出参数可得令网络延迟最小化的最优值：

	                     






其中路由器延迟主要由链路层、物理层延迟以及光模块等固定延迟决定，受路由器基数的影响很小，因此将其视为常数。此外，公式6中没有考虑数据包在链路上的飞行时间，这是因为数据包在网络中传输的总物理距离与无关。公式7中被称为纵横比，它决定了最小化网络延迟的路由器基数。如图5所示，当小于纵横比时，可继续增大路由器基数以降低网络延迟，而当大于纵横比时，此时数据包的序列化延迟起主导作用，因此继续增大端口数会导致过低的端口带宽所带来的高序列化延迟。
[image: ]
图5 路由器端口数与网络延迟关系示意图
Fig.5  Illustration of the relationship between router ports and network latency

此外，发送单个数据包并不是网络通信的常态，公式7实际应用时还应将替换为最常用发送消息的长度。例如一个具有51.2Tb/s带宽，400ns延迟的路由器芯片和一个具有10万端点且平均期望消息大小为16KB的网络，则该网络的纵横比为1842，对应最优路由器基数为91。端口数量满足使消息网络延迟最小化的路由器即为高阶路由器。基于高阶路由器，学术和工业界后续提出了多种高性能互连网络拓扑。
在2007年至2022年，即从P级超算发展至E级超算的过程中，学术界和工业界陆续提出了一系列旨在减少交换机与光缆使用数量的高性能拓扑。互连系统的成本可占总成本的三分之一以上[12]。与数据中心领域普遍追求高二分带宽不同，面向高性能并行计算的网络拓扑通常并不需要完全的二分带宽，其核心目标在于降低互连成本，而成本构成的主要部分集中在交换机与光缆上。在高性能互连网络中，链路通常分为全局链路与局部链路两类。其中，全局链路多采用光缆，用于机柜之间的长距离互连；局部链路则通常使用电缆或背板连接。光缆的单价显著高于电缆。例如，截至2026年1月，一根长度为 30m、规格为QSFP 56 200Gbit/s的光缆价格约为1350美元，而同等规格，长度为1.5m的电缆价格仅约为225美元[24]。因此，拓扑设计的一个重要原则是尽可能减少全局链路和交换机的数量。




John Kim在2007年提出了Flattened Butterfly [3]拓扑。Flattened Butterfly是一个直连网络，其中网络中所有交换机都连接 个端点。Flattened Butterfly具有多个维度，每个维度的交换机数量都是且它们相互之间全连接。假设Flattened Butterfly网络有个维度，则直径也为，其拓展性如公式8所示。

               
在均匀随机流量模式下，Flattened Butterfly能够实现和胖树类似的无阻塞的网络性能，然而在对抗性流量模式下，Flattened Butterfly需要依赖非最小路由来实现负载均衡。由于非最小路由的会占用最小路由两倍的网络资源，因此在最坏流量模式下Flattened Butterfly的理论最大吞吐率仅为50%。Flattened Butterfly部署时可将其中一个维度的交换机和端点封装在机柜内部，机柜内交换机间链路使用背板或短距离电缆连接，而在胖树中相应的链路通常为光缆连接到中央通信机柜，因此与胖树相比，Flattened Butterfly的全局链路数量更少，并可显著节省网络成本[3]。2009年，Jung等人提出了Flattened Butterfly的拓展拓扑HyperX[25]。Flattened Butterfly网络是HyperX的子集，其主要区别在于HyperX还额外探讨了每个维度的交换机数量，每个交换机所连接的端点数量等多种配置情况。








Dragonfly 拓扑由John Kim于2008年提出[4]，是一种直连层次化拓扑，包含两层全连接结构，并在高性能计算领域被广泛应用。截至 2026 年 1 月，国际高性能计算排行榜 TOP500 中唯四的 E 级计算机[26-28]均采用Dragonfly或其变体拓扑。此外，Google 的数据中心网络 Aquila[29]也基于 Dragonfly架构。Dragonfly可由共4个参数来唯一确定，并表示为Dragonfly。网络中每个组有个相互全连接的路由器，每个路由器连接个节端点，每个路由器有个全局链路连接到其他组的路由器，并形成组间的全连接结构。对于一个最大尺度的Dragonfly网络，应满足，，。图6给出了一个Dragonfly(4, 2, 2, 9)网络的示意图。Dragonfly网络的直径为3，并具备良好的可拓展性，如公式9所示。
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图6  Dragonfly(4, 2, 2, 9)网络及其最小和非最小路径
Fig.6  Dragonfly(4, 2, 2, 9) network and the minimal and non-minimal paths.
Dragonfly网络的层次化结构，可以简化路由策略并减少用于死锁避免的虚拟通道数量。其最小路由策略定义为：数据包首先经一次组内路由到达具有直连目的组全局链路的组内路由器；随后通过全局链路进入目标组；最终在目标组内再进行一次组内路由到达目标路由器。该过程至多使用一次全局链路和两次局部链路，在由最小路径构成的循环路径中，不存在使用两条全局通道的最小路径，因此最小路由中全局和本地链路分别仅需要一条和两条虚拟通道即可避免死锁。而非最小路由被定义为选择一个随机的中间组，数据包会首先最小路由到中间组，随后再次最小路由到目的组。这个过程至多使用两次全局链路和三次局部链路，因此非最小路由的全局和局部链路分别仅需二和三条虚拟通道。基于Dragonfly网络还提出了一些变体[30-32]，例如将组内结构换成二级胖树可以得到Dragonfly+[31]网络，它在保留Dragonfly成本效益的同时具有更好的可拓展性，它已被应用于欧洲的Jupiter[33]超算上，并在TOP500 (截至2026年1月)中排名第4。
Dragonfly还在系统封装上具有显著优势，组内的全互连网络可以被封装一个或多个相邻机柜中，并使用电缆实现组内链路，而昂贵的光缆则可只用于全局链路连接。平均每端点仅需要0.5条全局链路。与Flattened Butterfly相比，实现同等规模的互连时，Flattened Butterfly需要更多的维度和更多的全局链路数量，因此Dragonfly可节省约10%~20%的网络成本。
部署Dragonfly的主要挑战之一是高效的自适应路由设计。目前学术界已经提出十余种Dragonfly网络自适应路由算法[34-45]。在Dragonfly网络中路由器间的最小路径稀缺，必须借助非最小路径来实现负载均衡。Dragonfly的组间全局链路是最易出现拥塞的地方，且这些全局链路很可能不与源路由器直接连接，这就导致了Dragonfly中的间接路由问题。截至今日，实际的Dragonfly网络仍未存在高效的自适应路由。在5.1节还将更详细地讨论Dragonfly及其它高基数网络的自适应路由设计难点。
国防科技大学天河团队于 2016 年提出了 E 级原型机 Mesh-Tree 拓扑[46, 47]，其设计目标是在受限的路由器端口数条件下，构建具备成本效益和高可扩展性的互连网络，以支持E级计算。与具有相似可扩展性的四级胖树网络相比，Mesh-Tree 拥有更小的网络平均数据包跳数，并表现出更低的传输延迟。图7展示了天河E级原型机的拓扑示意图。该拓扑由多个二维网格排列的组构成，每个组内部采用标准的二级胖树结构。各组的全局端口通过多个全局路由器以均衡方式连接至同列或同行的其他组节点。Mesh-Tree 网络可通过维度顺序路由实现无需虚拟通道的死锁避免，从而降低对路由器虚拟通道数量的配置需求。该网络直径为6，具备良好的可扩展性，并便于实现模块化部署。
21世纪10年代高性能计算领域出现了一些类似Jellyfish的基于随机链路的拓扑[10, 11]。与胖树等经典拓扑相比，这类拓扑在相同网络直径下展现出更高的可扩展性、更短的平均路径长度以及更强的网络容错能力。Michihiro等人于2012年提出了分布式环路网络(distributed loop networks, DLN )拓扑[11]。DLN拓扑中所有交换机都连接相同数量的端点，所有交换机间呈环状排列，随后将交换机剩余的端口以随机链路的形式连接到环的其他交换机上。
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图7  天河E级原型机Mesh-Tree拓扑
Fig.7  Mesh-Tree topology of Tianhe E-class prototype supercomputer
Ikki等人在2014年提出了Skywalk[10]拓扑，其研究假设是未来交换机的延迟将可能缩小至60纳秒，在这种情况下，网络延迟主要取决于链路的飞行延迟。Skywalk也是基于随机链路实现的，但与Jellyfish不同，Skywalk明确考虑了网络的物理封装。Skywalk假设机柜呈2D网格的形式分布在机房中。交换机间的链路分为3种类型，分别是机柜内链路，机柜间直链路(连接两个位于相同行或相同列的机柜)和对角链路(连接不同行且不同列的机柜)。每台交换机连接相同数量的端点，并具有相同数量的3种类型的交换机间链路。每一条交换机间链路都是随机连接的。在具体连线中将生成多种连线方式，并选取总链路长度最小的方案。Skywalk可以实现与Jellyfish相似的性能，但从设计时即考虑了模块化的物理封装，避免了极端长度的链路出现。
总体来看，基于随机链路构建拓扑提供了一系列的优点，如更小的平均路径长度，更好的容错，更方便的网络增量部署等等，然而这些拓扑的实际部署仍面临挑战。在成本方面，这类拓扑的重要假设是低成本的铜缆的长度可达10m，这在十年前尚可实现，但在如今主流的400Gbit/s链路速率下，有源铜缆的最大长度仅为7m，在800Gbit/s速率下最大长度仅为5m，更长距离必须采用成本更高的光缆，从而使得原有的成本估算模型在当前已不再适用。除此以外，这些拓扑在路由设计上存在显著的局限性，由于网络是基于随机链路生成的，不具备层次化的结构，不能像Dragonfly那样借助层次化的网络结构来保证路径多样性的同时减少虚拟通道的使用。因此在随机拓扑中的无死锁路由是通过无环算法静态计算生成的，其路径多样性受限于路由表条目数。


一类拓扑[5-8, 12, 48]还基于数学图论来构建高摩尔界效率和成本效益的网络。摩尔界是指给定网络直径和路由器端口数下，网络所能支持的端点数量的上界。

                   

                                

   



公式10给出了摩尔界的表达式，表示网络中的路由器数量，表示路由器中连接到其他路由器的端口数。对求导并令导数为0可得到公式12的极大值。当给定路由器端口数和网络直径后可分别计算出拓扑的最大网络规模和公式12的值，将前者除以后者即得到该拓扑的摩尔界效率。更高的摩尔界效率意味着互连同等数量的网络端点时，可以使用更少的交换机和链路，这意味着更高的成本效益。
Maciej等人在2014年提出了基于MMS图构建的Slim Fly拓扑[12]。MMS 图由 McKay、Miller 和 Siran 提出，故名 MMS[13]。Slim Fly的网络直径为2，具有良好的可拓展性并实现了约90%的摩尔界效率。与Dragonfly网络相比，Slim Fly在相似性能下能够节省约25%的成本。然而使用Slim Fly构建十万端点以上的大规模互连时，需要路由器至少具备88个端口，这对路由器芯片设计带来了挑战。
为了在路由器端口数，网络直径，可拓展性等方面实现更优的平衡，Lei等人在2016年提出了Galaxyfly[5]。Galaxyfly使用了Galaxy图作为顶层结构，Galaxy图中的路由器可以由类似Dragonfly中的虚拟路由器组成，其中每个虚拟路由器代表一个全连接网络。Galaxyfly的最终直径与Galaxy图和虚拟路由器的参数有关，可生成直径为2~5的网络。Galaxyfly具有非常好的可拓展性，使用48端口路由器，可实现1千~1千万端点的网络规模。Galaxyfly还实现了接近Slim Fly的成本效益，并显著降低了对路由器端口数的要求。
高性能互连网络中存在大量光纤，这对光缆的物理封装和维护性提出了挑战，多芯光纤能够降低布线复杂性并节省封装成本。为此Lei等人在2020年提出了Bundlefly[6]。Bundlefly由MMS图和Paley图通过多星积的方式构建并能够很好地支持模块化封装，且模块间具有的多链路属性能够很好地利用多芯光纤来布线。
Kartik等人在2022年提出了基于Erdős-Rényi图的直径2的Polarfly[7]拓扑。Polarfly实现了约96%的极致摩尔界效率，与Slim Fly相比还具有更简单的封装和增量部署策略。Kartik等人在2024年继续提出了PolarStar[8]拓扑，其在已知的直径3的网络中实现了最好的摩尔界效率，并同样支持模块化封装和多芯光纤布线。总的来说，与传统的对称拓扑如Dragonfly和胖树相比，基于数学图论的方式构建的拓扑具有显著更好的摩尔界效率。然而其网络结构复杂，不易为开发和维护人员所理解；同时，复杂的网络结构还显著增加了路由算法的设计难度。此外，其物理封装上的实现与优化仍面临一定的工程挑战。
4  面向智能计算的拓扑
不同于数据中心或高性能计算领域的拓扑，面向智能计算的一些新型拓扑通常从目标应用的通信特点出发，针对性地定制结构，以获得最佳的性能与成本比。





Hoefler等人于2022年提出了面向深度学习任务的HammingMesh[49]拓扑。其核心设计理念在于：深度学习训练过程中普遍存在环形通信模式，此类模式对局部带宽的需求显著高于全局带宽，因此高二分带宽的无阻塞胖树结构并非必要。在HammingMesh中多个加速器以二维Mesh的形式封装在廉价的印制电路板(PCB)上，并称为计算板。随后多个计算板之间以二维网格的形式排列，其中同属于X或Y维度的计算板之间使用交换机实现全连接。图8展示了一个共有x块计算板的Hx2Mesh (HxMesh表示每块板有x个加速器)网络。HammingMesh以廉价的PCB实现了网络的高局部带宽，并以适度削减全局带宽的方式显著节约了网络成本。对于具有环形通信特征的深度学习应用，HammingMesh 在成本效益方面显著优于其他常见拓扑结构。
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图8  xHx2Mesh网络


Fig.8  xHx2Mesh network
光交换机(optical circuit switch，OCS)概念的提出已逾四十年，不同于传统的电交换机(Electronic Packet Switches，EPS)，OCS将光源从输入引导到输出，数据交换过程完全在光域进行，无需电子分组处理。在早期，光学器件的成本较高，稳定性不足且链路速率较低，因此EPS已能满足互连需求。然而随着互连规模的扩大，链路速率的增长，EPS频繁的光电转换带来的成本、功耗和可拓展性问题日益突出，OCS因此重新受到重视并应用于大规模高性能互连系统中[22]。当前OCS可达数百个端口[30, 50]，与EPS相比，OCS省去了光电转换过程，不仅可节约一半的光模块数量，还显著降低了延迟与能耗。同时,OCS对比特率、协议、线路编码和调制格式无关，从而允许光模块与交换机独立演进。微机电系统是当前实现光交换机的主流技术路线之一。其基本原理是：在OCS内布置大量可控的微型反射镜，通过调节反射镜角度，将入射光束引导至不同输出端口以实现光路切换。然而光路切换需要毫秒级的延迟[51]，而端到端网络延迟通常是微秒级，二者相差了近千倍，而这也是OCS与EPS相比的主要局限性。
针对机器学习系统在互连成本、性能和可拓展性方面的挑战，谷歌在2023年发布了专用于机器学习系统，基于高维Torus拓扑和OCS互连的TPUv4超级计算机[22]。其不仅保持了Torus网络局部通信带宽优势还通过OCS重构拓扑以优化集合通信的网络需求。TPUv4共有4096个TPU芯片，由64个包含64个TPU芯片的4x4x4 Cube构成。图9展示了TPU Cube和TPU单元的示意图。每个TPU芯片可被理解为一个小立方体，立方体的6个面代表着6条双向链路，一个Cube由64个TPU组成并有总计384个双向链路，其中在Cube最外表面的96条(每个面16条，总计96条)为全局链路由OCS连接到远程的其他Cube上。每个Cube的X、Y和Z轴表面相同位置的立方体通过相同的OCS连接，网络共有48个OCS，每个OCS具有128个输入和输出端口。对于当前最新的TPUv7系统，其Cube内的连接是相似的，不同之处在于OCS的输入输出端口数提升到了288。值得注意的是OCS进行的是输入和输出端口的匹配，这意味着位于X+/Y+/Z+表面的TPU只能通过OCS连接到位于X-/Y-/Z-表面的TPU，在同一个Cube的X+/Y+/Z+表面的不同TPU或在不同Cube中相同X+/Y+/Z+位置的TPU之间不能通过OCS进行通信[50]。具有4096芯片的最大尺度的TPUv4系统与同时期相似尺寸的英伟达A100系统相比，功耗降低了1.3~1.9倍，在BERT模型训练中性能提升了1.15倍，在ResNet模型训练中性能提升了1.67倍。
[image: ]
图9 谷歌TPU Pod 示意图
Fig. 9 Illustration of the Google TPU Pod
Weiyang等人在2023年提出了Rail-Only[52]拓扑，该结构面向LLM训练的互连需求，并被 DeepSeek 运用于构建千卡规模的计算集群[53, 54]。Rail-Only的核心设计理念在于LLM训练会产生稀疏的通信模式，即在网卡互连层面，任意两块 GPU 之间并不必须具备完整的二分带宽。图10给出了Rail-Only网络的示意图。Rail-Only 可视为在胖树拓扑中去除最顶层交换机的变体，其在超节点内部定义了高带宽域，在该域内，任意两块 GPU 之间的带宽显著高于跨超节点的 GPU 之间的带宽。Rail-Only可通过在高带宽域内转发流量来实现LLM训练产生的全对全通信。与多轨胖树网络相比，其性能仅下降了4.1%却节省了38%的网络成本。Rail-Only也可被理解为一种多平面胖树，其中不同节点内相同位置的GPU属于同一平面[53, 54]。使用单端口网卡构建Rail-only网络时由于平面不连通，跨平面的通信需要借助节点内的高带宽域转发流量，此过程涉及节点内外不同网络协议的转换和内存拷贝开销，从而引入额外延迟。DeepSeek[54]提出了一种可将网卡的单个逻辑端口划分为多个物理端口的理想Rail-Only网络，其中网卡的不同物理端口属于不同平面，这使得单网卡连通了所有平面，跨平面的流量不再需要经节点内网络转发。这种网络具有更好的性能，容错和负载均衡，不过，该设计同时要求网卡具备接收乱序数据包的支持[54]。
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图10  两层Rail-only 网络
Fig. 10  Two-Layer Rail-only network
阿里巴巴在2024年提出了专为LLM训练的HPN7.0[55]网络。图11给出了HPN7.0的示意图。HPN7.0由多个组组成，每个组由15个段组成。每个段由 128 个节点构成，节点总计配备 1024 块 GPU；每个节点拥有 8 块 GPU，并配置 9 块双端口网卡，其中 1 块网卡用于连接前端网络。HPN7.0使用了轨道优化的技术，双端口网卡的两个端口连接到不同平面的接入层交换机上。一个段的128个节点通过16个接入层交换机连接，并向上提供960个400Gbit/s端口，15个段互连成一个组，其中组内的120台汇聚层交换机分别具有120个下行和8个上行端口，速率均为400 Gbit/s。多个组之间通过核心层交换机连接。组内的网络具有轻微的1.067：1的超额订阅，而组间的网络具有15：1的超额订阅。HPN7.0的设计动机之一，是针对LLM训练中周期性出现的“大象”流量。这种长流会使得传统数据中心胖树网络常用的等成本多路径(equal-cost multi-path, ECMP)负载均衡方案容易出现哈希极化效应，从而显著影响模型训练效率。通过双端口构建的双平面的特性，HPN7.0能够有效缓解该问题，具体而言，每个网卡的不同端口属于不同的路由平面，当流量从某一端口发送时，网络会沿确定的路径传输，并最终抵达目标网卡相同位置处的端口，从而确保路径的一致性与隔离性。实验表明双平面的设计使柜顶交换机不同入口处的流量变得更均匀且下游端口的队列长度减少了91.8%。进一步的消融研究显示，双平面设计在跨段交通中可提升高达71.6%的性能。
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图11  阿里巴巴HPN7.0网络
Fig.11  Alibaba HPN7.0 network









清华大学NASP实验室最近提出了Zcube[56]网络，它与多轨三层胖树相比具有相似的性能却节省了约26%~46%的成本。Zcube与Bcube类似，每台交换机都连接到端点，但相邻两层的交换机之间也相互连接。网络可用Zcube (,,)表示。其中，，分别表示交换机端口数，网络层数和网卡端口数，其中。图12给出了Zcube (8, 2, 2)网络的示意图，其直径为，可拓展性如公式13所示。

            
当Zcube网络仅包含两层结构时，交换机的一半端口用于连接端点，另一半端口连接到相邻层交换机上。然而当网络有三层及以上时，非边缘层的交换机将同时连接到端点以及上下两层交换机上，因此可拓展性的表达式与两层Zcube网络不同。两层Zcube网络具有显著的成本效益，它将每个交换机和网卡的高速端口拆分为多个低速端口，从而使得交换机的可用端口数翻倍，进而能够互连更多端点。例如基于无阻塞胖树拓扑，使用128x400Gbit/s的交换机构建具有16384张GPU的中型数据中心需要三层交换网络，而Zcube仅需两层。Zcube与Bcube、Rail-only和HPN等拓扑相比的另一优势是它无需利用节点内网络中转流量，且直径更小。此外，不同于根据传统的人类知识经验进行拓扑设计，Zcube是由NSAP实验室开发的一款自动化网络架构优化设计软件ATOP根据十多种约束条件搜索得来的。除Zcube以外的其他场景，ATOP还能根据不同的优化目标和限制条件给出组网架构的建议。
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图12  Zcube(8, 2, 2)网络
Fig.12  Zcube (8, 2, 2) network
在天河E级原型机网络中，不同行和列所属组之间的路由需要维度转置，这导致路径跳步数较高。如图13所示，一种极致的低直径拓扑设计是使用数量尽可能少的全局路由器，使得网络中任何两个组之间的路由不需要维度转置，仅通过至少一个全局路由器芯片一跳可达。 






富士通在2014年提出了多层全网格(multi-layer full-mesh, MLFM)[57, 58]网络，其给出了一种近似最少化全局路由器数量的连接方案，使得任何两个本地路由器可通过一个全局路由器一跳可达[58]。然而MLFM为直径2的网络，可拓展性受限，难以满足未来超大规模互连网络的需求。为此，国防科技大学天河团队的董德尊等人在2025年提出了面向大规模高性能计算和智能计算系统的Zettafly拓扑[59]。图14给出了Zettafly-4和Zettafly-3网络的总体以及子网0的示意图。类似于Dragonfly, Zettafly网络可由共4个参数唯一确定，并表示为。Zettafly网络中每个组有个路由器。网络中每个与端点有连接的路由器连接个端点，每个与全局路由器有连接的路由器有条全局链路，整个网络共有个子网。Zettafly网络的本地组可以是全连接网络或二级胖树或任何低直径无阻塞网络。当选择全连接网络(或二级胖树)作为组时，Zettafly保证直径为3(或4)，简称为Zettafly-3(或Zettafly-4)。此外，MLFM网络可被视为Zettafly的特例，其中每个组仅包含单个路由器。
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图13  低直径组间互连示意图
Fig.13  Illustration of low diameter inter-group interconnection
如图14(c)所示，Zettafly-4的多个组构成了一个无阻塞子网，其类似一个一半根交换机都悬空的三级胖树。整个网络由多个无阻塞子网构成，每个子网之间通过全局路由器全连接，每个全局路由器的端口被两个子网平分。如图14(a)和(c)所示，网络中共有4个子网，每个子网连接到9个全局路由器，其中每3个一组连接到其余三个子网。Zettafly网络的可拓展性如公式14和15所示，使用64端口路由器，Zettafly-3和-4分别支持27.8万和108万个端点。Zettafly还在支持中小作业的网络隔离上具有显著优势。中小作业产生的流量仅使用到一小部分的网络，因此为全网络都提供完全的二分带宽是不必要的，然而现存的拓扑如Dragonfly，HyperX等具有完全二分带宽的无阻塞区域又太小，难以对多并发的中小作业做到有效的分区隔离。而Zettafly网络由多个大型的无阻塞子网构成，这使得中小作业能够很容易地被隔离在单个无阻塞子网内。Zettafly还配备了高效的自适应路由算法，经自研全栈仿真平台验证[60, 61]，在并发多作业的混合流量模式下Zettafly实现了显著的成本效益。
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图14  Zettafly-3 (4,2,2,3)和Zettafly-4 (6,3,3,4)网络
Fig.14  Zettafly-3 (4,2,2,3) and Zettafly-4 (6,3,3,4) networks
华为在2025年提出了专为LLM训练而设计的UB-Mesh[62]拓扑。不同于传统数据中心中常见的具有完全二分带宽的网络，UB-Mesh采用了一种分层局部化的n维全网状网络拓扑结构。这种设计充分利用了LLM训练的数据局部性，优先采用短距离、直接的互连方式，以最小化数据传输跳数并减少交换机的使用。图15展示了一个具有16个机架，1024块GPU的UB-Mesh组示意图。UB-Mesh中的所有可互连设备都基于统一总线(unified bus，UB)互连，这消除了传统的AI数据中心中PCIe (peripheral component interconnect express)，NVLink，IB (InfiniBand)/RoCE (rdma over converged ethernet)等多种互连协议并存所带来的协议转换开销。UM-Mesh中的NPU和CPU都集成了UB-IO控制模块，其分别具有72和32条UB通道。不同维度间的带宽分配可通过UB-IO中预留的通道数量来灵活调整。UB-IO还具备路由功能，可视为一种低阶路由器。在构建小规模网络时，UB-Mesh网络可只有前三维并可通过UB-IO构建直连网络。当互连更大网络时，机架内将配有多个具有72条UB通道的低阶路由器，这些低阶路由器连接到机架内的NPU并使4x4个机架互连形成一个4维的UB-Mesh-Pod。组内的链路均使用低成本的电缆和低阶路由器互连，而组间互连(图15中未绘出)将使用光缆和具有512条UB通道的高阶路由器连接。UB-Mesh还使用全路径路由算法(all-path-routing, APR)允许流量在网络中绕路以获得更高带宽。在MOE-10T、LLAMA2-70B等多个LLM训练任务上，对 8 K 至 10 M 序列长度的性能评估结果表明，与无阻塞胖树相比，UB-Mesh可达到胖树网络93%的训练吞吐率并实现了2.04倍的成本效益。
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图15  UB-Mesh组示意图
Fig.15  Illustration of UB-Mesh Pod
5  分析、对比和总结
数十年来学术和工业界提出了三十余种代表性拓扑结构，然而仅有Mesh/Torus、胖树及其变体以及Flattened Butterfly、Dragonfly/Dragonfly+网络被真正大规模部署过，其余绝大多数网络仅停留在学术研究或小型原型机层面。在本节中将进一步分析和总结各类拓扑的优缺点，以供系统设计者们参考并根据需求选型拓扑网络。
5.1  高基数网络与自适应路由的协同设计
拓扑决定了网络的性能上限,而路由算法则在能否逼近甚至实现这一性能上限方面起着关键作用。事实上，路由算法的性能表现与设计复杂度，通常是制约众多高基数网络在大规模场景中部署的重要因素。高基数网络如Dragonfly/ Dragonfly+、Slim Fly、Flattened Butterfly等与胖树网络相比具有更优异的成本效益，但这种优势是以牺牲最短路径的多样性为代价换取的。因此高基数网络需要自适应路由算法才能实现在恶性流量模式下的负载均衡。然而，在高基数网络中设计简单、高效且实用的自适应路由算法具有诸多挑战。
通用全局自适应负载均衡算法(universal globally adaptive load-balancing, UGAL)[63]是包括Dragonfly、Flattened Butterfly、Slim Fly在内的多种高基数网络的默认自适应路由算法，并已被部署在实际的大型互连系统上[64]。UGAL根据路径下一跳队列长度乘以路径跳数评估候选路径的拥塞情况并据此作出自适应路由决策，具体地，当下列不等式满足时UGAL将最小路由：

		





其中()表示最小(非最小)路径根据端口已使用的信用估计的第一跳队列长度，()表示最小(非最小)路径的跳数，表示静态偏置或阈值，其为正数将使得UGAL偏向于最小路由，为负数则偏向于非最小路由。
原始的UGAL性能较差，学术界已提出十余种针对Dragonfly网络改进UGAL的自适应路由算法[34-45]。图16总结了UGAL在Dragonfly网络中存在三点问题：(a)当最小路径的全局链路出现拥塞但并未反压到源路由器时，源路由器仍将继续最小路由流量并加剧全局链路拥塞。(b)长的链路延迟使得大量数据包和信用在飞行中并造成了幻影的拥塞。(c)一个Dragonfly网络中非对称流量模式(UR_half)的示例。网络被两个应用所共享，其中右侧为一个几乎不产生流量的计算密集型应用，而左侧是一个通信密集型应用并在内部产生均匀随机流量，从而形成了一个部分全局链路被超额订阅的Dragonfly子网。“下一跳队列”表示路由器根据本地剩余信用估计下游路由器队列长度，而“路由器输入队列”则表示下游路由器输入队列缓冲区的真实长度。全局和局部链路分别用实线和虚线表示。值得注意的是，这些问题不仅除Dragonfly以外也存在于Dragonfly+、Flattened Butterfly、Slim Fly等多种高基数网络中。
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图16 UGAL在Dragonfly网络的三个问题
Fig. 16  The three problems of UGAL in Dragonfly networks

1) 间接路由问题：图16 (a)展示了UGAL在Dragonfly中的间接路由问题。该问题在Dragonfly的初始文献[4]中就已发现，并被后续多种自适应路由算法重点研究[35, 38, 40, 41, 44, 65]。Dragonfly中最小路径的全局通道常位于组内其他路由器上，因此源路由器只能通过局部通道的背压感知全局通道的拥塞，在此过程中大量数据包都将被最小路由使得网络吞吐率和延迟下降。间接自适应路由算法是指自适应路由决策使用源路由器无法直接获得的信息，能够有效解决该问题。
2) 幻影拥塞问题：UGAL使用本地剩余信用来估计下游路由器输入队列的长度，然而这种估计只在通道中不存在飞行中的数据和信用时才是准确的。如图16 (b) 所示，假设网络处于没有拥塞的良性流通的情况，下游路由器每接收一个数据包都会将其立即转发，因此其输入队列空闲。然而由于长的通道延迟，存在大量飞行中的数据包和信用，这使得上游路由器错误地估计出下游路由器具有较高的输入队列。通道中飞行的数据和信用数量的上限取决于通道延迟，而局部通道的通道延迟显著小于全局通道，最终幻影拥塞会使得UGAL偏向于第一跳使用局部通道的路径[35, 36, 59]，并由此做出不精确的路由决策。如图16 (b)所示，这种情况在直接拓扑如Dragonfly中不可避免。直接拓扑的每个路由器都连接了相同数量的端点和局部/全局通道，因此必定存在最小和非最小路径的第一跳使用不同类型通道的情况，而在间接拓扑中情况有所缓解。滑动窗口技术[35]通过在最近一个通道往返延迟窗口内统计发送至该通道的flit数量，使路由器能够区分通道的实际拥塞状态与存在大量飞行数据包的状态，从而有效缓解幻影拥塞问题。
3)非对称流量问题：自适应路由算法的评估中通常仅使用对称负载，其中网络的每个端点具有相同的注入率和流量模式。然而，在真实系统中，网络往往承载着通信特性各异的多个应用程序，导致流量模式可能呈现强烈的不对称性。图16 (c)展示了Dragonfly网络中一种非对称流量模式的示例，其中网络左侧运行着通信密集型应用，记为app1，而右侧运行着计算密集型应用，记为app2。对于app1内的流量，存在一些穿过网络二分切割，经过app2的区域最后返回app1的非最小路径，这些非最小路径在app2内的跳数应该具有极低的队列长度。然而UGAL根据第一跳的队列长度来近似路径所有跳的队列长度，当自适应路由app1内的流量时，UGAL会高估这些非最小路径的拥塞情况，导致过多的流量被最小路由。
智能路由算法[38, 66]利用目的路由器将端到端网络延迟通过数据包或信用捎带给源路由器并通过梯度下降或强化学习的方式处理这些网络延
迟信息并使得源路由器了解网络的整体流量情况以解决非对称流量问题。
表2  Dragonfly网络自适应路由算法性能与开销比较
Tab.2  Performance and overhead comparison of adaptive routing algorithms on Dragonfly
	路由
	解决问题
(1)(2)(3)
	空间
复杂度
	低逻辑
开销
	VC
数量

	UGAL[63]
	×××
	O(1)
	√
	4

	PB[65]
	√××
	
O()
	×
	4

	PAR[65]
	√××
	O(1)
	√
	5

	OFAR[67]
	√√×
	O(1)
	√
	2

	PARph[35]
	√√×
	
O()
	×
	5

	ECtN[40]
	√√×
	
O()
	√
	4

	TPR[41]
	√√×
	
O()
	×
	4

	Q-adaptive[38]
	√√√
	
O()
	×
	5

	DGB[66]
	√√√
	
O()
	×
	4

	UGAL-LE[44]
	√××
	
O()
	√
	4




表3  各拓扑成本与性能在构建大型系统下的比较
Tab.3  Scalability and cost comparison across topologies
	拓扑
	规模
	直
径
	网络
可拓展性
	二分
带宽
	无阻塞
区域大小
	每端点
铜/光缆
	每端点
端口数
	每端点
成本($)
	每端点
功耗(W)

	两层胖树
	

小
	2
	

	100%
	

	1
	1
	3
	3087
	49.3

	两层Bcube[20]
	
	2
	

	100%
	

	1
	1
	2
	2590
	42.5

	两层Rail-only[52]
	
	2
	

	100%
	

	0
	2
	3
	4191
	58.3

	HPN7.0组[55]
	
	2
	

	100%
	

	0
	3
	4
	4343
	61.3

	两层Zcube[56]
	
	1
	

	100%
	

	1
	2
	4
	2655
	45.5

	三层胖树
	中
	4
	

	100%
	

	1
	2
	5
	5431
	71.8

	3D HyperX[25]
	

大
	3
	

	50%
	

	1.5
	1
	4
	3707
	56.0

	Dragonfly[4]
	
	3
	

	50%
	

	2
	0.5
	4
	3155
	51.5

	Dragonfly+[31]
	
	3
	

	50%
	

	2
	0.5
	4
	3155
	51.5

	Mesh-Tree[46]
	
	6
	

	50%
	

	1
	2
	5
	5431
	71.8

	Zettafly-3[59]
	
	3
	

	50%
	

	2
	1
	5
	4327
	62.8

	Zettafly-4[59]
	
	4
	

	50%
	

	1
	2
	5
	5431
	71.8





表2展示了Dragonfly网络多种自适应路由算法的性能和开销比较。在“空间复杂度”一栏中，表示路由器端口数，表示滑动窗口长度。若算法不使用浮点计算单元，则被视为低逻辑开销(√)否则归为高逻辑开销(×)。OFAR算法使用哈密尔顿逃逸环和气泡流控的死锁避免机制因此只需要2条VC，其余算法均通过逐跳VC升序的方式避免死锁。据了解，由于高的缓冲区开销、逻辑开销或需要额外的虚拟通道，除PAR算法的变体[35]外，其余所有自适应路由算法从未被真正实现过。此外，一些Dragonfly网络的自适应路由算法还聚焦于缩短网络中非最小路径的长度[36, 45, 68, 69]，这与上述侧重于拥塞感知优化的路由算法是正交的。然而由于这类算法通常具有较高的逻辑开销且需要显著的缓冲区存储定制的更短的非最小路径集，同样未被真正实现过。
UGAL在Dragonfly中的局限性也存在于其他如Flattened Butterfly、HyperX、Slim Fly等高基数网络中，在这类网络尤其是基于图论的或随机链路的不规则高基数网络中实现高效自适应路由还将具有更多挑战，这也很大程度上限制了它们的实际部署。
5.2  各拓扑成本和性能的综合比较

表3按照拓扑的可拓展性比较了多种拓扑在构建小、中、大型系统下的性能和成本特征，其中表示路由器端口数。基于低阶交换机、随机链路和数学图论等构造的非对称拓扑不包含在内。“二分带宽”指穿过最小割的总链路带宽与端点总注入带宽的一半之比。“每端点端口数”指平均每端点需要的路由器端口数量。端点与交换机之间的链路默认使用铜缆，但基于轨道优化的拓扑将使用光缆。Dragonfly、Dragonfly+和Zettafly-3的组内链路使用铜缆，其余情况下交换机间链路默认使用光缆。HPN7.0组和Rail-Only网络的高带宽域的大小被设为8个端点。HPN7.0组在工程实现时设置了93.8%的二分带宽，但在表3的评估中统一设置为100%。成本和功耗评估使用了Zettafly[59]中的200Gbit/s速率模型，对于400 Gbit/s、800Gbit/s或更高速率的链路和交换机，其成本规律是相似的。其中200 Gbit/s铜缆和光缆的价格分别是246和1350美元。交换机成本建模为端口的线性函数，每端口497美元。此外Zcube和HPN7.0还将使用双端口网卡，根据Colfax网站数据[24]，100Gbit/s的铜缆和光缆价格分别是159和751美元，每两个100Gbit/s速率端口的成本被视为1个200Gbit/s端口成本。功耗模型由网卡、交换机和光模块组成。其中200Gbit/s单/双端口网卡功耗为20瓦特(Watt, W)，200 Gbit/s路由器端口功耗为6.75W，200Gbit/s光模块功耗为4.5W，100Gbit/s光模块功耗为3W。
从表3的数据可以得出，每端点功耗和每端点成本之间大致呈线性正相关。当考虑构建小型系统时，基于双端口网卡的两层Zcube网络在保证高带宽和低直径的同时，提供了优异的成本效益。然而其可拓展性有限，基于64端口交换机网络仅支持4096端点。Bcube网络同样提供了良好的成本效益，然而Bcube网络在路由实现上依赖端点转发流量，性能受限。当考虑构建中型系统时，三层胖树网络提供了良好的性能，然而网络成本效益和可拓展性表现一般。当考虑构建大型系统时，Dragonfly和Dragonfly+提供了优秀的可拓展性和成本效益，然而二者的无阻塞区域太小，组间带宽稀缺且网络性能依赖高效的自适应路由。Zettafly同样具有优秀的可拓展性，实现了介于胖树和Dragonfly的无阻塞区域大小和成本效益，同时支持有效的作业隔离和简单高效的自适应路由算法，因此可被视为未来大规模高性能互连网络有前景的拓扑方案。
表3仅给出了针对各类拓扑的静态理论分析结果，并未涉及其物理封装密度、网络容错能力，以及潜在的超额订阅策略等方面的探讨。拓扑结构的选型需要综合权衡多种因素，例如：路由器端口数量与机柜封装密度是否满足所设拓扑的实现要求；是否需要采用轨道优化设计，从而以增加光模块数量为代价提升负载均衡性能；各网络层级的规模应控制在何种范围；以及各层应配置何种比例的超额订阅。本文认为，最低成本或高性能高成本的拓扑方案未必是最佳选择。理想的拓扑结构应与运行的应用高度耦合，兼具成本效益与设计合理性，并在易于理解、封装与部署的同时，确保系统在运维层面具备较高的可管理性与稳定可靠性。
6  拓扑设计的挑战
6.1  成本挑战
成本是拓扑设计中最核心的考量因素，对设计方案的选择和优化具有显著的制约作用。网络的建设成本取决于路由器和链路尤其是光缆的数量，因此如何在保证网络性能的同时减少光模块的数量是拓扑设计的关键目标。尽管基于图论的拓扑如Slim Fly等具有良好的摩尔界效率并因此具有更少的互连器件，然而这类拓扑难以被映射到合适的物理封装中，据了解，还未有任何基于图论的拓扑有过大规模部署。相比之下，模块化与层次化的拓扑在设计阶段需充分考虑机柜的封装密度；更高的封装密度意味着更多链路可以在机柜内部完成封装，并可采用成本相对较低的电缆，从而实现性能与成本的更佳平衡。
6.2  可拓展性与低直径挑战
近期，博通推出了全球首款102.4Tbit/s交换机芯片Tomahawk 6[70]，共有1024个100Gbit/s Serdes通道，可支持256个400Gbit/s端口，相近地，英伟达也推出了支持144个800Gbit/s端口的Quantum -X800 IB[71]交换机。使用这些最先进的具有高端口数的路由器构建网络将显著简化拓扑设计。然而，大规模采购此类商用路由器的成本极为高昂。对于已具备路由器芯片自主设计能力的组织，例如国防科技大学天河团队或美国Cray公司，通常更倾向于使用自研路由器而非最新商用产品。此外对于国产自研路由器芯片而言，由于知识产权授权、制程和先进封装工艺的限制，其整体带宽及端口数量通常低于国际顶尖水平。在此背景下，拓扑设计中面临着“大芯片小网络”与“小芯片大网络”权衡问题。如图17所示，受限的端口数量意味着需要构建更大规模的网络才能互连相同数量的端点。然而，网络规模的增加往往导致更大的直径和更高的端到端延迟。因此，在端口资源受限的条件下，如何构建既具高可扩展性又保持低直径的网络，仍然是当前拓扑设计中的重要挑战。
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图17  大芯片小网络和小芯片大网络的权衡
Fig.17  Trade off between chip throughput and network size
6.3  路由挑战
拓扑与路由设计密切耦合、相辅相成，高效的路由算法能够充分发挥拓扑的潜在性能。然而，不同的拓扑结构对路由算法的复杂度要求并不相同。例如，在胖树拓扑中实现流量的负载均衡相对容易，而在 Dragonfly 等最小路径相对稀缺的拓扑中则更为困难。后者由于存在间接路由等特性，需要依赖精确的自适应路由算法来确保性能。同时，路由算法的设计反过来也会对拓扑的选择产生约束。例如，当路由器芯片仅支持有限数量的虚拟通道，或无法在网络路由过程中动态切换数据包所使用的虚拟通道时，设计者往往更倾向于选择胖树等间接网络结构，而非Torus或 Dragonfly等直接网络拓扑。这是因为直接网络通常需要更多虚拟通道，才能在保持路径多样性的同时避免死锁问题。此外，拓扑与路由设计还必须兼顾容错性。这要求路由算法在不额外增加虚拟通道的情况下，能够快速绕过失效的链路或交换机，从而保障网络的稳定性与可用性。
7  未来拓扑设计趋势
7.1  应用驱动型的拓扑设计
在传统的大型数据中心或超级计算机中，通常假设系统会运行多种混合的具有不同通信特征和带宽需求的任务，为了保证充足的网络性能，三层胖树通常是网络拓扑的首选。然而HPC和AI需求尤其是LLM训练需求的快速增长推动着互连系统规模不断扩大，使得构建一个无收敛的胖树非常昂贵。如果选择一个低成本拓扑如Dragonfly可能无法满足LLM训练的高带宽需求。如果能够考虑系统运行的主要应用程序的通信特征，则可针对性地进行拓扑设计并将显著提升拓扑的性价比。例如Zettafly根据应用程序大小的分布特点，将网络划分为多个子网以提供更好的应用隔离。阿里为了避免LLM训练时广泛存在的“大象”流量在路由时潜在的哈希冲突问题，设计了双平面的HPN网络，并观察到超96.3%的LLM训练任务使用不到1000张GPU，因此在组间连接中引入了15：1的超额订阅，以优化成本。华为基于 LLM 训练的显著局部通信特征，提出了多维全连接的 UB-Mesh 网络。该设计主要依靠电缆连接，有效降低了部署成本，同时在高带宽和低延迟需求中保持了良好性能。
7.2  供电制约的拓扑设计
在后摩尔定律时代，数据中心的电力消耗正在朝着GW级迈进[1, 2]，电力供应将在部署超大规模数据中心时制约拓扑的设计。将系统的整个能耗(主要包括计算单元，网络以及散热设备的能耗)平摊到每块GPU上时，单GPU的能耗可达1200W~1500W[18, 55]，这意味着构建一个十万卡GPU的集群可能需要150MW[18]的能耗，该数值在许多情况下已超出单栋数据中心大楼的供电能力，具体情况还与当地的电力供应条件密切相关。未来大型数据中心集群的部署可能不再局限于单一建筑，而是涉及部署在园区内的多栋大楼里，甚至是互连多个不同园区的远距离的数据中心。然而多模光模块的支持的极限距离约为50~100m[18, 55]，大楼之间的连接将不得不使用极为昂贵的单模光模块，其价格大概是多模光模块的3倍。一种良好的设计是将拓扑设计与单栋建筑的供电能力进行耦合优化，例如阿里巴巴HPN7.0架构中，单个组可容纳约15000张GPU，与单栋建筑的供电上限相匹配；在多栋建筑之间，通过在组间部署具有高超额订阅比例的顶层交换机，并使用数量有限的单模光缆进行连接，从而在控制成本的同时实现大规模互连。
7.3  超节点内外拓扑的协同设计
在多种拓扑[20, 52, 54, 55, 62]设计中均存在需要借助节点内网络进行路由转发的情况，而节点内和节点间网络涉及PCIe，NVLink，IB/RoCE等多种网络协议，并导致流量转发时更高的网络延迟。为缓解这一问题，领先厂商正着力推进节点内网络协议的统一，并构建包含更多GPU的超节点架构[72, 73]。英伟达正与英特尔合作，致力于使用NVLink连接x86 CPU和GPU[74]，此举或将解决CPU和GPU间PCIe带宽不足的经典问题。同时，华为推出的UB总线从架构上实现节点内与节点间网络协议的全面统一。统一的节点内网络协议与包含更多 GPU 的机架/机柜级超节点，有望成为未来数据中心发展的重要趋势。对于内部规模达到数百块 GPU 的超节点，其内部互连需要两级交换结构，从而引入更复杂的 Scale-Up 拓扑设计。这也意味着，未来的数据中心网络拓扑将不再仅仅围绕节点间的 Scale-Out 扩展，而是必须同时考虑节点内部与外部网络的协同优化设计。
8 结论
拓扑设计是高性能互连网络的核心，它在很大程度上决定了整体网络的性能与成本。近年来，HPC超级计算机AI数据中心的迅猛发展，推动着低延迟、高带宽、可扩展且具备成本效益的网络拓扑不断演进。总体而言，网络拓扑设计是一门平衡与折中的工程艺术，需要在多种相互制约的因素之间寻找最佳方案，包括：建设成本、供电能力、路由器端口资源限制、虚拟通道数量限制、高效的自适应路由机制以及容错能力等。本文提出了拓扑设计的趋势，包括从运行的应用特点出发针对性地设计出具有最高性价比的网络拓扑；供电制约的拓扑设计需要拓扑和大楼的供电能力的配合；以及节点内网络协议将趋向于统一，超节点规模将不断扩大，未来的拓扑将是节点内外网络拓扑的协同设计。希望本文可在拓扑设计领域提供有意义的分析，并供未来相关系统设计者参考。
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